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Background: Non-invasive prenatal diagnosis (NIPD) can identify monogenic diseases early
during pregnancy with negligible risk to fetus or mother, but the haplotyping methods involved
sometimes cannot infer parental inheritance at heterozygous maternal or paternal loci or at loci
for which haplotype or genomephasing data aremissing. This studywas performed to establish
a method that can effectively recover the whole fetal genome using maternal plasma cell-free
DNA (cfDNA) and parental genomic DNA sequencing data, and validate the method’s
effectiveness in noninvasively detecting single nucleotide variations (SNVs), insertions and
deletions (indels).

Methods: A Bayesian model was developed to determine fetal genotypes using the plasma
cfDNA and parental genomic DNA from five couples of healthy pregnancy. The Bayesianmodel
was further integratedwith a haplotype-basedmethod to improve the inference accuracy of fetal
genome and prediction outcomes of fetal genotypes. Five pregnancies with high risks of
monogenic diseaseswere used to validate the effectiveness of this haplotype-assistedBayesian
approach for noninvasively detecting indels and pathogenic SNVs in fetus.

Results: Analysis of healthy fetuses led to the following accuracies of prediction: maternal
homozygous and paternal heterozygous loci, 96.2 ± 5.8%;maternal heterozygous and paternal
homozygous loci, 96.2 ± 1.4%; and maternal heterozygous and paternal heterozygous loci,
87.2 ± 4.7%. The respective accuracies of predicting insertions and deletions at these types of
loci were 94.6 ± 1.9%, 80.2 ± 4.3%, and 79.3 ± 3.3%. This approach detected pathogenic
single nucleotide variations and deletions with an accuracy of 87.5% in five fetuses with
monogenic diseases.
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Conclusions: This approach was more accurate than methods based only on Bayesian
inference. Our method may pave the way to accurate and reliable NIPD.

Keywords: non-invasive prenatal diagnosis, massively parallel sequencing, fetal genome, single nucleotide
variations, monogenic disease

INTRODUCTION

Following the discovery of fetal cell-free DNA (cfDNA) in maternal
plasma (Lo et al., 1997), next-generation sequencing technologies
have enabled non-invasive prenatal screening for trisomies 13, 18,
and 21; aneuploidies involving sex chromosomes (Chen et al., 2011;
Agarwal et al., 2013; Benn et al., 2013; Mazloom et al., 2013;
Samango-Sprouse et al., 2013; Hooks et al., 2014); and, more
recently, rare autosomal aneuploidies and various sub-
chromosomal aberrations (Snyder et al., 2015; Zhou et al., 2019).
Maternal plasma cfDNA testing is now being applied to non-
invasive prenatal diagnosis (NIPD) of monogenic diseases. So far,
such testing has involved whole-exome sequencing of the cfDNA
and analysis supplemented by parental haplotype information (Fan
et al., 2012a; Lam et al., 2012; Yoo et al., 2015; Zhang et al., 2015).
However, these methods can detect only autosomal dominant
diseases and a few autosomal recessive diseases caused by known
mutations. They cannot detect diseases that have not already been
associated with mutation hotspots or that are caused by de novo
variants (DNVs).

Another limitation of these methods is that they require proband
genomicDNA to allow haplotype phasing, whichmay not be feasible
if the proband passes away at the early life. To avoid this
requirement, two groups developed methods to infer fetal
genotype based on haplotyping of one or both parents. One
method was able to detect only ~66%–70% of paternal-specific
alleles and deduce only ~70%of paternally inherited haplotypes (Fan
et al., 2012b), while the other method predicted heterozygous
maternal and homozygous paternal (ABAA) loci with only 64.4%
accuracy, and it was unable to predict many heterozygous maternal
and paternal (ABAB) loci for lack of paternal haplotype information
(Kitzman et al., 2012). Moreover, these methods cannot detect
variants for which no haplotype or genome phasing information
is available.

