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Abstract

In this paper, from the practical point of view, we focus on modeling traumatic brain injury

data considering different stages of hospitalization, related to patients’ survival rates follow-

ing traumatic brain injury caused by traffic accidents. From the statistical point of view, the

primary objective is related to overcoming the limited number of traumatic brain injury

patients available for studying by considering different estimation methods to obtain

improved estimators of the model parameters, which can be recommended to be used in

the presence of small samples. To have a general methodology, at least in principle, we con-

sider the very flexible Generalized Gamma distribution. We compare various estimation

methods using extensive numerical simulations. The results reveal that the penalized maxi-

mum likelihood estimators have the smallest mean square errors and biases, proving to be

the most efficient method among the investigated ones, mainly to be used in the presence

of small samples. The Simulated Annealing technique is used to avoid numerical problems

during the optimization process, as well as the need for good initial values. Overall, we con-

sidered an amount of three real data sets related to traumatic brain injury caused by traffic

accidents to demonstrate that the Generalized Gamma distribution is a simple alternative to

be used in this type of applications for different occurrence rates and risks, and in the pres-

ence of small samples.

1 Introduction

Gamma distribution plays an important role in statistics as one of the most used generaliza-

tions of the Exponential distribution due to its various special cases (such as Exponential and

Chi-square). This distribution has been used in different scenarios, such as reliability engineer-

ing, environmental modeling, and health research, to list a few (see Louzada and Ramos [1]

and the references therein). Stacy [2] proposed an important generalization of the Gamma
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distribution to unify other relevant distributions, e.g., Weibull and Lognormal. This generali-

zation, called Generalized Gamma (GG) distribution, has been successfully applied in diverse

areas, such as reliability, data processing, and meteorology, among others (see Cox et al. [3]

and the references therein). Moreover, it keeps the characteristic of incorporating only the sup-

port of a positive random variable T, and its probability density function (pdf) is given by

f ðtj�; m; aÞ ¼
a

Gð�Þ
ma�ta�� 1 exp f� ðmtÞag; ð1Þ

where t> 0, Gð�Þ ¼
R1

0
e� tt�� 1dt is the gamma function, α> 0 and ϕ> 0 are the shape

parameters and μ> 0 is the scale parameter. The GG distribution includes various sub-models

as special cases, such as the Log-Normal, Weibull, Gamma, Half-Normal, Nakagami-m, Ray-

leigh, Maxwell-Boltzmann, and Chi distributions.

Frequentist inference for the GG distribution has been widely considered in the literature.

Stacy and Mihram [4] derived the maximum likelihood estimators (MLEs). However, Harger

and Bain [5] later showed that the nonlinear equations obtained by the maximum likelihood

approach are unstable. DiCiccio [6] discussed approximate conditional inference methods for

this distribution. Huang and Hwang [7] used the method of moments to perform inference for

the GG distribution. Furthermore, Khodabin and Ahmadabadi [8] compared the method of

moment estimators and MLEs, whose results revealed that most of the time the MLEs showed

greater performance even though under the presence of estimation limitations. Recently, Nou-

faily and Jones [9] discussed some different approaches to maximize the likelihood function;

the proposed numerical technique returned smaller proportions of errors during the maximi-

zation process, but still failed in a significant number of samples, which is undesirable.

1.1 Overview of the TBI problematic

Trauma is a multisystem health condition that represents the third cause of death worldwide,

surpassed only by cerebrovascular diseases and cancer [10]. It is estimated that over sixty mil-

lion people have trauma each year, and nearly 16,000 people die every day after some traumatic

injury. Traumatic Brain Injury (TBI) represents one of the significant causes of death and dis-

ability among the trauma epidemiology data [10, 11]. Most of the patients with TBI are young,

economically active adults and more likely to have been involved in a traffic accident [12–16].

Therefore, TBI is considered a public health concern that leads to high costs of hospitalization

with various economic and social burdens.

The limited available data in the TBI problematic, usually presented in a small number of

patients, motivated the current study, which relied on a data set of a longitudinal observational

investigation of patients after TBI due to traffic accidents admitted to a Brazilian Emergency

Department. Investigating optimal statistical analyses in this population is essential for provid-

ing impactful information applied not only to patients but also to their families, caregivers,

and society in general [17].

1.2 Current statistical methods and their limitations

In the literature, there are various classical methods for estimating the unknown parameters of

probability distributions. Under the frequentist approach, the primary interest is to compare

the maximum likelihood estimation method with other estimation procedures. Related studies

about different distributions have also been presented in the literature [18–22]. In this work,

we consider several of these estimation procedures, such as least squares, the weighted least

squares, the maximum product of spacings, and the Anderson-Darling maximum goodness-

of-fit estimators.
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An intensive simulation study is conducted to compare these estimation methods. How-

ever, we observe two significant problems. The first is that, for some methods, the estimation

procedures fail in finding the target estimates, i.e., report convergence problems in the maxi-

mization/minimization process. The second is related to the occurrence of a significant bias in

the obtained estimates for small samples. In order to overcome this problem, we propose a

penalized maximum likelihood estimator, which, combined with a very useful practical algo-

rithm called Simulated Annealing (SANN) (for further details, see Kirkpatrick et al. [23]),

guarantees the best convergence not depending on the conditions of the problem (i.e., the ini-

tial values), even when it has several local extrema. Prentice [24] argued that the approximately

normal distribution for ϕ, using the maximum likelihood theory, may not be achieved even for

sample sizes equal to or larger than 400. Due to the asymptotic relationship of the maximum

likelihood estimator with the penalized maximum likelihood estimator, the same problem

may be observed. Therefore, we consider a bootstrap approach to building accurate confidence

intervals (see DiCiccio and Efron [25]) for small and moderate samples. Finally, by combining

all these approaches, one can perform inference for the flexible GG distribution with good pre-

cision even for small sample sizes.

The paper is organized as follows. Section 2 presents some properties of the GG distribu-

tion, including its cumulative distribution, survival and hazard functions, and its moments.

Additionally, the SANN algorithm is also discussed in detail, and implementation procedures

are presented. Section 3 discusses the eight estimation methods considered in this paper. Sec-

tion 4 shows a simulation study, using synthetic data, designed to identify the most efficient

estimation procedure. In Section 5, we apply our proposed methodology to three new real data

sets provided by a medical school, which contain the TBI patients’ lifetime risk among differ-

ent hospitalization stages. Finally, some final comments are given in Section 6.

