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Abstract: When a multicomponent system is suddenly loaded, its capability of bearing the load
depends not only on the strength of components but also on how a load released by a failed
component is distributed among the remaining intact ones. Specifically, we consider an array of
pillars which are located on a flat substrate and subjected to an impulsive and compressive load.
Immediately after the loading, the pillars whose strengths are below the load magnitude crash. Then,
loads released by these crashed pillars are transferred to and assimilated by the intact ones according
to a load-sharing rule which reflects the mechanical properties of the pillars and the substrate. A
sequence of bursts involving crashes and load transfers either destroys all the pillars or drives
the array to a stable configuration when a smaller number of pillars sustain the applied load. By
employing a fibre bundle model framework, we numerically study how the array integrity depends
on sudden loading amplitudes, randomly distributed pillar strength thresholds and varying ranges
of load transfer. Based on the simulation, we estimate the survivability of arrays of pillars defined as
the probability of sustaining the applied load despite numerous damaged pillars. It is found that
the resulting survival functions are accurately fitted by the family of complementary cumulative
skew-normal distributions.

Keywords: arrays of micropillars; failure avalanches; fibre bundle model; piezoeletric nanogenera-
tors; statistics; survivability

1. Introduction

Significant progress has been made in the creation and development of sub-micron-
scale devices, including nanopillars assembled in an ordered fashion on flat substrates [1,2].
Nowadays, mezo-scale pillar arrays are applied in areas of nanotechnology such as bio-
mechanical sensing [3], nanoscale electronics, photovoltaics or thermoelectrics, to name
a few [4–6]. An interesting class of nanodevices includes high-performance piezoelectric
nanogenerators (NG) that convert external mechanical energy into electricity [7]. The
newest family of these energy-harvesting devices consists of NGs with vertical core–shell
micropillars [7,8] stacked between flexible flat substrates that play the role of base and
counter electrodes. When an external load is applied axially in a form of loading-hold-
unloading pulses, the counter electrode moves correspondingly, and the alternating current
is generated due to the piezoelectric effect. Flexible sensors that are capable of measuring
multidirectional forces represent another group of devices involving arrays of micropillars.
In this case, micropillars that are aligned vertically and sandwiched between electrodes
form a piezoelectric sensing unit capable of detecting a normal compressive force [9].

Small-scale structures have a substantially greater surface area to volume ratio com-
pared to their coarse-grained counterparts [10]. When a nanopillar is slightly compressed,
bulk defects (mostly dislocations) move and disappear at the surface. As a result, there are
not enough active defects in the bulk to induce deformations [11]. Multiple uniaxial tensile
and compressive experiments on metallic nanopillars confirm the substantial strength
increase via the size reduction of the sample [12–14]. The knowledge of even the most ac-
curate estimate of the strength of individual pillars, however, does not suffice in predicting
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the overall strength of these pillars when they work together after being assembled into
an array. To illustrate this known fact, take a pillar whose overall capability of correctly
bearing a load is characterized by the strength threshold σ. Then, consider a system com-
posed of a multitude of such pillars which are functionally identical but differ in values of
σ. When the system is loaded, pillars whose σ values are smaller than loads exerted locally
on them fail. The local loads from these failing pillars are transferred to ones that remain
intact. It turns out that the ultimate strength of the system crucially depends on how such a
transfer happens [15–17], what the topology of interconnections among components is [18],
what the loading conditions are [19,20], and whether the loading is applied step-wise,
suddenly [21] or cyclically [22,23]. This means that a given ensemble of interconnected
components, working together along with an established rule of load transfer between
failed and intact components, may either sustain an externally applied load or become
entirely destroyed if an unsuitable rule governs the load transfer or interconnections switch
to unfavourable topology [18,24].

In this work, we restrict ourselves to arrays of pillars viewed as mechanical systems.
From this perspective, the strength and integrity of a given array mainly depend on aspects
such as mutual pillar arrangements, pillar-strength thresholds, a chosen method of loading
and the load-transfer rule. Among them the method of loading and the load-transfer rule
are of particular importance.