In the present study, we have established a Bayesian model that
predicts fetal genotype based on whole-genome sequencing of
cfDNA in maternal plasma and of single-tube long fragment
reads (stLFRs) in paternal genomic DNA. This allows the
reconstruction of parental haplotypes without the need of
proband DNA, which in turn renders the fetal genotyping more
accurate. We validate the effectiveness of our approach by non-
invasively detecting single-nucleotide variants (SNVs), insertions
and deletions (InDels) in five fetuses at risk of monogenic diseases.

METHODS AND MATERIALS

Study Design and Study Population
Five mothers with normal singleton pregnancies and their
male partners were prospectively recruited into this study at

the Department of Fetal Medicine and Prenatal Diagnosis at
Guangdong Women and Children’s Hospital. All five pregnant
women showed normal nuchal translucency (NT), and non-
invasive prenatal screening results were negative for trisomies
13, 18, and 21. All women delivered healthy babies by vaginal
delivery (Supplementary Table S1). Peripheral blood (5 ml) of
each mother and father was sampled into an ethylenediamine
tetraacetic acid-containing tube to provide information for the
haplotype- and Bayesian-based method, the results of which
were compared against umbilical cord blood (2 ml).

To validate our method for detecting pathogenic SNVs and
indels for NIPD, another five mothers and their male partners
whose fetuses were at risk of the following monogenic diseases
were also prospectively recruited: tetrahydrobiopterin
deficiency hyperphenylalafivemia, Duchenne/Becker
muscular dystrophy, ocular albinism, muscular dystrophy
polysaccharide glycosylation deficiency A11 and deafness.
The five families were recruited because the parents were
known to be carriers of disease alleles, or the fetuses were
suspected of having monogenic diseases due to ultrasound
abnormalities. All five pregnant women agreed to undergo
amniocentesis for prenatal diagnosis, and maternal and
paternal genomic DNA was Sanger-sequenced to confirm
the presence of disease variants.

All families received a detailed explanation of the study and
gave written informed consent before any samples were
collected. The study strictly followed the Declaration of
Helsinki and was approved by the Ethics Committee of the
Guangdong Women and Children’s Hospital (no. 201901091),
as well as by the Institutional Review Board of the BGI (BGI-
IRB 20002).

Preparation of cfDNA Libraries
Maternal blood was collected and within 8 h, it was centrifuged
at 1,600 g for 10 min. Plasma was transferred to fresh
microcentrifuge tubes and centrifuged at 16,000 g for
10 min to remove residual cells. From 600 μl of the clarified
plasma was extracted cfDNA using the MGIEasy Circulating
DNA Isolation Kit (MGI, Shenzhen, China), which was used to
construct a library with the MGIEasy Cell-free DNA Library
Prep Kit (MGI, Shenzhen, China) based on a modified protocol
(Xu et al., 2019). In brief, the extracted cfDNA was end-
repaired, ligated with “A” tailing and then ligated with
adapters. The ligated products were cleaned up and
subjected to 10 cycles of PCR amplification. The PCR
products were cleaned up, quantitated with a dsDNA
Fluorescence Assay Kit (Invitrogen, United States), heat-
denatured and incubated at 37°C to create ssDNA circles.
These circles were subjected to rolling circle amplification
to generate DNA nanoballs (Drmanac et al., 2010).
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Preparation of Parental gDNA Libraries
High-molecular-weight parental genomic DNA was isolated
from blood using a dialysis-based method (Wang et al., 2019)
and prepared for stLFR sequencing, in which the same barcode
sequence was added to subfragments of long DNA molecules
to enable their second-generation sequencing (Wang et al.,
2019). The resulting high-molecular-weight parental DNA
(1.5 ng) was used to construct a library with the MGIEasy
stLFR Library Prep Kit (MGI, Shenzhen, China). In brief, a
hybridization sequence of 200–1,000 bp was added to the
genomic DNA using transposons, and the resulting
transposon-integrated DNA was allowed to adsorb onto
beads. The transposons were ligated to barcode adapters,
followed by other adaptors to allow multiplex sequencing.
The ligated products were cleaned, subjected to five cycles
of PCR amplification, purified and quantified using the Qubit®
dsDNA HS Assay Kit (Invitrogen, United States).