2 Background

Let T be a random variable with GG distribution, i.e. T ~ GG (ϕ, μ, α). Then, its cumulative

distribution function (cdf) is given by

Fðtj�; m; aÞ ¼
Z ðmtÞa

0

1

Gð�Þ
w�� 1e� wdw ¼

gð�; ðmtÞaÞ
Gð�Þ

; ð2Þ

where gðy; xÞ ¼
R x

0
wy� 1e� wdw is called lower incomplete gamma function. The survival func-

tion is given by

Sðtj�; m; aÞ ¼ 1 � Fðtj�;m; aÞ ¼ 1 �

Z ðmtÞa

0

1

Gð�Þ
w�� 1e� wdw ¼

Gð�; ðmtÞaÞ
Gð�Þ

; ð3Þ

where Gðy; xÞ ¼
R1
x wy� 1e� wdw is the upper incomplete gamma function. The lower and

upper incomplete gamma functions are standard functions in many pieces of software, such as

R, SAS and Ox. Finally, the hazard function is given by

hðtj�; m; aÞ ¼
f ðtj�; m; aÞ
Sðtj�; m; aÞ

¼
ama�ta�� 1 exp f� ðmtÞag

Gð�; ðmtÞaÞ
: ð4Þ

Glaser [26] showed that the hazard function (4) of the GG distribution can capture basic

shapes, such as constant, increasing, decreasing, bathtub and unimodal. Fig 1 presents some

examples of the shapes of the pdf and hazard function, considering different values of ϕ, μ
and α.
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The r-th moment of T about the origin can be obtained by

E Tr½ � ¼
G �þ r

a

� �

mrGð�Þ
: ð5Þ

Then, the mean and variance of the GG distribution are given, respectively, by

E T½ � ¼
G �þ 1

a

� �

mGð�Þ
and Var T½ � ¼

1

m2

G �þ 2

a

� �

Gð�Þ
�

G �þ 1

a

� �

Gð�Þ

� �2
" #

: ð6Þ

2.1 Simulated annealing algorithm

The SANN algorithm was developed via the generalization of the Metropolis algorithm

(Metropolis et al. [27]) to simulate the changes in the energy of molten metal when lowering

its temperature slowly. The purpose of the cooling process is to reach a globally minimum

energy state, i.e., to obtain a solid that is in its ground state. However, as pointed out by Salter

and Pearl [28], if the temperature is lowered too fast, the resulting solid can become trapped in

a metastable state that is not its ground state. Some authors, such as Kirkpatrick et al. [23],

noticed the analogy between the cooling process of a substance to its minimum energy state

and the minimization of a function by using a stochastic search strategy. In this case, the meta-

stable state represents a local minimum, the ground state represents the global minimum, and

the cooling rate corresponds to some parameters that control the possible solutions by the

search algorithm.

Let g : Rd
! R be the function to be minimized (objective function), let x0 ¼ xð0Þ1 ; . . . ; xð0Þd

� �

be the initial solution (initial points), and let k0 be the initial value of the control parameter

Fig 1. Shapes of the pdf and hazard function. (A) Pdf of the GG distribution. (B) Hazard function of the GG distribution.

https://doi.org/10.1371/journal.pone.0221332.g001
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(initial temperature). The SANN algorithm can be described in a formal and general way as

follows.

1. Set i = 0.

2. From the current solution, xi, generate a potential solution, xj, according to a specific gener-

ation scheme.

3. If Δg = g(xj) − g(xi)� 0, then set xi+1 = xj with probability p = 1. Otherwise, set xi+1 = xj with

probability p = exp {− Δg / ki}.

4. Update the value of the control parameter, ki, and set i = i + 1. Then, go to step 2.

Steps 2-4 are repeated, e.g., until the value of the control parameter, ki, is sufficiently small,

or the same solution is repeatedly generated in many successive iterations.

Next, some useful remarks about the above algorithm are given.

1. For some choices of k0, including k0 = log (g (x0)), see, e.g., Aarts and Korst [29].

2. In step 2, the potential solutions, xj’s, are randomly chosen within a range. For instance,

through xj = xj + rV, where r is a uniformly distributed random number in the interval (−1,

1), i.e. r ~ U(−1, 1), and V is a vector (of length d) of step sizes. After s iterations, the SANN

adjusts its search bounds for each variable so that 50% of all moves will be accepted, either

enlarging these bounds to select a new ground to move to or shrinking them to a

minimum.

3. In step 3, for the cases where Δg> 0, we generate u ~ U(0, 1) and move to xj only if u< p.

Thus, accepting worse solutions may prevent the process from becoming stuck at local

minima.

4. In step 4, after m iterations, temperature (control parameter) k drops as k0 = rk × k, where 0

� rk� 1 is the rate of temperature reduction given the initial annealing/cooling schedule.

Usually, rk = 0.95.

5. As pointed out by Salter and Pearl [28], by the Markov chain theory, the SANN algorithm

can be shown to converge to a stationary distribution for which the set of optimal solutions

has probability 1, under certain conditions of both the sequence of control parameters and

the generation scheme (see, e.g., Aarts and Korst [29], Haario and Saksman [30]).

Although presented above as a minimization problem, the SANN algorithm can be easily

modified/adapted to cases where the interest resides on maximizing the function g(�).
Several variants of the SANN algorithm have been proposed in the recent literature.

Among them, we can mention the relevant works of Torres-Jimenez and Rodriguez-Tello

[31], Torres-Jimenez et al. [32], and Izquierdo-Marquez et al. [33].

3 Inference

In this section, we present different frequentist estimation methods to obtain the estimates for

the parameters ϕ, μ, and α of the GG distribution.

3.1 Common estimators

The method of moments (MM) is one of the oldest procedures used for estimating parameters

in statistical models. It is still widely used mainly because of its simplicity. For instance, for the

two-parameter Gamma distribution, MM estimators have closed-form expressions.
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Huang and Hwang [7] derived the MM estimators for the GG distribution, pointing out the

need for solving two nonlinear equations, to find such estimators. Let t1, . . ., tn be a random

sample of size n from T* GG(ϕ, μ, α). The moments estimators are obtained by solving

�t �
G �þ 1

a

� �

mGð�Þ
¼ 0 and

s2

n�t2
�

Gð�ÞG �þ 2

a

� �
� G �þ 1

a

� �� �2

Gð�ÞG �þ 2

a

� �
þ ðn � 1Þ G �þ 1

a

� �� �2
¼ 0; ð7Þ

where �t ¼ 1

n

Pn
i¼1
ti and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Pn
i¼1

ti � �tÞ2
�q

are the sample mean and standard deviation,

respectively; while the estimate of ϕ can be obtained by

�̂MM ¼
1

n

Xn

i¼1

ðm̂MMtiÞ
âMM ; ð8Þ

where m̂MM and âMM are obtained by solving the nonlinear equations in (7). The MM estima-

tors of all GG model parameters do not have closed-form expressions, which is undesirable.

