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Rett syndrome (RTT, OMIM 312750), a severe neurodevelopmental disorder
characterized by regression with loss of spoken language and hand skills, development
of characteristic hand stereotypies, and gait dysfunction, is primarily caused by de
novo mutations in the X-linked gene Methyl-CpG-binding protein 2 (MECP2). Currently,
treatment options are limited to symptomatic management, however, reversal of
disease phenotype is possible in mouse models by restoration of normal MECP2
gene expression. A significant challenge is the lack of biomarkers of disease state,
disease severity, or treatment response. Using a non-targeted metabolomic approach
we evaluated metabolite profiles in plasma from thirty-four people with RTT compared
to thirty-seven unaffected age- and gender-matched siblings. We identified sixty-six
significantly altered metabolites that cluster broadly into amino acid, nitrogen handling,
and exogenous substance pathways. RTT disease metabolite and metabolic pathways
abnormalities point to evidence of oxidative stress, mitochondrial dysfunction, and
alterations in gut microflora. These observed changes provide insight into underlying
pathological mechanisms and the foundation for biomarker discovery of disease
severity biomarkers.

Keywords: urea cycle, neurodevelopmental disorders, biomarker (development), MeCP2, metabolomics (OMICS),
rett syndrome, Kreb’s cycle enzymes, amino acids

INTRODUCTION

Rett syndrome (RTT, OMIM 312750) is a neurodevelopmental disorder that primarily affects girls
and is usually caused by mutation in the X-linked gene Methyl-CpG-binding Protein 2 (MECP2)
(Amir et al., 1999; Neul et al., 2008). Affected individuals usually have a normal birth and apparently
normal initial development, followed by developmental stagnation and then regression of acquired
spoken language and hand skills with the development of characteristic repetitive hand stereotypies
and gait problems (Neul et al., 2010). Individuals with RTT also have a variety of additional clinical
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features including seizures, movement abnormalities, growth
failure, gastro-intestinal problems, and autonomic dysfunction
(reviewed in Neul, 2011). Currently approaches to therapies are
symptomatic, however work in mouse models provides hope
that targeted therapies hold promise of significantly modifying or
even reversing the disease (Guy et al., 2007). Recently, promising
clinical trials in RTT have been completed (Glaze et al., 2017,
2019) or are being initiated, that could alter the treatment options
in this disease.

There exists a need for biomarkers in RTT. First, evaluation
of molecular or neurophysiological biomarkers might provide
insight into the underlying pathophysiology of disease. Second,
biomarkers of disease severity could be useful in clinical trials
as early markers of treatment response. Finally, with the onset
of potential disease modifying therapies, there is a need for early
detection of affected individuals. Because most cases of RTT are
caused by de novo mutations in MECP2 (Amir et al., 1999),
there is no established family risk profile. Additionally, most
people with RTT are not diagnosed until after regression. Disease
biomarkers could provide additional information on disease state
allowing for earlier diagnosis and intervention.

Previous work evaluating metabolite abnormalities in a
targeted fashion have found a variety of abnormal features in
RTT. Evaluation of spinal fluid identified decreased biogenic
amine metabolites (Samaco et al., 2009). A variety of reports
have found molecular evidence of oxidative in red blood cells,
blood, and patient-derived fibroblasts in people with RTT, as
well as in mouse models of RTT (reviewed in Shulyakova et al.,
2017; Muller, 2019). To date however, no large scale non-targeted
metabolomics studies have been reported in RTT. Metabolomics,
the measurement of small molecules such as endogenous
metabolites, peptides, xenobiotics, dietary components, and
agents of environmental exposure, is one of the newest and
rapidly developing “-omics” fields but has already proven to be
very useful in a variety of contexts including characterizing age
and gender changes in the metabolome of adults (Lawton et al.,
2008) and finding metabolomic changes in ALS (Lawton et al.,
2012). Metabolomics describes the dynamic cellular “phenotype,”
integrating transcription, protein function, and environmental
factors to bridge to organismal phenotype.

To capitalize on the power of untargeted metabolomic
analysis, we characterized a cohort of individuals with RTT
and their unaffected gender- and age-matched siblings using
a well-established commercial platform (Metabolon, NC,
United States). A number of metabolites and metabolic pathways
that differentiate affected from unaffected individuals were
identified providing insight into underlying disease processes
in RTT. The metabolite differences may also be useful as either
disease state or severity biomarkers.

