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Genome-wide association studies (GWAS) have identified 113 single nucleotide

polymorphisms (SNPs) affecting the risk of developing ankylosing spondylitis (AS), and

an on-going GWAS study will likely identify 100+ new risk loci. The translation of

genetic findings to novel disease biology and treatments has been difficult due to

the following challenges: (1) difficulties in determining the causal genes regulated by

disease-associated SNPs, (2) difficulties in determining the relevant cell-type(s) that

causal genes exhibit their function(s), (3) difficulties in determining appropriate cellular

contexts to interrogate the functional role of causal genes in disease biology. This

review will discuss recent progress and unanswered questions with a focus on these

challenges. Additionally, we will review the investigation of biology and the development

of drugs related to the IL-23/IL-17 pathway, which has been partially driven by the AS

genetics, and discuss what can be learned from these studies for the future functional

and translational study of AS-associated genes.

Keywords: ankylosing spondylitis, GWAS, functional genomics, IL-23/IL-17 axis, drug target, IL-1beta, genetics

INTRODUCTION

Ankylosing Spondylitis (AS) is a common form of immune-mediated arthritis that predominantly
affects the sacroiliac and spinal joints and can result in excessive ossification of the affected tissues.
Over the past decade the successful introduction of new treatments for AS (therapeutic monoclonal
antibodies targeting tumor necrosis factor (TNF)-α and interleukin (IL)-17A) has highlighted
some of the important pathological pathways involved. However, <50% of patients achieve good
response (ASAS40) to either TNF-α or IL-17A blockade (1, 2). More importantly, there is no cure
for AS and most patients require lifelong medication (with consequent potential adverse effects)
to control their symptoms. Therefore, identifying novel therapeutic targets could have important
benefits for patients with AS.

The value of genetics in drug discovery is increasingly appreciated (3, 4). The induction
of IL-17A blockade in AS was partially driven by genetic studies showing multiple disease
associations with genes involved in IL-23/IL-17A pathways (e.g., IL6R, IL23R, TYK2, IL1R1/2,
IL27, STAT3) (5). Genome-wide association studies (GWAS) have already identified 113 single
nucleotide polymorphisms (SNPs) affecting the risk of developing AS (6, 7). To date, there is a
plausible explanation for only a minority of these genetic associations, substantially impeding their
translation into therapeutic options.
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The functional investigation of genetics association currently
encountered a number of challenges: (1) difficulties in
determining the causal genes regulated by disease-associated
SNPs, (2) difficulties in determining the relevant cell-type(s)
that causal genes exhibit their function(s), (3) difficulties in
determining appropriate cellular contexts to interrogate the
functional role of causal genes in disease biology. This review
will discuss recent progress and remaining challenges. While
appreciating the importance of identifying causal SNPs, limited
by the length of this mini-review, we choose to refer readers to
recent review rather than discuss this topic here (8). Following
the identification of causal genes and related cellular contexts,
immunological research is vital for drug discovery. We will
use the IL-23/IL-17 pathway as an exemplar, in part driven by
the AS genetics, and discuss what can be learned from these
studies for the future functional and translational study of
AS-associated genes.

AS GENETICS

Genetic contribution to the development of AS was first known
following the discovery of HLA-B∗27 as a strong genetic risk
factor in 1973 (9–11). In fact, the association was so strong
that HLA-B∗27 was, for a long time, considered to be the sole
genetic factor predisposing individuals to AS. Till 2007, powered
by the technical development in SNP genotyping and statistical
analysis for GWAS, the first AS GWAS was competed (12).
Although with a relatively small sample size (1,000 patients and
1,500 controls), this study identified two key non-MHC genetic
risks: IL23R and ERAP1. These findings were subsequently
confirmed in a study with a larger cohort, which reported
two additional associations with chromosome 2p15 and 21q22
(13). In the same year, a study focusing on 53 known genetic
risks in Crohn’s disease, a condition clinically related to AS,
identified two additional AS-associated loci: 1q32 and STAT3
(14). In 2011, the striking epistasis between ERAP1 and HLA-
B∗27 was found, along with seven additional genetic loci with
strong associations with AS (15). The most recent findings were
reported from the Immunochip project with the strategy of high-
density genotyping of immune-related loci, which, in part using
“multi disease” methodology, has increased the number of SNPs
independently affecting the risk of developing AS to 113 (6, 7).

Overall, a significant body of knowledge of AS genetics
has been generated over the last decade. This rich and high-
quality source of genetic risk associations in AS will, after
appropriate decoding, provide critical sights in AS biology and
new drug targets.

TRANSLATING GENETICS TO NEW
BIOLOGY AND DRUG TARGET DISCOVERY

Recent Technical Advances and
Opportunities
In attempting to reveal the functional basis of genetic risks
associated with human diseases, various techniques have been
developed over the past few years. We believe that expression

quantitative trait loci (eQTL), promoter capture Hi-C (PCHi-C),
and HiChIP constitute key advances for the prediction of causal
genes through the annotation of genetic risks (Figure 1).