Another disadvantage of this approach is that the authors did not discuss the asymptotic prop-

erties of the MM estimators. Therefore, no interval estimates for ϕ, μ and α can be constructed

without further research.

Another common procedure is to consider the ordinary least squares (OLS) estimators.

The �̂OLS, m̂OLS and âOLS estimates can be obtained by minimizing, with respect to ϕ, μ and α,

the following equation:

V �; m; að Þ ¼
Xn

i¼1

gð�; ðmtðiÞÞ
a
Þ

Gð�Þ
�

i
nþ 1

� �2

; ð9Þ

where t(1)� t(2)� � � � � t(n) are the order statistics of a random sample of size n. Equivalently,

these estimates can be obtained by solving the nonlinear equations:

Xn

i¼1

gð�; ðmtðiÞÞ
a
Þ

Gð�Þ
�

i
nþ 1

� �

Dj tðiÞj�; m; a
� �

¼ 0; for j ¼ 1; 2; 3; ð10Þ

where

D1ðtðiÞj�; m; aÞ ¼
@

@�
FðtðiÞj�; m; aÞ; D2ðtðiÞj�; m; aÞ ¼

aðmtðiÞÞ
�ae� ðmtðiÞÞ

a

mGð�Þ
;

D3ðtðiÞj�; m; aÞ ¼
log ðmtðiÞÞðmtðiÞÞ

�ae� ðmtðiÞÞ
a

Gð�Þ
:

ð11Þ

Note that the solution of Δ1(t(i)|ϕ, μ, α) involves a non-trivial partial derivative of the lower

incomplete gamma function. However, this can be easily achieved numerically with high

precision.

The weighted least squares (WLS) estimators, �̂WLS, m̂WLS and âWLS, can be obtained by min-

imizing

W �; m; að Þ ¼
Xn

i¼1

ðnþ 1Þ
2
ðnþ 2Þ

iðn � iþ 1Þ

gð�; ðmtðiÞÞ
a
Þ

Gð�Þ
�

i
nþ 1

� �2

ð12Þ

with respect to ϕ, μ and α. These estimates can also be obtained by solving the nonlinear
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equations:

Xn

i¼1

ðnþ 1Þ
2
ðnþ 2Þ

iðn � iþ 1Þ

gð�; ðmtðiÞÞ
a
Þ

Gð�Þ
�

i
nþ 1

� �

Dj tðiÞj�; m; a
� �

¼ 0; ð13Þ

for j = 1, 2, 3.

3.2 Maximum likelihood estimators

The maximum likelihood (ML) estimation method is widely used for the GG distribution due

to the invariance and asymptotic properties of the obtained estimators. Let t = (t1,. . ., tn)0 be a

random sample of size n from a GG(ϕ, μ, α) population. Then, the likelihood function of (1) is

given by

Lð�; m; ajtÞ ¼
an

½Gð�Þ�
n m

na�
Yn

i¼1

ta�� 1

i

 !

exp � ma
Xn

i¼1

tai

( )

: ð14Þ

The log-likelihood function of (14) is given by

‘ð�; m; ajtÞ ¼ n log ðaÞ � n log ðGð�ÞÞ þ na� log ðmÞ þ ða� � 1Þ
Xn

i¼1

log ðtiÞ � m
a
Xn

i¼1

tai : ð15Þ

By solving the expressions: @

@�
‘ð�; m; ajtÞ ¼ 0, @

@m
‘ð�; m; ajtÞ ¼ 0 and @

@a
‘ð�; m; ajtÞ ¼ 0, the

following nonlinear equations can be obtained, respectively:

nâ log ðm̂Þ þ â
Xn

i¼1

log ðtiÞ ¼ ncð�̂Þ; ð16Þ

nâ�̂ ¼ âm̂â
Xn

i¼1

ti
â and ð17Þ

n
â
þ n�̂ log ðm̂Þ þ �̂

Xn

i¼1

log ðtiÞ ¼ m̂
â
Xn

i¼1

ti
â log ðm̂tiÞ; ð18Þ

where cðkÞ ¼ G0ðkÞ
GðkÞ is the digamma function. The solutions of the above Eq (17) yield the MLEs.

After some algebraic manipulations, we have

m̂ ¼
n�̂

Pn
i¼1
tâi

 !1
â

; ð19Þ

�̂ ¼

Pn
i¼1
tâi

n
Pn

i¼1
tâi log ðtâi Þ �

Pn
i¼1
tâi
Pn

i¼1
log ðtâi Þ

ð20Þ

and the MLE of α is obtained by solving the nonlinear equation:

hðaÞ ¼ ncðn�̂Þ þ a
Xn

i¼1

log ðtiÞ �
1

�̂
� cð�̂Þ � log

Xn

i¼1

tai

 !

¼ 0: ð21Þ

Although only one nonlinear equation has to be solved, there are usually different local

maxima, which lead to different estimates than expected. On the other hand, under mild
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conditions, the MLEs are asymptotically normally distributed with a joint trivariate normal

distribution given by

ð�̂; m̂; âÞ � N3ðð�; m; aÞ; I� 1ð�; m; aÞÞ for n!1; ð22Þ

where I(ϕ, μ, α) is the Fisher information matrix (see Hager and Bain [5] for a detailed discus-

sion) given by

Ið�; m; aÞ ¼ n

c
0

ð�Þ
a

m
�
cð�Þ

a

a

m

�a2

m2
�

1þ �cð�Þ

m

�
cð�Þ

a
�

1þ �cð�Þ

m

1þ 2cð�Þ þ �c
0

ð�Þ þ �½cð�Þ�
2

a2

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð23Þ

and c
0
ðkÞ ¼ @

@kcðkÞ is the trigamma function.