Although a variety of schemes of loading are discussed in the literature, the quasi-static
and sudden loadings are especially well-studied. The quasi-static scheme is comprised
of many small step-like load increases, whereas in the sudden loading, the applied load
rises abruptly from zero to a given magnitude F. While these schemes are conceptually
similar, the final states of a specified loaded array are quite different. At the very beginning
of a quasi-static loading, only the weakest pillars fail. Their loads are distributed among
intact pillars and the array smoothly passes to a stable configuration when a slightly
smaller number of pillars support the applied load. Then, the subsequent load values are
adjusted to break the weakest existing pillars and settle the system in the resulting stable
configurations. Due to such a sequence of steps comprised of pillar-breaking and load
redistributions, the system moves between consecutive accessible stable configurations
until a presumed value F of the applied load is reached. A different scenario emerges when
the same array of N pillars is suddenly loaded and the load amplitude f = F/N surmounts
strength thresholds σ of weak pillars. The pillars whose σ ≤ f are crushed instantly after
the load appears and a rather large amount of loads are transferred to pillars characterised
by σ > f . Hence, a non-negligible fraction of these pillars become overloaded triggering
consecutive cascades of pillar failures and resulting load transfers. After a certain number
of such cascades, the array either collapses or freezes in a stable configuration which is
different from the one reached under the quasi-static loading.

The principal objective of this work is to model and quantify the relationship between
the load applied suddenly to the pillars and the integrity of the array of pillars itself.
Specifically, we focus on the survivability of suddenly loaded arrays understood as the
capability to sustain the applied load despite the partial damage. For this purpose, we
simulated the loading process and, based on the resulting statistics, we estimated the
corresponding survival function S. In our approach, S represents the probability that a
given array of initially N vertical pillars bears the axial load F = N f in the presence of a
number n < N of intact pillars reduced because of crushing.

In Section 2, we specify our model together with corresponding computational scheme.
Section 3 presents the results of simulations and a discussion. Finally, we summarize our
findings and formulate conclusions related to the integrity of a suddenly loaded array
of pillars.

2. Model Description and Computational Scheme

An array of our interest consists of N parallel pillars positioned vertically at N = L× L
nodes of square flat substrate. An axial and suddenly applied load induces pillar crushes
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which spread through the array. To make a link between the applied load and evolv-
ing failures, we employ the fibre bundle model framework [25–28], which enables us to
independently tune the main aspects of our rough model.

2.1. Pillars

While we neglect a possible pillar-alignment mismatch, the pillars themselves contain
imperfections either due to fabrication errors or due to inherent material defects. In order
to include these imperfections in the model, we represent the pillars by a quenched set
of random-load thresholds {σth} assuming that each σth is drawn independently from a
given distribution. In the simulations, we employed two probability distribution functions
(pdf): (i) the Weibull pdf, whose two-parameter cumulative distribution function reads

Pρ,λ(σth) = 1− exp
[
−(σth/λ)ρ]. (1)

and (ii) a uniform distribution on the interval [0, 1]. In Equation (1), the so-called Weibull
index ρ refers to an amount of threshold disorder and λ scales a reference load. We assume
that λ = 1.

2.2. Load Transfer Rules Reflecting Substrate Rigidities

Multiple characteristics of array substrate as well as those corresponding to pillar
fixations, conspire to regulate the load transfer processes. Specifically, since loads released
by failing pillars are undertaken by the intact ones and pillar-to-pillar interactions pass
through the substrate, then a correct rule of load transfer should be related to some me-
chanical properties of the substrate. Our rough model assumes that this rule is qualitatively
linked to the substrate rigidity only. Such a simple assumption stems from the fact that
immediately after loading, pillars start to interact elastically through stresses which are
localized in the substrate. In order to choose a correct load transfer rule, we follow a
power law relation ∼ 1/rγ which expresses how the stress changes at the distance r from
a damage location in a continuous and homogenous material. Our approach neglects
thermal effects on the failure process [29,30] .