Preparation for Umbilical Blood DNA
Libraries
Umbilical blood DNA was extracted using an MGIEasy
Magnetic Beads Genomic DNA Extraction Kit (MGI,
Shenzhen, China), then used to prepare a library with the
MGIEasy universal DNA Library Prep Set (MGI). Genomic
DNA was fragmented with Segmentase (MGI, Shenzhen,
China) to generate molecules 100–500 bp long, and
fragments 280–320 bp were enriched using magnetic beads.
The ends were filled in, then the base A was added to the 3′ end
to allow DNA fragments to be ligated to an adapter with base T
at the 3′ end. The DNA fragments were amplified by ligation-
mediated PCR and purified to form the library.

Library Quality Control and Sequencing
Library control was checked using an Agilent DNA 1000 kit
on a Bioanalyzer 2,100 platform (Agilent, United States) and
quantified using a QubitTM ssDNA Assay Kit (Invitrogen,
United States). Then libraries were subjected to multiplex
sequencing on a DNBSEQ platform (MGI, Shenzhen, China)
acording to a “paired-end 100 bp” strategy.

Read Mapping and Variant Calling
Raw reads were trimmed and filtered using SOAPnuke 2.1.1
(Chen et al., 2018). Reads were excluded if their N proportion
was below 0.1, if > 50% of bases had a quality score <12, or if
there were >2 mismatches with the adapter. The resulting
“clean reads” were aligned to the human genome reference
(hg19) using Burrows-Wheeler Aligner (BWAmem) software
(Li and Durbin, 2009), then duplicate reads were removed,
InDels were realigned, and base quality scores were
recalibrated using Sentieon genomics software2 (Kendig
et al., 2019) and default parameters. Variants were called
using Sentieon genomics software2. SNVs and InDels were
detected using Sentieon DNAscope software (McKenna et al.,
2010), which combines the GATK’s HaplotypeCaller and a
genotyping model based on machine learning.

Prediction of Fetal Genotype Using a
Bayesian Model
FF was calculated by comparing the aligned sequence reads at
maternal homozygous sites and fetal heterozygous sites using the
formula FF = 2p/(p + q)×100, where p is the number of reads
corresponding to fetal-specific alleles and q the number of reads
shared between the mother and fetus. A Bayesian model was used
to infer fetal genotype at each locus based on the FF and parental
genotyping. The Bayesianmodel proceeded in two steps. First, the
cumulative probability of the combination of each maternal and
fetal genotype at each locus was calculated based on the read
depth and FF at that locus. Second, the prior probabilities of the
maternal and fetal genotype combinations were determined
based on parental genotyping and Mendelian laws of
inheritance. The Bayesian model generated 10 posterior
probabilities, one for each possible combination of maternal
and fetal genotypes. The predicted fetal genotype at each locus
was the genotype with the highest posterior probability (Eq. 1)

P(Ai|B) � P(B|Ai)P(Ai)
∑n

i�1P(B|Ai)P(Ai) (1)

where P (Ai) is the prior probability of the ith maternal and fetal
genotype combination, calculated according toMendelian laws; P
(B|Ai) is the cumulative probability of maternal and fetal
genotype combination i based on read depth and FF at that
locus; and n was 10 maternal and fetal genotype combinations.