3.3 Penalized maximum likelihood estimators

Firth [34] proved that the bias of MLEs can be reduced by considering a penalization in the

likelihood function. Moreover, the author showed that in exponential families with canonical

parameterization, the first-order term is removed by using the Jeffreys prior [35] as a penaliza-

tion term. The Jeffreys prior for the GG distribution is computed by |I(ϕ, μ, α)|1/2, where |�|

stands for the determinant of the Fisher information matrix (23), which results in

pJ �; m; að Þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1

q

m
: ð24Þ

As previously stated, the first-order term related to the bias is removed in the case of distri-

butions that belong to the exponential family. On the other hand, the GG distribution is not a

member of the exponential family. However, this penalization also allows us to improve the

estimates, even not ensuring that the improvement is of the first order. Note that when ϕ = 1,

the GG distribution reduces to the Weibull distribution, for which the Jeffreys prior is given by

πJ (μ, α)/ (μα)−1. The extra α−1 helps us to decrease the bias of α; therefore, since πJ (ϕ, μ, α) is

not a function of α, we consider the following penalization:

p �; m; að Þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1

q

ma
: ð25Þ

The penalized likelihood function of ϕ, μ and α, using the Jeffreys prior (25), is given by

LPð�; m; ajtÞ ¼
an� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1

q

½Gð�Þ�
n mna�� 1

Yn

i¼1

ta�� 1

i

 !

exp � ma
Xn

i¼1

tai

( )

: ð26Þ
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The log-likelihood function of (26) is given by

‘Pð�; m; ajtÞ ¼ ðn � 1Þ log ðaÞ þ
1

2
log �

2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1
� �

þ ðna� � 1Þ log ðmÞ

þða� � 1Þ
Xn

i¼1

log ðtiÞ � m
a
Xn

i¼1

tai � n log ðGð�ÞÞ:
ð27Þ

By solving the expressions: @

@�
‘Pð�; m; ajtÞ ¼ 0, @

@m
‘Pð�; m; ajtÞ ¼ 0 and @

@a
‘Pð�; m; ajtÞ ¼ 0,

the following nonlinear equations can be obtained, respectively:

�̂2c
0

ð�̂Þc
00

ð�̂Þ þ �̂½c
0

ð�̂Þ�
2
� 0:5c

00

ð�̂Þ

�̂2½c
0

ð�̂Þ�
2
� c

0

ð�̂Þ � 1
þ nâ log ðm̂Þ ¼ ncð�̂Þ � â

Xn

i¼1

log ðtiÞ; ð28Þ

nâ�̂ � 1 ¼ âm̂â
Xn

i¼1

ti
â and ð29Þ

n � 1

â
þ n�̂ log ðm̂Þ þ �̂

Xn

i¼1

log ðtiÞ ¼ m̂
â
Xn

i¼1

ti
â log ðm̂tiÞ: ð30Þ

Note that one of the parameters can be isolated, in order to obtain two nonlinear equations.

The three possible expressions are given by

m̂ ¼
nâ�̂ � 1

â
Pn

i¼1
ti â

 !1
â

; ð31Þ

�̂ ¼
âm̂â

Pn
i¼1
ti â þ 1

nâ
; ð32Þ

â ¼
nc0ð�̂Þð�̂2½c

0

ð�̂Þ�
2
� c

0

ð�̂Þ � 1Þ � �̂2c
0

ð�̂Þc
00

ð�̂Þ þ �̂½c
0

ð�̂Þ�
2
� 0:5c

00

ð�̂Þ

ðn log ðm̂Þ þ
Pn

i¼1
logðtiÞÞð�̂2½c

0

ð�̂Þ�
2
� c

0

ð�̂Þ � 1Þ
: ð33Þ

From Eqs (31)–(33), we observe that, considering (32), the penalized maximum likelihood

(PML) estimators are achieved with less computational effort. Therefore, we will consider the

nonlinear Eqs (28) and (30), where �̂ is obtained from (32).

Although Firth [34] proved that the PML estimators obtained from the penalized likelihood

or log-likelihood function in the exponential family of distributions are always finite and, in

addition, always exist, the same cannot be done for the GG distribution. For this model, the

MLEs can have no solution or several solutions (see Wingo [36]). This problem is observed

computationally, since it is very complex to prove analytically. It is also complicated to demon-

strate analytically the results for the PML estimators. Note that our main goals here are to pro-

pose a method to circumvent these computation difficulties, and achieve improved estimates

for the parameters.
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The Fisher information matrix IP (ϕ, μ, α) is given by

IPð�; m; aÞ ¼ n

IPð�Þ
n
þ c

0

ð�Þ
a

m
�
cð�Þ

a

a

m

�a2

m2
�

1þ �cð�Þ

m

�
cð�Þ

a
�

1þ �cð�Þ

m

1þ 2cð�Þ þ �c
0

ð�Þ þ �½cð�Þ�
2
� n� 1

a2

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; ð34Þ

where

IPð�Þ ¼
ð�

2
c
0

ð�Þc
00

ð�Þ þ �½c
0

ð�Þ�
2
� 0:5c

00

ð�ÞÞð2�
2
c
0

ð�Þc
00

ð�Þ þ 2�½c
0

ð�Þ�
2
� c

00

ð�ÞÞ

ð�
2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1Þ
2

�
�

2
½c
00

ð�Þ�
2
þ �

2
c
0

ð�Þc
000

ð�Þ þ 4�c
0

ð�Þ þ ½c
0

ð�Þ�
2
� 0:5c

000

ð�Þ

�
2
½c
0

ð�Þ�
2
� c

0

ð�Þ � 1
:

ð35Þ

It can be easily noted that IP(ϕ)! I(ϕ) as n!1. Additionally,

LPð�; m; ajtÞ ! Lð�; m; ajtÞ as n!1: ð36Þ

Therefore, the PML estimators of ϕ, μ and α converge to the MLEs. Hence, under the same

mild conditions of the MLEs, the PML estimators are asymptotically normally distributed with

a joint trivariate normal distribution given by

ð�̂; m̂; âÞ � N3ðð�; m; aÞ; I� 1ð�; m; aÞÞ for n!1: ð37Þ

It is important to point out that it is not simple to check the regularity conditions necessary

to ensure asymptotically normal distribution (see Lehman [37], Theorem 5.1, page 463). In

fact, Prentice [24] showed that the approximate normal distribution for ϕ, using the ML the-

ory, could not be achieved even for sample sizes equal to or larger than 400. This result can

also be extended to the PML theory, since the MLEs and PML estimators are asymptotically

equivalent. In order to overcome this problem, for small sample sizes, we considered the boot-

strap approach presented by DiCiccio and Efron [25] to construct improved confidence inter-

vals based on the PML estimates.

3.4 Maximum product of spacings estimators

As an alternative to the ML estimation method, the maximum product of spacings (MPS) is a

robust method for estimating the unknown parameters of continuous univariate distributions.

Cheng and Amin [38, 39] introduced this method, which was independently developed by

Ranneby [40] as an approximation to the Kullback-Leibler information measure. Moreover,

Cheng and Amin [39] proved some desirable properties of the MPS estimators, such as asymp-

totic efficiency, invariance and, more importantly, the consistency of these estimators holds

under more general conditions than for MLEs.