Expression quantitative trait loci (eQTL) identifies genomic
variants that contribute to altered expression levels of mRNAs.
eQTL have been carried out using various primary human
immune cells (monocyte, macrophage, dendritic cell, CD4, CD8,
Treg, Th1, Th2, Th17, Tfh, B-cell, NK and neutrophil) in different
cellular contexts (resting and activation) (16–21). These data
constitute a rich eQTL data resource which can be integrated
with summary data from AS GWAS studies for the prediction
of the causal genes (22, 23). Of note, eQTLs are only present in
a proportion of GWAS SNPs (24, 25), highlighting the need for
additional approaches to link SNP to gene.

The development of chromosome conformation capture (3C)
and its related techniques, such as Hi-C, has allowed the detection
of long-range regulatory DNA interactions (26, 27). To overcome
the nature of complexity and high-cost of Hi-C, promoter
capture Hi-C (PCHi-C) has been developed, combining Hi-C
with hybridization-based capture of targeted genomic regions
(28). PCHi-C has been carried out for various diseases using
relevant tissues/organs and/or cells (29–31), but not yet in AS.
One dataset, which we believe will be of particular value for AS
research, provides high-resolutionmaps of promoter interactions
at the genome-wide level in 17 human primary blood immune
cell types (32). HiChIP is another technique derived from Hi-
C which incorporates ChIP-seq—allowing the enrichment of
chromatin looping events based on histone modifications (33).
H3K27ac HiChIP has been applied to naïve CD4, Th17, and
Treg cells to reveal T cell subtype-specific enhancer–promoter
interactions (34). These enhancers often contact genes beyond
their nearest neighbor gene–highlighting the importance of SNP
annotation using functional genomic datasets. Thus, we believe
that the integration of chromatin looping datasets and AS GWAS
findings provides a potent approach to predict the causal genes.

Determination of disease-relevant cell-types for functional
investigation is a key challenge impeding the translation of
genetic findings to new biology and therapeutic options.
Some causal genes identified by eQTL or chromatin looping
datasets will be limited in their action to specific cell-type(s),
guiding the selection of cells to be investigated (Figure 1).
However, this information is not always available. In such
a scenario interrogation of chromatin accessibility (DNase
hypersensitivity assay or ATAC-seq), DNA methylation and
histone modifications will be of great use following mapping
with GWAS SNPs (Figure 1). The latter include enhancer (e.g.,
H3K4me1), promoter (H3K4me3), and active enhancer and
promoter marks (H3K27ac).

Precise functional testing of predicted causal genes requires
knowledge of cellular context(s). This is particularly important
for genes where existing knowledge of function is limited, a
common situation for GWAS hits. To this end, transcriptional
data from patient-derived cells and/or particular disease-related
cell-types, such as Th17 cells in AS, would be of great use.
For example, if a causal gene is elevated in Th17 cells, one
would predict it to be a possible Th17 regulator and test its
function in a Th17 functional cellular assay. Single cell RNA
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FIGURE 1 | Strategies to translate genetic risk to novel biology.

sequencing (scRNA-seq) would excel here in the provision of
gene abundancy data for multiple cell subsets in patient blood or
synovium. However, a well-known drawback of scRNA-seq is its
inability to detect genes in low abundance. Antibody (CITE-seq)
or oligo (BD Rhapsody)–based tagging of genes of interest might
go some way to solve this problem. In addition, for genes with
available antibodies, mass cytometry or CyTOF is an alternative
approach to acquire the expression profile of a gene at the
protein level.

Remaining Challenges and Possible
Solutions
eQTLs are frequently different in different cell types. For
example, the eQTL link of GAB2 gene with rs2511162 is found
for naïve B cells and T cells, but not monocytes (19). Even
within one cell-type, eQTLs can be highly context-specific.
For example the AA genotype at rs1179625 is associated
with higher basal mRNA HIP1 levels in naïve monocytes,
but reduced HIP1 upregulation in lipopolysaccharides (LPS)-
stimulated monocytes (16). Of note, the difference in context
is not limited to resting vs. stimulation but may be highly
time dependent for a cell-type treated with the same stimuli.
For examples, the eQTL linking rs2275888 with IFNB1 gene

transcription is present in monocytes after 2 h LPS-stimulation
but not in resting monocytes or those cultured with LPS
for 16 h (16). As mentioned in the previous section, cell-type
and context specificity are also present in chromatin looping
datasets (PCHi-C and HiChIP). Thus, although current eQTL
and chromatin looping datasets have included various conditions
for an individual cell-type, they cannot possibly cover all the
complex and dynamic microenvironments present in human
diseases including AS. Given the high probability of the presence
of AS-specific genetic regulations, this knowledge will be crucial
in advancing our understanding of the impact of genetic risks on
AS biology and unraveling novel mechanisms and therapeutic
options. To this end, we propose that functional genomics
datasets should ideally be generated using cells from blood or
even joint of patients with AS for the provision of disease-
specific insights.