METHODS

Human Subjects
Subjects were recruited from the RTT Natural History Study
(RNHS), RTT5201; CT.gov: NCT00299312. The RNHS is part
of the Rare Diseases Clinical Research Network (RDCRN),

established through the Office of Rare Diseases Research,
National Center for Advancing Translational Sciences at the
National Institutes of Health. All participants in the RNHS were
required either to meet clinical criteria for RTT (Neul et al., 2010)
and/or to have a mutation in MECP2. An experienced RNHS
neurologist or geneticist (DGG, SAS, WEK, JLN, and AKP)
with extensive clinical experience in RTT utilized the established
criteria for diagnosis of RTT or other related phenotypes. Clinical
information was stored in a de-identified fashion in a centralized
database. For this study, blood samples were acquired under
a related institutional review board protocol at Baylor College
of Medicine (BCM Protocol H-26509). Subjects enrolled in
RNHS and unaffected family members were recruited and blood
was drawn in standard clinical fashion. Samples were collected
from non-fasted individuals throughout the day. Plasma was
immediately separated and stored at −80◦C until sent in a de-
identified fashion to Metabolon (Morrisville, NC, United States).1

For this study, samples from 34 individuals with RTT and 37
unaffected gender and age (±2 years) matched siblings were
analyzed (Supplementary Table S1).

Metabolomic Analysis
De-identified samples were shipped on dry ice to Metabolon
(Morrisville, NC, United States1) for analysis. Samples
were analyzed using a Liquid Chromatography-Tandem
Mass Spectrometry (LC-MS/MS) platform and a Gas
Chromatography-Mass Spectroscopy (GC-MS) platform.
The LC-MS portion of the platform was based on a Waters
ACQUITY ultra-performance liquid chromatography (UPLC)
and a Thermo-Finnigan LTQ mass spectrometer operated at
nominal mass resolution, which consisted of an electrospray
ionization (ESI) source and linear ion-trap (LIT) mass analyzer.
The MS analysis alternated between MS and data-dependent
MS/MS scans using dynamic exclusion and the scan range was
from 80 to 1000 m/z. The GC-MS portion was analyzed on a
Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole
mass spectrometer using electron impact ionization (EI) and
operated at unit mass resolving power. The scan range was
from 50–750 m/z. Raw data was extracted, peak-identified
and QC processed using Metabolon’s hardware and software.
Compounds were identified by comparison to library entries of
purified standards or recurrent unknown entities. Metabolon
maintains a library based on authenticated standards that
contains the retention time/index (RI), mass to charge ratio
(m/z), and chromatographic data (including MS/MS spectral
data) on all molecules present in the library. Metabolite peaks
were quantified using area-under-the-curve. Missing values were
imputed using the minimum observed value for each compound.

Statistical Analysis
All analysis was performed using MetaboAnalyst 4.02 (Xia and
Wishart, 2016), a comprehensive web-based application for
metabolic data analysis and interpretation. A companion
R based MetaboAnalyst package has also been created

1www.metabolon.com
2www.metaboanalyst.ca
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(Chong and Xia, 2018), and R script for all analyses done in this
manuscript is provided. The data file provided from Metabolon
was uploaded to MetaboAnalyst and no filtering was applied.
Values were log transformed and mean centering data scaling
was applied (full normalized data set provided in Supplementary
Table S2). Fold change (RTT/unaffected siblings) and log2
Fold change calculated for graphical presentations. A t-test was
performed for each metabolite (comparing RTT to unaffected
sibling, unpaired) and uncorrected p-values and to control for
multiple testing a False Discovery Rate (FDR) corrected p-values
calculated. The full table of all t-test and fold change results is
presented in Supplementary Table S3.

Hierarchical clustering analysis was performed in
MetaboAnalyst using hclust function in package stat, using the
25 most significantly different metabolites (lowest p-values), with
Euclidean distance and Ward’s linkage. The results were then
plotted as a heat map showing the clusters. Random Forest (RF)
analysis, a supervised learning algorithm for high dimensional
data analysis was performing using randomForest package
in MetaboAnalyst with 500 trees. During tree construction,
1/3 of instances were left out of the bootstrap sample for out-
of-bag classification error and Mean Decrease Accuracy was
calculated for each metabolite. The RF features are presented
in Supplementary Table S4. The R-script for the t-test, fold
analysis, hierarchical clustering, and RF analysis is presented in
Supplementary Material S1.