The uniform spacings of a random sample from the GG distribution are defined as

Dið�; m; aÞ ¼ FðtðiÞj�; m; aÞ � Fðtði� 1Þj�; m; aÞ ¼
1

Gð�Þ

Z mata
ðiÞ

mata
ði� 1Þ

wm� 1e� wdw; ð38Þ
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for i = 1, 2, . . ., n + 1, where t(i) is the i-th order statistics, F(t(0)|ϕ, μ, α) = 0 and F(t(n+1)|ϕ, μ,

α) = 1. This implies that
Pnþ1

i¼1
Dið�; m; aÞ ¼ 1.

The MPS estimates, �̂MPS, m̂MPS and âMPS, are obtained by maximizing the geometric mean

of the spacings

G �; m; að Þ ¼
Ynþ1

i¼1

Dið�; m; aÞ

" # 1
nþ1

ð39Þ

with respect to ϕ, μ and α. Or equivalently, by maximizing the logarithm of the geometric

mean of sample spacings (39):

H �; m; að Þ ¼
1

nþ 1

Xnþ1

i¼1

log Dið�; m; aÞð Þ: ð40Þ

Thus, �̂MPS, m̂MPS and âMPS can be obtained by solving the nonlinear equations:

1

nþ 1

Xnþ1

i¼1

1

Dið�; m; aÞ
½DjðtðiÞj�; m; aÞ � Djðtði� 1Þj�; m; aÞ� ¼ 0; for j ¼ 1; 2; 3: ð41Þ

In practice, one problem that may occur is the presence of ties due to multiple observations

with the same value. In this case, if t(i) = t(i−1) for some i 2 {1, 2, . . ., n + 1}, then Di(ϕ, μ, α) =

Di−1(ϕ, μ, α) = 0. Thus, the MPS estimators are sensitive to closely-spaced observations, espe-

cially ties. Notice that

lim
tði� 1Þ!tðiÞ

Dið�; m; aÞ ¼ lim
tði� 1Þ!tðiÞ

Z tðiÞ

tði� 1Þ

f ðtj�; m; aÞdt ¼ f ðtðiÞj�; m; aÞ: ð42Þ

Hence, Di(ϕ, μ, α) should be replaced by the corresponding likelihood L(ϕ, μ, α|t(i)) = f(t(i)|ϕ, μ,

α) when t(i) = t(i−1).

Cheng and Amin [38] presented a useful comparison between the MLEs and MPS estima-

tors:

log ðDið�; m; aÞÞ ¼ log
Z tðiÞ

tði� 1Þ

f ðtj�;m; aÞdt

 !

¼ log ðf ðtðiÞj�;m; aÞðtðiÞ � tði� 1ÞÞÞ þ RðtðiÞ; tði� 1Þj�; m; aÞ

¼ log ðf ðtðiÞj�;m; aÞÞ þ log ðtðiÞ � tði� 1ÞÞ þ RðtðiÞ; tði� 1Þj�; m; aÞ;

ð43Þ

where R(t(i), t(i−1)|ϕ, μ, α) is essentially of order O(|t(i) − t(i−1))|) and |t(i) − t(i−1)|! 0 in proba-

bility as n increases. For standard situations, log(Di(ϕ, μ, α)) is basically the same as log (f(t(i)|ϕ,

μ, α)) with respect to ϕ, μ and α, except for a negligible number of terms. Therefore, the MLEs

and the MPS estimators are asymptotically equal and have the same properties, i.e.

ð�̂MPS; m̂MPS; âMPSÞ � N3ðð�; m; aÞ; I� 1ð�; m; aÞÞ for n!1: ð44Þ

3.5 Anderson-Darling estimators

Here, we present one type of minimum distance estimators (also referred to as the maximum

goodness-of-fit estimators), which is based on the Anderson-Darling statistic and, due to this,
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is known as the Anderson-Darling (AD) estimator. The AD estimates, �̂AD, m̂AD and âAD, of

the GG model parameters ϕ, μ and α, are obtained by minimizing, with respect to ϕ, μ and α,

the function

Að�; m; aÞ ¼ � n �
1

n

Xn

i¼1

2i � 1ð Þ ½ log ðFðtðiÞj�; m; aÞÞ þ log ðSðtðnþ1� iÞj�; m; aÞÞ �: ð45Þ

These estimates can also be obtained by solving the nonlinear equations:

Xn

i¼1

2i � 1ð Þ
DjðtðiÞj�;m; aÞ
FðtðiÞj�; m; aÞ

�
Djðtðnþ1� iÞj�; m; aÞ

Sðtðnþ1� iÞj�; m; aÞ

" #

¼ 0; for j ¼ 1; 2; 3: ð46Þ

Turning now to a modified version of the AD statistic, the right-tail Anderson-Darling

(RAD) estimates, �̂RAD; m̂RAD and âRAD, of the parameters ϕ, μ and α, are obtained by minimiz-

ing the function

Rð�; m; aÞ ¼
n
2
� 2
Xn

i¼1

FðtðiÞj�; m; aÞ �
1

n

Xn

i¼1

2i � 1ð Þ log ðSðtðnþ1� iÞj�; m; aÞÞ ð47Þ

with respect to ϕ, μ and α. These estimates can also be obtained by solving the nonlinear equa-

tions:

� 2
Xn

i¼1

DjðtðiÞj�;m; aÞ þ
1

n

Xn

i¼1

2i � 1ð Þ
Djðtðnþ1� iÞj�; m; aÞ

Sðtðnþ1� iÞj�; m; aÞ
¼ 0; for j ¼ 1; 2; 3; ð48Þ

where Δj (�|ϕ, μ, α), j = 1, 2, 3, are given in (11).

4 Simulation

In this section, we show the results of a simulation study carried out to compare the efficiency

of the different frequentist methods used for estimating the three parameters of the GG distri-

bution. Considering the proposed estimators, the following procedure was adopted:

1. Generate N samples of size n from the GG(ϕ, μ, α) distribution and compute the

θ̂ ¼ ðŷ1; ŷ2; ŷ3Þ ¼ ð�̂; m̂; âÞ estimates using the MM, OLS, WLS, ML, PML, MPS, AD

and RAD methods;

2. Using θ̂ and θ = (θ1, θ2, θ3) = (ϕ, μ, α), compute the bias,
XN

k¼1

ðŷk;j � yjÞ

N , and the mean square

error (MSE),
XN

k¼1

ðŷk;j � yjÞ
2

N , where ŷk;j denotes the estimate of θj obtained from sample k, for

k = 1, 2, . . ., N and j = 1, 2, 3.