Evidence suggesting key roles for rare immune cell
populations in AS has recently emerged,. For example invariant
NK cells (iNKT) and γδ T cells have recently been reported to
be a major source of IL-17 in the inflamed joint (35). These
innate-like T cells are phenotypically and functionally different
from conventional T cells, thus would likely have distinct gene
expression mechanisms. Neither eQTL nor chromatin looping
datasets have been generated for these un-conventional cell
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types, and we propose that coordinated efforts to generate
functional genomic datasets for these cells should be made by the
scientific community.

Even within one cell-type, specific subsets might be highly
relevant to the pathogenesis of human diseases. For example,
using single cell RNA sequencing (scRNA-seq), MerTK+
synovial tissue macrophages have recently been shown to be
key for the remission of rheumatoid arthritis after treatment
cessation (36). Thus, scRNA-seq-based eQTL studies carried out
using patient blood and/or tissue derived cells will be of great
value. This approach was first reported in 2018 for a small
cohort of 45 healthy donors (37). More recently, the single-
cell eQTLGen consortium has been established and will provide
standardized pipelines and guidelines for single-cell population
genetics studies (38).

Most functional genomics data are at the DNA or RNA level.
This does not invariably relate to cellular and cell surface protein
expression. Advances in quantitative MS might allow QTL at
the protein level. Indeed, quantitative proteomics has been
utilized to advance knowledge in biology, such as the dynamic
protein landscape of human Th17 differentiation (39), and the
underlying mechanism of Myc controlling T cell proteomes and
metabolic pathways (40).

It will also be important to contextualize the anatomical
location of immune cells and their detailed functional
interactions. The human tissue atlas will provide a framework
and detailed spatial transcriptomic and protein expression
studies of diseased tissue including entheses will undoubtedly
enrich current knowledge.Without doubt the greatest knowledge
gains will flow from the study of cells from inflamed tissues. We
believe that obtaining these from human diseased tissues will be
more informative given the limitations of current animal models
and the rapid advances in single cell technology.

Moving from tissue level understanding to whole organism
will be a further challenge. Animal models of AS have proved
useful for studying specific pathogenic processes and offer
opportunities for intervention. The HLA-B27 transgenic rat
and the SKG mouse have both provided key insights, with
the former model confirming the role of HLA B27, myeloid
cells and gut flora in disease and the latter confirming the key
role for the IL-23-17 pathway (see below). Considering both
animal models and human studies it will also be important to
distinguish the relative roles of tissue-resident and tissue-specific
cells from those of circulating cells. We believe that using animal
models to label leucocytes present in the gut mucosa (e.g., with
photobleaching or fate mapping) and then follow their potential
movement to joints and other inflammatory sites is likely to
offer major insights into disease pathogenesis. Ultimately human
experimental medicine studies will prove the key arbiters of target
selection and will provide a rich source of data.

THE IL-23/IL-17 PATHWAY AND AS

IL-23/IL-17 Pathway
IL-23 is formed by P19 and P40 subunits with the later, along
with P35, also forming IL-12 (41). IL-23 signals through the
IL-23 receptor composed of IL-23R and IL-12Rβ1. IL-12 drives

the differentiation of Th1 cells, whereas IL-23 is crucial for
the survival and expansion of Th17 cells and can induce IL-
17 production in memory T cells (42, 43). Additionally, IL-
23 also induces IL-17 production by γδ T, NKT and innate
lymphoid cells (44–46). In line with this, murine models support
the T cell-mediated pathogenic role of IL-23 in inflammation in
multiple organs, including joints, gut, brain (47–49). Of note,
both IL-23 and IL-17A are required for the development of
Spondyloarthritis-like pathology in SKG mice, a T-cell driven AS
model with inflammation in arthritis, enthesitis, and ileitis (50).

Relevance to AS Genetics
More than 90% of genetic risk SNPs are present in non-coding
regions. Thus, IL23R, where genetic risk loci reside both within
coding (the cytoplasmic tail) and non-coding regulatory regions,
represents the exception rather than the norm. The genetic
association of IL23R loci with AS was first reported in 2007
(12), the first elucidated being a coding change SNP, rs11209026,
associated with Arg or Gln at position 381 of IL-23R protein.
Interestingly, the same SNP also affects the risk of developing
inflammatory bowel disease (IBD) (51), a condition closely linked
to AS. Indeed, a subgroup of patients with AS develops IBD and
the sub-clinical gut inflammation has been reported in over 60%
of patients with AS (52). The same SNP is also associated with
psoriasis, another condition closely linked to AS. The protective
variant R381Q is associated with reduced function of IL-23R and
Th17 response in both CD4 and CD8 cells (53).