The Biomarker module of MetaboAnalyst was used to
generated Receiver Operator Characteristic (ROC)-curve based
assessments of biomarkers that best discriminated between
affected and unaffected individuals. The same processing of the
data was performed as in the t-test analysis, and ratios of the
top 20 metabolites were also calculated. Classical ROC analysis
was performed on each metabolite or combined metabolite ratio
pair and the area-under-the-curve (AUC), t-test, sensitivity and
specificity calculated. The full table from the ROC analysis is
presented in Supplementary Table S5 and the R-history in
Supplementary Material S2.

Pathway analysis was performed using the MetPA pathway
enrichment module in MetaboAnalyst matching to Human
Metabolite Database (HDMB) IDs and human KEGG pathway
library. Over-representation analysis was performed using
hypergeometric test with relative betweenness centrality node
importance measure for topological analysis. Metabolites with
uncorrected p < 0.1 were included in the pathway analyses.
The raw p-value plus Holm-Bonferroni and False Discovery
Rate corrected p-values were calculated, with an Impact Value
calculated from pathway topology analysis and presented
in Supplementary Table S6, with the name mapping for
KEGG analysis in Supplementary Table S7 and the R-history
in Supplementary Material S3. Metabolic Set Enrichment
Analysis (MSEA) was also used to evaluate for pathway over-
representation using the MetaboAnalyst module. The Small
Molecule Pathway Database (SMPDB) library was used for the
analysis, and hypergeometric testing for the over-representation
analysis. The complete results and name map are presented
in Supplementary Tables S8, S9, with the R-history in
Supplementary Material S4.

All graphs were generated in MetaboAnalyst or in
Microsoft Excel.

RESULTS

Plasma samples were collected from 34 individuals with RTT
and 37 unaffected gender and age (±2 years) matched siblings
(Supplementary Table S1). Samples were collected from two
siblings for three affected subjects, the remaining had one sibling
each. Thirty-two subjects had classic RTT and two had variant
(or atypical) RTT. Subjects had a variety of MECP2 mutations,
with 55.9% common hot-spot point mutations (R106W, R133C,
T158M, R168X, R255X, R270X, R294X, and R306C). Age ranged
between 3.4 and 25.0 years, with an average of 11.3 years old.
Overall clinical severity, as assessed by the RTT Clinical Severity
Score (CSS) (Neul et al., 2008), averaged 23.5 with a range of 11–
41. This range and average severity is representative of severity
ranges typically found in the RNHS (Cuddapah et al., 2014). Body
Mass Index (BMI) and BMI percentage (BMI%) also ranged from
very low to the high end of expected BMI for typically developing
individuals (Supplementary Table S1), a distribution also often
seen in RTT populations (Tarquinio et al., 2012).

Analysis of metabolites using the Metabolon platformed
identified 295 named compounds of known identity
(Supplementary Table S2). Of these, 66 were different at
an uncorrected p-value, and 27 different with a False Discovery
Rate (FDR) corrected p < 0.05 (Figure 1A, insert). Of the 66
significantly different metabolites, 29 of which were increased in
affected compared to unaffected and 37 decreased (Figure 1A
inset and Supplementary Table S10). An additional 29
compounds showed a trend (p < 0.1 raw p-value) between
affected an unaffected individuals, 15 of which were increased
and 14 decreased in people with RTT compared with unaffected
siblings. Figure 1A displays a volcano plot of all the p-values
and fold changes, with the FDR significant metabolites labeled.
Figure 1B shows a Manhattan plot grouping all compounds
observed by chemical category. A number of changes were
observed in xenobiotics (such as caffeine and related metabolites)
that likely reflect differences in oral consumption between
affected and unaffected individuals as most (11/14) were
decreased in affected individuals. In contrast, nearly half of
changes observed in amino acids and lipids were increased in
affected individuals, suggesting that these differences might
reflect underlying pathological processes in RTT.