With this approach, the most efficient estimation method returns both bias and MSE closer

to zero. The simulations were conducted using the R software [41]. For numerical optimiza-

tion, we used the SANN algorithm, which was described in Section 2.1. Finally, the chosen val-

ues of the simulation parameters were: N = 20, 000, n = {20, 30, . . ., 300} and θ = {(0.5, 0.5, 3),

(0.4, 1.5, 4)}. It is important to point out that the results of this simulation study were similar

for other choices of θ. Since in real applications it is difficult to obtain good initial values, we

assumed that the initial values are random and were generated from a uniform distribution on

the interval (0, 4). Therefore, we also expect to obtain good estimates regardless of the initial

values.
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The estimation procedures needed to be performed under the same conditions to make the

comparison meaningful. However, for some particular samples and estimation methods, the

numerical techniques failed in finding the parameter estimates. Thus, we present the observed

proportion of failures/errors of each method in Tables 1 and 2.

As can be seen in these tables, there are high proportions of failures in the optimization pro-

cess to find the estimates for the MM, OLS, and WLS methods, even for moderate sample

sizes. Therefore, such estimation procedures should be avoided when estimating the parame-

ters of the GG distribution. These methods were removed to avoid the inclusion of bias in the

results to continue the simulation study. Hereafter, we consider the PML, ML, MPS, AD, and

RAD estimators. Figs 2 and 3 present the bias and MSE of the estimates of ϕ, μ and α.

The horizontal lines in these figures correspond to bias and MSE equal to zero. In Figs 2

and 3, we observe that both the bias and MSE for all estimators tend to zero as n increases, i.e.,

the estimators are asymptotically unbiased and consistent for the parameters. The PML

method returned improved estimates for the GG distribution when compared with the ML

method. Moreover, the SANN algorithm allowed us to successfully find the estimates regard-

less of the initial values used for starting the optimization process. In this case, under the PML

Table 1. The proportion of errors of the numerical methods used for finding the estimates of ϕ = 0.5, μ = 0.5 and α = 3, for different sample sizes n and considering

the following estimation procedures: MM, PML, ML, MPS, OLS, WLS, AD and RAD.

n MM PML ML MPS OLS WLS AD RAD

20 0.880 0.000 0.020 0.000 0.995 0.994 0.000 0.000

30 0.895 0.000 0.009 0.000 0.992 0.991 0.000 0.000

40 0.902 0.000 0.006 0.000 0.992 0.991 0.000 0.000

50 0.905 0.000 0.004 0.000 0.991 0.990 0.000 0.000

60 0.905 0.000 0.003 0.000 0.990 0.990 0.000 0.000

70 0.908 0.000 0.003 0.000 0.989 0.989 0.000 0.000

80 0.906 0.000 0.004 0.000 0.989 0.989 0.000 0.000

90 0.906 0.000 0.003 0.000 0.990 0.989 0.000 0.000

100 0.910 0.000 0.003 0.000 0.990 0.989 0.000 0.000

110 0.916 0.000 0.003 0.000 0.990 0.990 0.000 0.000

120 0.908 0.000 0.002 0.000 0.990 0.990 0.000 0.000

130 0.909 0.000 0.004 0.000 0.990 0.989 0.000 0.000

140 0.908 0.000 0.003 0.000 0.992 0.991 0.000 0.000

150 0.910 0.000 0.003 0.000 0.992 0.990 0.000 0.000

160 0.908 0.000 0.003 0.000 0.991 0.990 0.000 0.000

170 0.906 0.000 0.002 0.000 0.991 0.989 0.000 0.000

180 0.905 0.000 0.003 0.000 0.989 0.989 0.000 0.000

190 0.911 0.000 0.002 0.000 0.991 0.988 0.000 0.000

200 0.909 0.000 0.002 0.000 0.990 0.989 0.000 0.000

210 0.913 0.000 0.004 0.000 0.991 0.989 0.000 0.000

220 0.913 0.000 0.003 0.000 0.989 0.988 0.000 0.000

230 0.907 0.000 0.003 0.000 0.991 0.990 0.000 0.000

240 0.914 0.000 0.003 0.000 0.990 0.989 0.000 0.000

250 0.908 0.000 0.003 0.000 0.992 0.989 0.000 0.000

260 0.911 0.000 0.002 0.000 0.989 0.989 0.000 0.000

270 0.912 0.000 0.003 0.000 0.993 0.992 0.000 0.000

280 0.911 0.000 0.002 0.000 0.991 0.990 0.000 0.000

290 0.911 0.000 0.003 0.000 0.992 0.989 0.000 0.000

300 0.911 0.000 0.002 0.000 0.992 0.991 0.000 0.000

https://doi.org/10.1371/journal.pone.0221332.t001
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method, all the generated samples returned satisfactory estimates, even for small sample sizes.

Therefore, combining all simulation results with the useful properties of the PML estimators,

such as asymptotic efficiency, normality, consistency, and invariance, we conclude that the

PML estimators should be used for estimating the parameters of the GG distribution.

5 Applications

We applied the proposed statistical methods to a data set of male patients admitted to the

Emergency Department of the Ribeirão Preto Medical School, University of São Paulo, Brazil,

diagnosed with TBI due to car accidents (excluding patients who where less than 18 years old,

or other neurological conditions). Only patients that were admitted and discharged alive were

considered in this study. Thus, we did not consider censored data. We considered the length

of stay in hospital in the survival function. Our main aim here was to check the average time

that a patient stays in hospital, given that some time had already passed. For example, if a

patient has been in hospital for ten days, how much longer do we expect him/her to take to be

discharged? This problem is discussed in this section.

Table 2. The proportion of errors of the numerical methods used for finding the estimates of ϕ = 0.4, μ = 1.5 and α = 4, for different sample sizes n and considering

the following estimation methods: MM, PML, ML, MPS, OLS, WLS, AD and RAD.