A discrete analogue of the ∼ 1/rγ stress-intensity drop, the so-called range variable
(RV) load transfer rule [17,31–33], is suitable when dealing with cascading processes on
networks. This is also the case of load-induced cascades of crushing pillars. In this scenario,
we denote by G0 the set of nodes occupied by intact pillars prior to loading. Once the load
F is applied, the pillars start to break and form a finite sequence of m cascades of failures,
where m depends on the load magnitude for a given array of pillars. Hence, we may split
G0 into two evolving sets, Gµ and Kµ, which include nodes holding the intact and crushed
pillars, respectively on m consecutive cascades, i.e.,

Kµ ∩ Gµ = ∅ ∧Kµ ∪ Gµ = G0, µ = 0, 1, . . . , m, (2)

G0(F = 0) −→ Gm(F > 0) ⊂ · · · ⊂ Gµ(F) ⊂ · · · ⊂ G0(F = 0). (3)

If Gm(F) 6= ∅, then the array sustains the load F. According to the RV rule, a fraction ∆ f j←i
of load fi transferred from the failed pillar at node i ∈ Kµ to an accessible intact one located
at j ∈ Gµ is defined as follows

∆ f j←i =
Zi

| j− i |γ fi, (4)

where | j− i | is the distance between crushed and intact pillars, and the normalisation
factor Zi = (∑j∈Gµ

| j− i |−γ)−1 ensures that the applied load is conserved. The adjustable
parameter γ ≥ 0 should be tuned in accordance with the substrate rigidity. For this reason,
we will explore how arrays of pillars behave under sudden loading in presence of RV(γ)
rules with different values of γ, including the limits γ = 0 and γ → ∞ that correspond
to perfectly rigid and maximally flexible substrates, respectively. It is worth mentioning
that by varying the value of γ, the RV rule smoothly interpolates between the short
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range (γ → ∞) and long range (γ = 0) interactions among pillars. The short range limit
corresponds to a so-called local load sharing (LLS) transfer rule, whereas the RV(γ = 0)
is identical to the rule known as global load sharing (GLS). From the mathematical point
of view, the GLS rule is equivalent to a mean field approximation where any two pillars
are assumed to be separated by the same distance. This, in turn, means that the GLS rule
distributes the transferred load equally among intact pillars and thus it represents the
least damaging load transfer protocol. On the other hand, the LLS rule allocates loads
from failed pillars to their nearest intact neighbours only. Hence, it triggers the most
harmful effects.

2.3. Survivability and Survival Function

Although there exists a formal definition of system survivability that is suitable in
some areas of computer sciences, technology, or economy, there is no unique definition in a
general sense [34]. In the context of our study, we define an array of pillars’ survivability
as the capability of an array to sustain the applied load, although some fraction of pillars
is down.

Along with this qualitative definition, we introduce a measure of survivability, namely
the survival function S. For an array represented by {σth}G0

, we define this function as the
probability that G0 evolves to a non-empty terminal set Gm( f ) when the load f is applied
suddenly and the RV(γ) rule is in operation

S( f , γ, {σth}G0
) = P(G0 −→ Gm( f , γ, {σth}) 6= ∅) (5)

A computational scheme that enables us to estimate the function (5) is specified below.

2.4. Computational Scheme

With the aim of correctly estimating the survival function S( f , γ), we have to collect
large data sets corresponding to values of γ that grow from 0 to a certain γ∗ < ∞, where
γ∗ is settled indirectly via the condition that the results of simulations with the RV(γ∗)
rule are statistically indistinguishable from those obtained in the presence of the LLS rule.
The case of the LLS rule is also taken into account. Furthermore, when {σth} are governed
by the Weibull distribution, we multiplicate simulations by varying the Weibull index ρ in
order to pass from a strong to a weak disorder in pillar-strength thresholds.