Hierarchical clustering, a method to create similar groups, was
performed using the twenty-five (Figure 2A). Not all probands
and siblings clustered together although the majority did, and
clear patterns of groups of metabolites that were either up or
down in probands compared to unaffected siblings. To identify
metabolites most important in classifying disease state, Random
Forest (RF) Analysis was used and the top 15 metabolites are
presented in Figure 2B. The performance of the RF Classification
was good, as shown by the confusion matrix in Figure 2B,
and the Out-of-bag error (OOB) of 0.183. Xenobiotics such
as caffeine metabolites are again some of the most important
classifying metabolites, however 11/15 are not xenobiotics and
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FIGURE 1 | Metabolic changes in RTT compared with unaffected siblings. (A) Volcano plot showing negative log10(p-values) on y-axis and log2(Fold change
RTT/sibling) on x-axis. Inset table shows number of metabolites at different raw or FDR corrected p-value and the distribution between increased in RTT compared
to siblings or decreased. Dark green, increased p < 0.05, light green increased 0.05 < p < 0.1. Dark red, decreased p < 0.05, pink decreased 0.05 < p < 0.1.
(B) Manhattan plot displaying all metabolites characterized arranged by chemical groups on the x-axis, with the y-axis showing the negative log10(p-value) for each
metabolite. The gray line indicates uncorrected p = 0.05. Color indicates chemical groupings as indicated along the x-axis.
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FIGURE 2 | Discriminating features between affected and unaffected individuals. (A) Hierarchical clustering of the top 25 significantly different metabolites. (B) Top
15 metabolites distinguishing affected from unaffected as determined by Random Forest Analysis. The x-axis is the mean decrease accuracy for the metabolite
(value × 1000). Metabolite groupings are indicated by colors identified in the legend. The inset shows the out of box based confusion matrix for the random forest
classification. (C) The left side of the figure demonstrates the ROC curve for 3,4-hydroxyphenyl acetate/creatine to distinguish affected from unaffected, with the
sensitivity on the y-axis and the specificity on the x-axis. The right panel is a box-plot of the metabolite ratio for the two groups, with the boxed values indicating
quartiles, and the red dotted line indicating the optimal cutoff for classification.

the top metabolites are deoxycarnitine (a metabolite of GABA
and a precursor of carnitine) and 3,4-hydroxyphenyl lactate
(a tyrosine metabolite). Furthermore, a number of metabolites
are part of amino acid metabolism. To identify whether any
single metabolite, or ratio of metabolites, might function as
a biomarker to predict the disease state of an individual,
we performed receiver operator characteristic (ROC) analysis.
The feature (metabolite or ratio) with the highest area under
the curve in the ROC curve analysis was 3,4-hydroxyphenyl
lactate/creatine (Figure 2C), with an AUC of 0.88, and a jointly
maximized sensitivity and specificity of 0.8/0.8. An optimal cutoff
(Figure 2C, right panel) of this ratio to determine disease state
shows reasonable, but not perfect, discrimination of affected an
unaffected individuals.

To see if there are any metabolic pathways that are enriched,
we assessed KEGG pathway over-representation with metabolites
that were different at a p < 0.1 level. Of the 95 metabolites with
p < 0.1 (Supplementary Table S10), 83 were able to be linked to
a unique Human Metabolome Database (HMDB) number for the
analysis. Twenty pathways showed enrichment with uncorrected
p < 0.05 (Supplementary Table S7), with seven having p < 0.05
after FDR correction. Figure 3A shows all the KEGG pathways
graphed by uncorrected -log10(p-value) and pathway impact.
As has been observed above, caffeine metabolism is enriched

reflecting dietary differences between affected and unaffected,
however, many metabolic pathways related to amino acid
metabolism are also enriched, as is synthetic pathways important
for tRNA synthesis and nitrogen metabolism.

We also used another approach to look for pathway
enrichment using Metabolic Set Enrichment Analysis (MSEA),
which is an adaptation of Gene Set Enrichment Analysis for
metabolites. Six pathways showed enrichment with uncorrected
p < 0.05, although none showed enrichment using FDR
correction (Figure 3B). Again, amino acid metabolism (Glycine
and Serine, Alanine) were enriched, as was homocysteine
metabolism. Interestingly, there was also enrichment in ammonia
recycling and urea cycle. Although these pathways were not
identified using this exact classification in KEGG analysis,
nitrogen metabolism was found to be significantly enriched
and encompasses some of the same metabolites and pathways
as found in urea cycle and ammonia recycling. Surprisingly,
caffeine metabolism only trended (p = 0.122) toward significance
using MSEA analysis.