n MM PML ML MPS OLS WLS AD RAD

20 0.758 0.000 0.017 0.000 0.985 0.985 0.000 0.000

30 0.761 0.000 0.008 0.000 0.981 0.979 0.000 0.000

40 0.778 0.000 0.005 0.000 0.983 0.980 0.000 0.000

50 0.768 0.000 0.004 0.000 0.979 0.975 0.000 0.000

60 0.782 0.000 0.004 0.000 0.982 0.980 0.000 0.000

70 0.777 0.000 0.003 0.000 0.983 0.979 0.000 0.000

80 0.774 0.000 0.002 0.000 0.981 0.978 0.000 0.000

90 0.778 0.000 0.003 0.000 0.981 0.979 0.000 0.000

100 0.786 0.000 0.002 0.000 0.979 0.980 0.000 0.000

110 0.781 0.000 0.002 0.000 0.981 0.979 0.000 0.000

120 0.774 0.000 0.002 0.000 0.981 0.980 0.000 0.000

130 0.781 0.000 0.002 0.000 0.980 0.978 0.000 0.000

140 0.785 0.000 0.003 0.000 0.983 0.980 0.000 0.000

150 0.780 0.000 0.002 0.000 0.981 0.977 0.000 0.000

160 0.784 0.000 0.002 0.000 0.980 0.977 0.000 0.000

170 0.787 0.000 0.002 0.000 0.981 0.978 0.000 0.000

180 0.782 0.000 0.002 0.000 0.982 0.978 0.000 0.000

190 0.788 0.000 0.002 0.000 0.982 0.981 0.000 0.000

200 0.786 0.000 0.001 0.000 0.981 0.979 0.000 0.000

210 0.777 0.000 0.003 0.000 0.981 0.979 0.000 0.000

220 0.781 0.000 0.003 0.000 0.981 0.980 0.000 0.000

230 0.781 0.000 0.002 0.000 0.981 0.975 0.000 0.000

240 0.789 0.000 0.003 0.000 0.982 0.978 0.000 0.000

250 0.781 0.000 0.003 0.000 0.980 0.976 0.000 0.000

260 0.783 0.000 0.003 0.000 0.980 0.978 0.000 0.000

270 0.783 0.000 0.003 0.000 0.980 0.977 0.000 0.000

280 0.790 0.000 0.003 0.000 0.983 0.979 0.000 0.000

290 0.784 0.000 0.002 0.000 0.979 0.977 0.000 0.000

300 0.782 0.000 0.002 0.000 0.982 0.978 0.000 0.000

https://doi.org/10.1371/journal.pone.0221332.t002
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The TBI data set was firstly studied by Tavares [42]. The data acquisition period was from

May 2004 to June 2005, and the male patients were analyzed using three different lifetime vari-

ables: the total amount of time (in days) spent in hospital (hereafter, data set D1); the amount

of time at the Neurology Inpatient Department (data set D2); and during which time patients

used Mechanical Ventilation (data set D3).

We compared the results obtained using the GG distribution with the corresponding ones

achieved with the usage of other three-parameter lifetime distributions. The Generalized Wei-

bull (GW) distribution (Mudholkar et al. [43]), with pdf given by

f ðtjl; a;sÞ ¼ ðasÞ� 1 t
s

� �1
a� 1

1 � l
t
s

� �1
a

 !1
l
� 1

; ð49Þ

where l 2 R and α> 0 are the shape parameters and σ> 0 is the scale parameter. The Expo-

nentiated Weibull (EW) distribution (Mudholkar et al. [44]), with pdf

f ðtjy; a; sÞ ¼
ay

s

t
s

� �a� 1

e�
t
sð Þ

a

1 � e�
t
sð Þ

a� �y� 1

; ð50Þ

Fig 2. Comparison of the different estimation methods. Bias and MSE of the estimates of ϕ = 0.5, μ = 0.5 and α = 3, for N = 20, 000 simulated samples

of size n, and using the following methods: 1-ML, 2-PML, 3-MPS, 4-AD, 5-RAD. The horizontal lines in these figures correspond to bias and MSE equal

to zero. See text for explanations, definitions and notation.

https://doi.org/10.1371/journal.pone.0221332.g002
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where θ> 0 and α> 0 are the shape parameters and σ> 0 is the scale parameter. The Mar-

shall-Olkin Weibull (MOW) distribution (Marshall and Olkin [45]), with pdf given by

f ðtja; b; lÞ ¼
ablðltÞb� 1e� ðltÞb

ð1 � ð1 � aÞe� ðltÞbÞ2
; ð51Þ

where α> 0 and β> 0 are the shape parameters and λ> 0 is the scale parameter. Finally, the

Extended Poisson-Weibull (EPW) distribution (Ramos et al. [46]), whose pdf is

f ðtjl; a; bÞ ¼
albta� 1e� bta � le� bt

a

1 � e� l
; ð52Þ

where l 2 R� and α> 0 are the shape parameters and β> 0 is the scale parameter.

The goodness-of-fit of the models was checked using the Kolmogorov-Smirnov (KS) test,

which is based on the KS statistic: Dn = sup|Fn(t) − F(t|θ)|, where sup is the supremum of the

set of distances, Fn(t) is the empirical cdf and F(t|θ) is the cdf of the reference distribution. The

KS hypothesis testing was conducted at the 5% level of significance, to reveal whether or not

the data came from F(t|θ). In this case, the null hypothesis (i.e. the data came from F(t|θ)) is

rejected if the returned p-value is smaller than 0.05.

Fig 3. Comparison of the different estimation methods. Bias and MSE of the estimates of ϕ = 0.4, μ = 1.5 and α = 4, for N = 20, 000 simulated samples

of size n, and using the following methods: 1-ML, 2-PML, 3-MPS, 4-AD, 5-RAD. The horizontal lines in these figures correspond to bias and MSE equal

to zero. See text for explanations, definitions and notation.

https://doi.org/10.1371/journal.pone.0221332.g003
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To carry out the model selection, the following discrimination criteria were adopted: AIC

(Akaike Information Criterion) (Akaike [47]) and AICc (Corrected Akaike Information Crite-

rion) (Sugiura [48]; Hurvich and Tsai [49]), which are computed by AIC ¼ � 2‘ðθ̂jtÞ þ 2c
and AICc = AIC + 2 c (c + 1)/(n − c − 1), where c is the number of model parameters and θ̂ is

the estimate of θ. Given a set of candidate models for the data at hand, the best fitted model is

the one that presents the minimum values of these criteria. Furthermore, in order to distin-

guish between two almost equally well-fitting models, Burnham and Anderson [50], page 70,

give a rough rule of thumb for comparing AICs (as well as AIC variations, including AICc),

based on the AIC differences, Δw = AICw − AICmin, where AICw denotes the AIC value of the

candidate model w and AICmin is the minimum of the AIC values. Thus, models with Δw< 2

are all plausible, i.e. they have substantial support and should receive consideration in making

inferences; models with 4< Δw< 7 have considerably less support; and finally, models with

Δw> 10 have either essentially no support and might be omitted from further consideration,

or at least fail to explain some substantial explainable variation in the data.

Table 3 shows some summary statistics for these lifetime variables/data sets. According to

all statistics, patients would spend less time, in days, on the Mechanical Ventilation than in the

Neurology Inpatient Department.

As can be seen in Table 3, we have a small number of observations for the different data

sets, which constitutes a situation where the ML method may return high-biased estimates.