Our simulations are arranged in the following way. For an array with a given number
N of pillars whose the set of nodes is G0 and a specified value of ρ, we store a simple sample
Σ(ρ) comprising M ordered sets {σth(ρ)}

(k)
G0

, 1 ≤ k ≤ M, each representing an array by N
pillar-strength thresholds generated according to Equation (1). Additionally, we build a
similar sample Σu with {σth}

(k)
G0

drawn from the uniform distribution on [0, 1].
Then, having Σ, a value of γ, and a load f , we simulate the sudden loading with

the RV(γ) rule in operation. Finally, we obtain all G(k)m ( f , γ, {σth}
(k)
G0

) that refer to the
chosen sample.

2.5. Survival Function Estimate

To estimate the survival function (5), we rely on the fact that our sample is simple and,
hence, each individual {σth}G0

appears in the sample equally likely. This means that the
probability of sustaining a given load becomes

P =
number of arrays in the sample that sustain the load

number of arrays in the sample

and we may use the above approach to estimate the survival function S.
For a given N, γ, f and a chosen sample Σ, we simulate the sudden loading on all

{σth}G0
∈ Σ to obtain the corresponding terminal sets G(k)m ( f , γ, {σth}), 1 ≤ k ≤ M. Finally,
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the survival function estimator Ŝ is given by the fraction of arrays in Σ whose terminal sets
are non-empty, i.e.,

Ŝ( f , γ, {σth}G0
) =

1
M

M

∑
k=1

H(| G(k)m ( f , γ, {σth}
(k)
G0

) |) (6)

where | G | denotes the number of elements in G, and H(·) is the Heaviside step function,
i.e., H(x) = 1 if x > 0; otherwise, it returns to zero. The estimator (6) will also be referred
to as an empirical survival function.

3. Results and Discussion

We have carried out a substantial number of simulations of the model specified in
Section 2 to collect data necessary to estimate the survival function correctly. We have
gathered data for different values of N, ρ by varying load f in the presence of RV(γ) with γ
spanned over the interval [0, γ∗ ∼ 10]. Separately, we have also gathered data referring to
the large γ limit. Specifically, we have drawn {σth(ρ)} from the Weibull distributions with
ρ ∈ {2, 3, . . . , 10} to simulate arrays with number of pillars N ∈ {40× 40, . . . , 250× 250}.
The same values of N were used for uniformly distributed σs. All simulations were
conducted over samples comprising M = 104 elements each.

Two assumptions are valid through all simulations: (i) the load transfer is an almost
instantaneous process that happens simultaneously and (ii) pillars are loaded uniformly,
i.e., initial load fi∈G0 on each pillar is equal to f = F/N.

3.1. Empirical Survival Functions Referring to the Range-of-Load-Transfer Limits

We have mentioned in Section 2.2 that the RV(γ = 0) is equivalent to the GLS rule,
which engages uniformly all intact pillars in capturing loads transferred from crushed
pillars. Through this, the GLS as the least damaging rule enables us to estimate the
upper bound of strength of an array represented by {σth}G0

. On the other hand, in the
limit γ → ∞, the RV(γ) converges to the LLS rule, which, by activating only the nearest
neighbours of crushed pillars, provokes the most adverse effects on the system. When the
LLS rule operates it yields the lower bound of overall strength of the same array.

Although the GLS and the LLS rules are rather unrealistic, we analyse data result-
ing from simulations with them in order to have access to a corresponding system’s
strength limits.

3.1.1. Survival Function under the GLS Rule, RV(γ = 0)

Let us first analyse how the GLS rule affects the survivability of an array of pillars.
In Figure 1, the empirical survival function is plotted for a growing number of pillars.
Applying the Cramer–von Mises and Anderson–Darling goodness-of-fit tests, we were able
to fit all data presented in Figure 1 by one family of functions, namely the complementary
cumulative normal distribution, that takes the form

SGLS( f ) = 1−CN( f ), (7)

CN( f ) =
1
2

erfc
(
− f − µ√

2δ

)
.