It is interesting that aside from caffeine metabolism, the major
enriched pathways are related to amino acid metabolism, as
recent reports have found alterations in amino acid metabolism
in other neurodevelopmental disorders, notably autism (Smith
et al., 2019). Of the 20 key protein component amino acids,
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FIGURE 3 | Pathway enrichment shows significant enrichment in metabolic pathways related to amino acid metabolism. (A) The impact on a pathway (Pathway
Impact) for a given KEGG pathway is shown on the x-axis, and the −log(p) of the uncorrected p-value is presented on the y-axis. The dashed horizontal red line
represents the p < 0.05 cutoff after FDR correction. The pathways that are significant (FDR < 0.05) are labeled. (B) MSEA overrepresentation analysis displaying the
top 10 enriched pathways. The length of the bar is the fold enrichment of the pathway with the scale presented at the bottom. The numbers indicated the raw
p-value for enrichment.

four were significantly different (p < 0.05), with aspartate
and glutamate increased in RTT and arginine and histidine
decreased (Supplementary Figure S1). Four additional amino
acids trended toward significance (p< 0.1), with cysteine, glycine,
and serine increased in RTT and phenylalanine decreased.

In addition to differences in the amino acids themselves,
there are notable differences in the metabolic pathways,
even in pathways in which the primary amino acid itself
is not changed. For example, tryptophan was not different
between affected and unaffected siblings, however, a number
of metabolites were changed (Figure 4A), notably decreased
indole lactate, indole proprionate, and kynurenine. Similarly,
although phenylalanine only showed a trend toward decrease in
RTT and no differences were observed in tyrosine, a number
of metabolites of these amino acids were altered (Figure 4B).
Interestingly, a number of the metabolite abnormalities observed
for tryptophan, phenylalanine, and tyrosine are metabolites
that are primarily produced by gut microflora (De Angelis
et al., 2015; Mussap et al., 2016). Methionine levels were
similar between affected and unaffected individuals, but cysteine
(and cystine) both trended toward increase (Figure 4C).
Interestingly, two important metabolites produced during the
production of cysteine, α-ketobutyrate and 2-hydroxybutyrate
(also known as α-hydroxybutyrate) were increased in RTT
subjects compared to siblings.

Arginine is decreased in subjects with RTT, however ornithine,
which is converted by arginase from arginine, is increased
(Figure 4D). In contrast, citrulline, which is the next product
in the urea cycle, is numerically decreased in RTT subjects and
urea levels are similar between affected an unaffected individuals,
suggesting a complex alteration of the urea cycle. Citrate levels
trended lower and α-ketoglutarate levels trended higher in RTT
subjects, pointing toward alterations in the Krebs cycle. Pyruvate,
a key supplier of acetyl CoA to the Krebs cycle, was increased, but
lactate unchanged.

DISCUSSION

Systematic, broad, and non-targeted analysis of metabolites
revealed distinct patterns that differentiate individuals affected
with RTT from unaffected siblings. Although a number of the
observed differences in metabolic pathways reflect likely dietary
differences, such as caffeine and plant product metabolites, this
work revealed a variety of other metabolites and metabolic
pathways likely not related to dietary differences between affected
and unaffected individuals. These differences provide both
opportunities for biomarkers of RTT disease state, as well as
insight into alterations in metabolism underlying pathogenic
processes in RTT. Although previous work using targeted
analysis has identified various metabolic abnormalities in people
with RTT (Shulyakova et al., 2017; Muller, 2019), a clear
strength of this work is the use of non-targeted analysis that
allows for discovery of previously unrecognized changes to
metabolic pathways.