However, such a problem can be easily overcome by considering the PML estimators, as

shown in Section 4. In TBI, specifically, the patient follow-up is time-consuming and requires

dedication in order to acquire the data. Thus, small data sets may be recurring and solutions

should be provided. Consequently, some models were fitted, and according to the model selec-

tion criteria, the best-adjusted one was indicated.

Table 4 provides the AIC and AICc values, as well as the p-values obtained from the KS test,

for all five distributions (GG, GW, EW, MOW, and EPW) fitted using the PML estimation

method. Observe that, for all three data sets, both criteria provide empirical evidence in favor

Table 3. Summary statistics of patients’ TBI after a traffic accident, per data set. SD = Standard deviation, Min = Minimum, Max = Maximum.

Data Set Mean SD Min Median Max n
D1 27.105 19.061 4 23 67 19

D2 15.368 12.540 2 12 51 19

D3 10.875 8.310 1 10 29 16

https://doi.org/10.1371/journal.pone.0221332.t003

Table 4. The AIC, AICc and p-value from the KS goodness-of-fit test, for the fitted distributions, considering the three data sets related to patients’ TBI caused by

traffic accident.

Data Set Criterion GG GW EW MOW EPW

D1 AIC 139.912 142.619 141.314 140.378 140.819

AICc 141.758 144.466 143.160 142.224 142.665

KS 0.9382 0.4206 0.7203 0.8910 0.8260

D2 AIC 116.582 116.627 118.087 117.417 117.916

AICc 118.429 118.473 119.933 119.263 119.762

KS 0.9554 0.9641 0.8989 0.9179 0.9936

D3 AIC 89.915 91.805 90.617 92.063 92.652

AICc 92.315 94.205 93.017 94.463 95.052

KS 0.9393 0.4228 0.7006 0.7144 0.7106

https://doi.org/10.1371/journal.pone.0221332.t004
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of the GG distribution. However, the difference between the AIC (AICc) value for the EW

model and the AIC (AICc) value for the GG model (“best” model according to both criteria) is

less than two. Therefore, we can also consider the EW model as a plausible one for describing

all the data sets. Followed up by Fig 4, which presents the fitted survival functions superim-

posed to the empirical survival function, it can be observed that the GG distribution gives a

good fit to all data sets.

Obtained results support elements towards the development of a decision-making system,

using ad hoc evidence, generating its associated probabilistic function, which helps the expert

to infer patients’ risks. In addition to the point parameter estimates, we computed the confi-

dence intervals, as well as the mean residual lifetime for the GG model parameters.

To construct such confidence intervals, one can use the asymptotic properties of the PML

estimators. However, for the considered data sets, we have sample sizes smaller than 20. Pren-

tice [24] showed that the approximate normal distribution for ϕ, using the ML theory, could

not be achieved even for sample sizes equal to or larger than 400. Therefore, we considered a

bootstrap approach to build such intervals (see DiCiccio and Efron [25]). It is essential to

point out that the obtained bootstrap interval relies on a replication of small samples and the

estimation of the related parameters, therefore the proposed approach that does not fail in

finding such estimates plays an important role also in computing intervals. The PML estimates

and the 95% bootstrap confidence intervals (CI) for the parameters ϕ, μ and α of the GG distri-

bution, for all three data sets, are given in Table 5.

Fig 4. Data fitting. Survival functions superimposed to the empirical survival function, considering (A) D1 (B) D2 (C) D3 related to patients’ TBI

caused by traffic accidents.

https://doi.org/10.1371/journal.pone.0221332.g004

Table 5. PML estimates and 95% CI for the parameters of the GG distribution, per data set.

Data Set ϕ CI95%(ϕ) μ CI95%(μ) α CI95%(α)

D1 0.410 (0.248; 1.038) 0.025 (0.020; 0.040) 3.040 (1.831; 3.679)

D2 0.268 (0.178; 0.665) 0.045 (0.038; 0.063) 4.658 (2.753; 5.377)

D3 0.148 (0.100; 0.342) 0.053 (0.045; 0.074) 6.065 (4.094; 6.909)

https://doi.org/10.1371/journal.pone.0221332.t005
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Following the interpretation related to Table 5, data set D1 showed a higher estimate for the

parameter ϕ than the others, where the parameters μ and α behave in the opposite way. It is

worth mentioning that it is hard to obtain a biological interpretation for the parameters since

they influence the higher moments (e.g., the mean and variance) of the distribution simulta-

neously. Moreover, the obtained bootstrap confidence intervals returned accurate evidence

even considering small sample sizes.

From the proposed methodology, the PML estimates were obtained with a satisfactory

goodness of fit. With the adjusted parameters, one can solve the problem related to the

expected time that will be taken for a patient to be discharged. In order to achieve that, we con-

sider the mean residual lifetime of the GG distribution, which is given by

rðtj�;m; aÞ ¼
1

Sðtj�; m; aÞ

Z 1

t
wf ðwj�; m; aÞdw � t ¼

G �þ 1

a
; ðmtÞa

� �

mGð�; ðmtÞaÞ
� t: ð53Þ

Fig 5 shows the mean residual lifetime, considering the three data sets related to patients’

TBI caused by a traffic accident. The plotted curves return the conditional expectation (r(t))
given the patient’s spent time (t).

From this graph, we can see different expected times given that the patient has been in hos-

pital. For instance, considering the patients from data set D1, given that one patient has been

in hospital for ten days, we expect that he/she may be discharged after seventeen more days.

On the other hand, if the patient is from data set D3 and has been hospitalized for ten days,

then we expect that he/she will leave hospital after four more days.

Fig 5. Mean residual lifetime. The estimation of the mean residual lifetime considering the three data sets related to patients’ TBI caused by traffic

accidents.

https://doi.org/10.1371/journal.pone.0221332.g005
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6 Conclusions

In this paper, we derived and compared, through an extensive simulation study, different fre-

quentist estimation methods for the parameters of the GG distribution. From our simulations,

we observed that the OLS, WLS, and MM methods failed in finding the parameter estimates

for a significant number of samples. On the other hand, considering the SANN algorithm with

the PML estimation method, we were able to find the solutions (i.e., the parameter estimates)

for all samples regardless of the initial values used for initiating the iterative procedure. More-

over, the PML method provided better estimates for all three parameters regardless of the sam-

ple size. Thus, the PML method is the most efficient estimation procedure, among the ones

considered in this study, and should be used for all practical purposes.

Finally, our proposed methodology was illustrated in three real data sets related to patients’

traumatic brain injury caused by a traffic accident, demonstrating that the GG distribution is a

simple alternative to be used in such applications for different occurrence rates and risks, even

under the presence of small samples.
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