The above functional form of S depends on two parameters: the location µ and the
scale δ. Both of these parameters turn out to be very accurately fitted by the mean critical
load f c and the standard deviation of distribution of fc computed for fibre bundles loaded
quasi-statically with the GLS rule [35–37]. When the Weibull distribution generates {σth}G0

,
these parameters read

µ(ρ, N) = f c(ρ, N) = (ρe)−
1
ρ

[
1 + 0.996N−2/3

( e2/ρ

ρ

)1/3
]

(8)
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and

δ(ρ, N) = sd(N) =

(
1√
N

)
ρ−1/ρ

√
e−1/ρ

(
1− e−1/ρ

)
. (9)

For uniformly distributed {σth}G0
, the corresponding location µ is given by [38]

µ(N) = f c(N) =
1
4

(
1 + 1.224N−2/3

)
. (10)

L=60

L=120

L=180

0.41 0.42 0.43 f0.44 0.46 0.47 0.48 0.49

0.0

0.2

0.4

S
^

0.8

1.0

50 100
L

200 400 500

0.4290

0.4294

0.4302

0.4306

0.4310

μ

50 100 L200 400 500

0

0.001

0.002

0.004

0.005

0.006

δ

GLS

ρ=2

Figure 1. The empirical survival function ŜGLS for arrays with L× L pillars and {σth} governed by
the Weibull distribution. Continuous lines follow Equation (7) with parameters µ and δ defined,
respectively, by Equations (8) and (9).

All continuous lines in Figure 1 intersect in a close vicinity of one point. This com-
mon crossing point corresponds to the limit f

∞
c = limN→∞ f c. For arrays with Weibull

distributed pillar-strength thresholds, this limit equals (ρe)−
1
ρ , whereas for the uniform

distribution on [0, 1] we have f
∞
c = 1/4; see Equations (8) and (10), respectively. Finally, in

the limit of a very large number of pillars, SGLS converges to the step function expressed
with the help of the Heaviside function

SGLS( f , ∞) = 1− H( f
∞
c ). (11)

3.1.2. Survival Function under the LLS Rule, RV(γ→ ∞)

Empirical survival function ŜLLS defined by Equation (6) and computed for arrays
with a growing number of pillars is presented in Figure 2. Similarly to the already analysed
ŜGLS, data points are also satisfactorily fitted in this case by one family of functions specified
by the cumulative skew-normal distribution (CSN) [39]

SLLS( f ) = 1−CSN( f ), (12)

CSN( f ) =
1
2

erfc
(
− f − ζ√

2ω

)
− 2T

(
f − ζ

ω
, θ

)
,

where the location (ζ), scale (ω), and shape (θ) are the parameters depending on N and
{σth}. T(◦, ◦) stands for Owen’s T function .
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L=60

L=120

L=180

0.1 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.37f

0.0

0.2

0.4

S
^

0.8

1.0

LLS

ρ=2uniform

Figure 2. The empirical survival function ŜLLS of loaded arrays involving L× L pillars with respect
to two distributions of {σth} . The solid lines represent Equation (12).

In accordance with the results of simulations, when N grows, the expectation value

µ = ζ +

√
2
π
· ωθ√

(1 + θ2)
(13)

that is related to the CSN( f ) and displayed in Figure 3 approaches the following power-
law relation

µ(N, {σth}) = α({σth})
(

1
ln N

)β({σth})
(14)

0.19 0.20 0.21 0.231/Log L 0.24 0.25

0.140

0.145

0.150

μ

0.155

0.160

uniform

0.19 0.20 0.21 0.250.231/Log L 0.24

0.26

0.30

0.34

μ

0.42

0.46

=2

=4

=6

Figure 3. The expectation µ for arrays with L× L pillars and the LLS rule. The solid lines are drawn
in accordance with Equation (14).