Previous work has identified evidence for increased oxidative
stress in RTT and suggested that this may reflect mitochondrial
abnormalities. Specifically, in RTT subjects there have been
found evidence of lipid peroxidation (Sierra et al., 2001),
esterified isoprostanes (De Felice et al., 2009, 2011, 2012),
plasma non-protein-bound iron (De Felice et al., 2009), and
4-hydroxynoneanal protein adducts (Ciccoli et al., 2012) and
reduced glutathione in skin fibroblast cell lines derived from
RTT subjects. Similar metabolite alterations have been seen
in brains of RTT mouse models (De Felice et al., 2014;
Szczesna et al., 2014). Although these specific metabolites were
not measured in this work, we found evidence of alteration
of key metabolic pathways that occur in the mitochondria,
the Krebs cycle and the urea cycle. Additionally, there have
been studies identifying abnormalities in the carnitine cycle
in RTT, which occurs within mitochondria. In fact, treatment
with levocarnitine can improve symptoms in people with RTT
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FIGURE 4 | Specific metabolic differences between RTT and unaffected siblings. (A) shows alterations in tryptophan metabolism, (B) shows alterations in
phenylalanine and tyrosine metabolism, (C) shows alterations in methionine and cysteine metabolism, and (D) in components of the urea and Krebs cycle. In all
panels, the differences of the mean metabolite values between RTT and unaffected siblings is plotted with error bars representing the 95% confidence intervals.

(Ellaway et al., 1999) and animal models (Schaevitz et al., 2012),
and recent work has identified alterations in the expression of
cardiac enzymes involved in the carnitine cycle in RTT mice
(Mucerino et al., 2017). We observed changes in deoxycarnitine, a
precursor of carnitine synthesis, and further exploration of these
pathways is warranted.

Additionally, there is evidence of alterations in the
methionine/cysteine metabolic pathway, with decreased levels
of methionine and increased cysteine. In situations of increased
oxidative stress, homocysteine is diverted from production of
methionine to produce cystathione and ultimately cysteine to
replenish glutathione levels. This results in increased production
of α-ketobutyrate and 2-hydroxybutyrate (Gall et al., 2010),
both of which were found to be markedly elevated in the RTT
subjects assessed here suggesting an increased demand for
glutathione in people with RTT due to increased oxidative stress
and lipid oxidation, as implicated previously. In contrast, there
was decreased levels of cysteine-glutathione disulfide, a molecule
that is produced upon oxidative stress of glutathione. Future
analysis would benefit from more detailed analysis of additional
components of this pathway including homocysteine.

Glucose was found to be elevated in RTT subjects. Work
in mouse models has identified insulin resistance and evidence

of metabolic syndrome (Pitcher et al., 2013), and this plasma
elevation of glucose could represent a similar unrecognized issue
in people with RTT. The observed elevations in RTT subjects
of 2-hydroxybutyrate and aminoadipate are supportive of this
notion as elevations of these metabolites are biomarkers for
pre-diabetes and diabetes (Li et al., 2009; Wang et al., 2013).
Interestingly, aminoadipate is also a marker of oxidative stress
(Yuan et al., 2011; Zeitoun-Ghandour et al., 2011). Another
metabolite abnormality indicative of abnormal glucose levels
is 1,5-anhydroglucitol, a sugar primarily derived from dietary
sources whose reabsorption in the kidneys is competed by
elevated levels of glucose (Parrinello and Selvin, 2014). The
decreased levels observed in RTT subjects could be due to
hyperglycemia, however, this finding could reflect the known
dietary differences in these individuals. Nonetheless, the finding
of increased markers (2-hydroxybutyrate and aminoadipate) in
RTT subjects and evidence of insulin resistance in animal models
warrants additional clinical monitoring of diabetes in RTT.

Some of the metabolite changes observed in the RTT subjects
are similar to those observed in normal aging. C-glycosyl
tryptophan increases with age (Menni et al., 2013), and was
elevated in RTT subjects compared to sibling controls. Both 1,5-
anhydroglucitol and the anti-oxidant N-acetyl carnosine levels
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decrease with age (Chaleckis et al., 2016) and were decreased in
RTT subjects. It has been proposed that these age-related changes
may reflect alterations in the ability to handle oxidative stress
or alterations of the urea cycle in elderly compared to younger
individuals (Chaleckis et al., 2016). N-acetyl carnosine has been
formulated into eye drops to help ameliorate lipid peroxidation
in the lens and treat cataracts (Babizhayev et al., 2014),
although a recent Cochrane review failed to find convincing
evidence of efficacy (Dubois and Bastawrous, 2017). These results
are suggestive that people with RTT may have evidence of
accelerated aging.