Pre-clinical/Clinical Development of
Inhibitors Targeting IL-23/IL-17 Pathway
Antibodies blocking cytokines or receptors related to this
pathway have been extensively tested in AS. IL-17A blockers have
demonstrated efficacy and been approved for the treatment of
AS (54, 55). In contrast, IL-23 inhibitors either targeting P40
or P19, have failed to show efficacy in clinical trials (56, 57).
These results were unexpected considering the efficacy of IL-
23 blockers for Crohn’s disease, Psoriasis and psoriatic arthritis,
conditions related to AS and with IL23R as a genetic risk (58–
61). Of note, IL-17 inhibition was ineffective in Crohn’s disease
(62), suggesting the IL-23 biology beyond the simple induction
of IL-17 cytokine secretion.

The success of IL-17A blocking and failure of IL-23 inhibition
in AS suggested that IL-23might not be themain driver of IL-17A
production in AS. In human, IL-1β and IL-6 are required for the
differentiation of Th17 cells (63). Of interest, IL-1β was essential
in pathogen-induced Th17 differentiation to prime IL-17+IFN-
γ+ “pathogenic” Th17 cells (64). Additionally, along with IL-
23, IL-1β induces IL-17A production by γδ T and iNKT cells
(45, 65), the major source of IL-17A in synovial fluid of patient
with AS (35). The recruitment of IL-1β-producing myeloid cells
has been shown to be a key factor driving the IL-17 secretion
by γδ T and CD4 cells in the central nervous system (66). Two
pieces of evidence link IL-1β to AS pathology: (1) both IL1R1 and
IL1R2 are predicted genetic risks in AS (13), (2) monocytes in
blood from patients with AS spontaneously produce IL-1β (67).
Thus, we propose a model explaining the possible IL-1β-driven
IL-17 biology in AS (Figure 2). Monocytes stimulated by bacteria
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FIGURE 2 | Cartoon model suggesting possible role of IL-1 beta contributing to IL-17 response in AS.

in the gut produce pro-inflammatory cytokines that prime
Th17 cells. Attracted by chemokines, IL-1β-secreting monocytes
travel to the joint(s), where they activate γδ T and iNKT
cells. Additionally, through a TNFR-Fas-caspase-8-dependent
pathway, activated T cells also induce monocyte IL-1β secretion
(68). However, IL-1β is unlikely to be the sole driver of IL-17 in
AS because IL-1β inhibition was only effective for a subgroup of
patients (69–71).

Lessons From IL-23/IL17
The therapeutic development of inhibitors targeting the IL-23/IL-
17 pathway in AS highlights the notion that genetic risk alone
is not necessarily the ideal guide to drug target identification
and that downstream protein(s) might be better therapeutic
options in some cases. Indeed the association of genetic risk with
drug success in trails is substantially enhanced when proteins
interacting with these risk-associated gene products are included
(72). Considering the diseases that share IL23R risk associations,
significant differences in therapeutic response to different agents
have already emerged. The reasons why IL-23 neutralization
proved highly beneficial in psoriasis but without efficacy (at
least in initial trials) in Ankylosing Spondylitis, whereas IL-17
neutralization proved therapeutic in Psoriasis, psoriatic arthritis
and ankylosing Spondylitis but not Crohn’s disease have been

discussed by Siebert and colleagues (73). Thus, it is increasingly
clear that, following the identification of the causal genes, detailed
understanding of the biological functions of the associated
proteins in the context of both tissue site and stage of disease
is crucial.

DISCUSSION

Exciting progress has been made in the genetics of AS, resulting
in identification of over one hundred genetic variants that
affect the risk of disease development. Entering the post-
GWAS era, we have encountered multiple challenges and
bottlenecks in the translation of GWAS findings to new
biology and drug targets. With the rapid development of
functional genomic techniques/methods and transcriptomic and
phenotypic profiling of primary cells at single cell resolution,
it is now possible to predict both causal genes and their
relevant cell-type. This will allow us to more rigorously
investigate the cellular contexts of disease pathogenesis
and to functionally validate therapeutic targets. However,
disease-specific functional genomic datasets and those for
rarer immune cells are currently not available, representing
opportunities for future research. The successful development
of drugs targeting the IL-23/IL-17 axis for conditions genetically
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associated with IL23R is a great example demonstrating
the value of genetics in drug development. We also learned
that causal genes are not always the best drug targets,
highlighting the importance of establishing downstream
pathways. Thus, an in-depth understanding of causal gene-
related biology is absolutely crucial for the development of novel
treatment options.
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