The same relation, however, represents the best fit to the mean ultimate strength f c of
quasi-statically loaded multicomponent systems represented by the Fibre Bundle Model
with the LLS rule [26,38,40–42]. Specifically, when {σth} are distributed uniformly over
[0, 1], the corresponding coefficients are: α ' 0.380, β ' 0.423. We have also noticed that if
{σth} are assigned to pillars according to the Weibull distribution (1), then α(ρ) and β(ρ)
are best fitted by the exponential functions

α(ρ) = Aα − Bα · exp(−λ · ρ), (15)

β(ρ) = Aβ + Bβ · exp(−λ · ρ), (16)
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where: Aα = 1.043± 0.024, Bα = 0.627± 0.017, Aβ = 0.224± 0.009, Bβ = 0.189± 0.008 and
λ = 0.210± 0.033. In Figure 4, we display the above best fits together with corresponding
data points.

α

β

2 4 8 10ρ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4. The parameters α and β of Equation (14) and their best fits defined correspondingly by
Equations (15) and (16).

3.2. Empirical Survival Function for Intermediate Ranges of Load Transfer

We have gathered large data sets concerning the empirical survival function (6) of
arrays with a growing number of pillars in the presence of RV(γ) rule with increasing values
of γ. A careful analysis of the data indicates that when loads are transferred according to
RV(0 < γ < ∞), the survival function is satisfactorily modelled by the function introduced
in Equation (12), namely

SRV( f , γ) = 1−CSN( f , γ), (17)

CSN( f , γ) =
1
2

erfc

[
− f − ζ(γ)√

2ω(γ)

]
− 2T

[
f − ζ(γ)

ω(γ)
, θ(γ)

]
.

We have explicitly written that the parameters ζ, ω and θ depend on the range of load transfer
through γ, while their obvious dependence on {σth}, is omitted for the sake of clarity.

In Figure 5, we present a collection of empirical survival functions ŜRV( f , γ) together
with the corresponding best fits, Equation (17), ordered from left to right by decreasing
values of γ. Although these functions correspond to a sample of arrays with a moderate
number of pillars, two characteristic features are clearly seen: (i) S( f , γ . 2) behaves
similarly to ŜGLS( f ), whereas for γ & 3 the shape of Ŝ resembles that one of ŜLLS( f ) and
(ii) with growing γ locations of Ŝ( f ) are shifted towards decreasing values of f .

A closer look at Figures 6 and 7 sheds light on the above-mentioned features. First,
consider the shape parameter θ which is displayed in Figure 6. When γ stays in the range
[0, γ̂] with γ̂ ∼ 2, then θ(γ . γ̂) ≈ 0. It is seen from Equation (17) that the parameter θ only
appears as the argument of the Owen’s T(◦, θ) function. By definition, however, T(◦, θ)
becomes infinitesimally small when θ vanishes. Consequently, SRV( f , γ) turn out to be
effectively expressed by the cumulative skew-normal distribution with zero skewness

CSN( f , 0 ≤ γ ≤ γ̂) ≈ 1
2

erfc
[
− f − ζ√

2ω

]
= CN( f ).

Since the skewness vanishes in this range of γ, then the skew-normal distribution effectively
becomes the standard normal one and the resulting survival function resembles SGLS.
Moreover, the presence of a mean-field-like effective pillar-to-pillar interaction is supported
by empirical values of µ that were computed according to Equation (13) and are presented
in Figure 7. These values refer to CSN( f , γ) of Equation (17). It is seen in Figure 7 that if
γ . 2.2, then the values of µ(γ) related to arrays with different numbers of pillars converge
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with each other. This vanishing system-size-dependence justifies the applicability of mean-
field approximation and indicates that loads are transferred among pillars according to
the GLS-like rule. On the other hand, when γ > 3, the system-size-effect becomes visible.
Hence, in the large N limit the mean µ(N, γ) approaches the power-law expression given
by Equation (14).

γ 0

γ 2

γ 2.5

γ 3

γ 4

γ 5

γ 10

γ→∞

0.22 0.26 0.30 0.38f 0.42 0.46

0.0

0.2

0.4

S
^

0.8

1.0

Figure 5. The evolution of the survival functions (curves) for different γ and N = 100 × 100.
Pillar-strength thresholds are generated according to the Weibull distribution with ρ = 2.