Two metabolites of tyrosine metabolism were found to
be changed in RTT subjects. Increased plasma levels of 3-
methoxytyrosine, as observed in RTT subjects, has been
found in people with aromatic amino acid decarboxylase
deficiency (AADC). People with AADC have developmental
delay, hypotonia, and movement abnormalities associated with
decreased serotonin and dopamine (Hyland et al., 1992), and
similar clinical and biochemical findings have been observed in
RTT individuals and RTT mouse models (Samaco et al., 2009).
3,4-hydroxyphenyl lactate is also a tyrosine metabolite that is
elevated in metabolic diseases such as phenylketonuria (Spaapen
et al., 1987). We observed decreased levels of 3,4-hydroxyphenyl
lactate in RTT. The D-form is produced by gut microflora, and
this decrease may reflect changes in gut microflora constitution
in RTT compared with unaffected siblings (Spaapen et al., 1987).
3,4-hydroxyphenyl lactate can also function as a natural anti-
oxidant (Beloborodova et al., 2012), and the decreased levels of
this metabolite in RTT may contribute to the overall increased
oxidative stress observed.

There are other changes observed that may reflect alterations
in gut microflora. Notably, two tryptophan metabolites,
indolepropionate and indolelactate and produced by gut
microflora (Clostridum sporogenes specifically) (Wikoff et al.,
2009; Dodd et al., 2017) and are decreased in RTT subjects.
Indolepropionate also acts as an antioxidant (Reiter et al., 1998).
Tryptophan is metabolized via two major pathways, either
through the indole pathway or through kynurenine. Surprisingly,
kynurenine was also found to be markedly decreased in RTT
subjects. Alterations in the kynurenine pathway have been
found in a variety of neurological disorders such as Alzheimer’s
Disease, Parkinson Disease, Multiple Sclerosis, and Amyotrophic
Lateral Sclerosis (Lovelace et al., 2017), and the kynurenine
system has been implicated in mitochondrial function and
oxidative stress (Sas et al., 2018). Metabolites of kynurenine
have opposing effects on neuronal excitation, with kynurenic
acid acting as a neuroprotective agent by antagonizing NMDA
receptors, and quinolinic acid acting as an NMDA agonist.
Interestingly, aminoadipate, which is increased in RTT subjects,
acts to inhibit the production of kynurenic acid (Wu et al.,
1995). A significant question is whether these metabolic
changes observed may contribute to the observed alteration
in excitation/inhibition balance in animal models of RTT
(Banerjee et al., 2019). More detailed and targeted analysis
of the components of the kynurenine pathway in RTT are
needed to gain insight into the consequences of reduced plasma
levels of kynurenine.

LIMITATIONS

Although this work benefits from the non-targeted metabolomics
approach utilized, there are clear limitations. The primary
limitation is that samples were collected from non-fasted subjects
and time of collection was not controlled. It is well known that
diet, especially recent food intake, and time of day can have
marked effects on metabolic profiles. Future work should attempt
to either control for these factors (diet, collection time) or capture
this information to include in analysis. The other main limitation
is that the current analysis only identified 295 named compounds
and many key metabolic intermediates were not assessed. Future
work could benefit from using newer platforms that can assess
a larger number of metabolites, and the use of more detailed
analysis targeting specific pathways of interest identified in this
study. Finally, a limitation is that the metabolites were only
identified using a single platform and not validated using an
orthogonal method or on independent samples. Future work will
entail validation in independent samples.

CONCLUSION AND FUTURE WORK

This work represents that only non-targeted metabolomics
analysis done to date in RTT and revealed specific metabolic
abnormalities and pathways associated with disease state.
These findings provide the foundation for future analysis and
confirmation of metabolite and metabolic pathway abnormalities
in RTT that could serve as biomarkers of disease state. Future
work will focus on more detailed analysis of these pathways
and confirmatory characterization. A critical need is to identify
molecular biomarkers of disease severity in RTT, and future work
will focus on evaluation of larger numbers of affected individuals
to identify such biomarkers. Additionally, similar evaluation of
metabolic profiles from mouse models of RTT would strengthen
the discovery of useful biomarkers. Although the majority of
people with RTT have mutations in MECP2, mutations in other
genes have been found to cause RTT (Sajan et al., 2017), and
an interesting question is whether these individuals share similar
metabolic changes observed here. Finally, it would be interesting
to observe metabolic changes that occur during the course of
treatment, especially treatments that provide factors critical to
metabolic functioning (Ellaway et al., 1999; Glaze et al., 2009;
Schaevitz et al., 2012).
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