L=40

L=60

L=80

0 2 4 8 10γ

-2.5

-2.0

-1.5

-0.5

0

θ

Figure 6. The shape parameter θ as function of γ for arrays of N = L× L pillars with {σth} distributed
uniformly over [0, 1]. The dashed lines correspond to the respective large γ limits.

From the above discussion, we may conclude that for small value of γ . 2.2 the
survival function behaves like SGLS. Then, SRV gradually converts to a SLLS-like survival
function when a growing γ passes through a short segment [2.2, 3]. In order to see this
conversion of SRV in detail, we have assembled data corresponding to samples with
different values of N and have drawn the resulting survival functions in Figure 8.
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L=40

L=60

L=80

0 2 4 8 10γ

0.15

0.17

0.19

0.23

0.25

μ

Figure 7. The expectation µ computed according to Equation (13) in reference to the survival function
SRV( f , γ) defined by Equation (17). Other parameters are the same as in Figure 6.
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Figure 8. Fitted survival function SRV( f , γ), see Equation (17), for arrays with L× L pillars and {σth} drawn from the
Weibull distribution with ρ = 2.
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Only the best fits given by Equation (17) are shown in Figure 8 as a matter of trans-
parency. When γ ≤ 2.4, the lines that represent arrays with different N intersect in a close
vicinity of one point. This resembles the intersection point seen in Figure 1 that refers to
the GLS rule. In contrast, lines stop crossing if γ ≥ 2.7 and their positions together with
mutual order reflect those corresponding to SLLS presented in Figure 2.

It is worth noting that the segment [2.4, 2.7] is shifted towards higher values of γ
with respect to its counterpart [2, 2.2] [17], which is related to quasi-statically loaded
systems [31–33]. This can be explained as follows. It is seen in Figure 5 that when we take
a certain f and two surviving functions S( f , γ1) 6= S( f , γ2), then S( f , γ1) > S( f , γ2) ⇒
γ1 < γ2. On the other hand, when a given ensemble of arrays is loaded quasi-statically up
to a certain load f̃ , then the fraction Ŝq−static( f̃ ) of surviving arrays would be greater than
Ŝsudden( f̃ ) which results from the load f̃ being applied suddenly. Hence, having the same
rule RV(γ) in both loadings, we obtain the above-mentioned shift.

3.3. Fraction of Surviving Pillars

Our main concern in this paper is the survival function S. By definition, however, S
also holds hidden information about surviving pillars. In order to extract this information,
we consider a sample of arrays with pillars specified by {σth}G0

. When the sample is
engaged in supporting the load f , we should know not only what the fraction of arrays
is that will survive but also how large the fraction (U) of intact pillars will be accessible
for further applications. To be precise, even though the empirical survival function (6)
provides information about a fraction of arrays which are able to sustain suddenly applied
load f , the function Ŝ( f ) itself gives us no information about the quantities of intact pillars
that work to bear the load f .

With this in mind, we define and compute the mean fraction U of surviving pillars by
adopting the same arguments as those presented in Section 2.5, i.e.,

U( f , γ, {σth}G0
) =

1
M · N

M

∑
k=1
| G(k)m ( f , γ, {σth}

(k)
G0

) | . (18)

Below, we present data that relate the mean fraction of surviving pillars to model parame-
ters. As an example, in Figure 9, we plot U( f , γ) for an array with 80× 80 pillars including
two distributions of pillar-strength thresholds and assuming that 0 ≤ γ ≤ 10.

γ 0 γ 1 γ 2 γ 2.2 γ 2.5 γ 3

γ 3.5 γ 4 γ 5 γ 6 γ 7 γ 10

0.1 0.15 0.20 0.30 0.35f 0.40 0.45

0.0

0.2

0.4

U

0.8

1.0

uniform
ρ 2

Figure 9. The variations of mean fraction of surviving pillars U( f , γ) are displayed for 0 ≤ γ ≤ 10
when {σth} are distributed uniformly over [0, 1] (left bunch of data points) or according to the Weibull
pdf with ρ = 2 (right bunch of data points). The continues lines follow Equation (20) with parameters
estimated from simulations.
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An obvious feature seen in Figure 9 concerns the upper envelope of U; let us denote
it by ψ. Independently of distributions of {σth}, the envelope coincides with U( f , γ = 0)
and thus can be determined from data corresponding to RV(γ = 0), i.e., to the GLS rule of
load transfer; see Section 3.1. Although the data displayed in Figure 9 refer to a particular
value of N, the same feature holds for any number of pillars.

Since U and Ŝ are closely related, it is worth identifying a direct link between them.
For this purpose we have to establish the best fit ψN( f , {σth}) to the above-mentioned
envelope of U( f , γ, {σth}, N). By applying the maximum likelihood procedure, we have
found that ∼ f b is the best fit to ψN( f , {σth}), i.e.,

ψN( f , {σth}) = 1− aN({σth}) · f bN({σth}) (19)

where aN({σth}), bN({σth}) are coefficients that should be computed from data related to
N and to pillar-strength thresholds.

A rigorous comparison of data collected from simulations with data provided by
Equations (17) and (19) allows us to express the mean fraction of surviving pillars in the
following way

UN( f , γ, {σth}) = ψN(( f , {σth})) · ŜN( f , γ, {σth}) (20)

The above relation shows that the mean fraction of surviving pillars and the surviving
functions are linked via the envelope function (19). Specifically, for the Weibull pdf, we
have the following relation:

UN( f , γ, ρ) =
[
1− aN(ρ) · f bN(ρ)

]
· ŜN( f , γ, ρ), (21)

which is displayed in Figure 10 for an exemplary sample of arrays, each with 100× 100
pillars and {σth} drawn with the Weibull index ρ = 2.

0.30 0.32 0.34 0.36 f 0.40 0.42 0.44

0

0.2

0.4

0.6

0.8

1.0

L=100, ρ=2

γ=3 γ=2.5 γ=2

S

U

ψ

Figure 10. The link between U( f , γ), S( f , γ) and the envelope function ψ( f ) expressed by
Equation (21).

More detailed information in reference to locations of intact pillars within consecu-
tive cascades of failures is out of the scope of this paper. We will address this issue in
future works.

4. Summary

We have employed the range variable fibre bundle model to study the survivability
of arrays with vertical pillars located at nodes of square substrates and subjected to axial
loads applied suddenly. In our approach, amplitudes of loads transferred from the crushed
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to intact pillars decay with distance r as r−γ, where γ qualitatively reflects the effective
elasticity of the substrate. By this, growing values of γ span a variety of substrates from
perfectly rigid to flexible ones.

Based on simulations, we were able to discriminate between rules of load transfer
RV(γ) with γ ≤ 2.4 and those with γ ≥ 2.7. When the former rules are present, a loaded
array behaves as the bundle of pillars located on a rigid substrate with a long-range GLS-
like rule of load transfer. This is in contrast to the latter rules which effectively act as an
effective short-range LLS-like load transfer rule. Our simulations and collected data do not
allow us to classify rules which correspond to 2.4 < γ < 2.7.

We have also found that the empirical survival functions Ŝ( f ), defined as the probabil-
ity that specified arrays with pillars sustain a given load f despite of partial damages, are
very accurately fitted by one family of distributions, namely the family of complementary
cumulative skew-normal distributions; see Equation (17).

We have mentioned in the Introduction section that micropillar arrays are in the core
of different kinds of nanodevices such as, e.g., piezoelectric nanogenerators. It remains to
be investigated whether and how our approach can be tailored to analyse pillar failures in
such devices.

We are conscious of the fact that the results of our work rely on statistically founded
modelling that requires extensive numerical simulations. This is, however, justified by
the complexity of the problem that prevents an analytically tractable approach that goes
beyond mean-field approximations, such as the GLS fibre bundle model.
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