For each locus, the probability of obtaining base j was
calculated as follows: (Eq. 2):

Pj � BjF/2p C + BjM/2p(1 − C) (2)
where BjF, an integer between 0 and 2, indicates the number of
bases j in F1iF2i; C represents the FF in the predetermined region;
BjM, also an integer between 0 and 2, indicates the number of
bases j in M1iM2i; and j represents A, T, G or C. Based on the
occurrence probability Pj of base j and the number of reads of Aj,
the cumulative probability P(F1iF2iM1iM2i) of each maternal
and fetal genotype combination was determined as follows:
(Eq. 3)

P(F1iF2iM1iM2i) �∑PjAj/∑Aj (3)
where Aj stands for the read count for base j (A, T, G or C). Based
on the P(F1iF2iM1iM2i) of each maternal and fetal genotype
combination, Pfinal (F1iF2iM1iM2i) was computed according to
the formula (Eq. 4)

Pfinal (F1iF2i M1iM2i) � P(F1iF2iM1iM2i)
/∑(P(F1iF2i M1iM2i)) (4)

The highest probability for the genotype combination was
taken to be the final cumulative probability for that combination
and was used in the Bayesian model. The predicted genotype at
each locus was defined as the one with the highest posterior
probability (patent PIDC3194001P).

In this way, the Bayesian model relied on parental variants and
cfDNA preprocessing data as inputs, and it returned 10 posterior
probabilities for 10 predicted fetal genotypes. Low-quality
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variants were eliminated from the Bayesian analysis
(Supplementary Method S1).

Prediction of Fetal Genotype Using a
Haplotype-Based Method
We used a haplotype-based method based on sequential
probability ratio testing (SPRT) and the “closest-variant”
algorithm to predict fetal genotypes at AAAB and ABAB
loci. First, we used longhap software (https://github.com/
stLFR/stLFR_LongHap) to perform genome phasing based
on the alignment and variant results of parental stLFR
sequencing. Second, we deduced the inheritance of maternal
haplotype at ABAA loci used a previous method (Lo et al.,
2010). The SPRT was performed to determine whether the
cumulative allele counts for SNVs along a haplotype block
reached sufficient statistical confidence for Hap I or Hap II
to be scored. SNVs for which statistical confidence was too low
for a genotype call were considered “unclassified”. The
maternally contributed alleles for these unclassified variants
were inferred using the closest-variant algorithm 1, which
predicted maternal or paternal inheritance. based on the
inferred inheritance of the nearest variant within 200 kb in
the same haplotype block. If the upstream and downstream
variants showed different inherited haplotypes within a 200-kb
region, these unclassified variants were not analyzed
(Supplementary Figure S1). The closest-variant algorithm 1
was defined to predict maternal or paternal inheritance based
on the inferred inheritance of the nearest variant within 200 kb
in the same haplotype block. We defined the closest variant
algorithm 2 to infer the paternally/maternally contributed allele
for the variant using the inferred inheritance of the nearest
variant within 500 Kb region of the same haplotype block
(Supplementary Figure S1).

We defined the closest variant algorithm 2 to infer the
paternally/maternally contributed allele for the variant using
the inferred inheritance of the nearest variant within 500 Kb
region of the same haplotype block (Supplementary Figure S1).
In the case of InDels, we used the closest-variant algorithm 2 to
infer paternal inheritance at AAAB and ABAB loci, and SPRT to
predict maternal inheritance. The closest-variant algorithm 2 was
also used to infer the maternally contributed alleles of unclassified
variants. Low-confidence variants were filtered out in the SPRT
(Supplementary Method S2).

Combination of Bayesian- and
Haplotype-Based Prediction of Fetal
Genotype
We used the Bayesian model to infer paternally inherited alleles at
AAAB loci, while we used the haplotype-based method to infer
maternally inherited alleles at ABAA loci. In the case of ABAB
loci, we first used the closest-variant algorithm 1 to determine the
paternally inherited alleles based on the inferred inheritance at
the closest AAAB locus determined by the Bayesian model within
200 kb in the same haplotype block, after which we conducted

SPRT to predict maternally inherited alleles. The closest-variant
algorithm 1 was used to determine maternal alleles of unclassified
variants. Finally, we used the Bayesian model to predict fetal
genotype at the remaining ABAA and ABAB loci for which the
haplotype-based method did not predict genotype (Figure 2).

RESULTS

BayesianModel for Inferring Fetal Genotype
Plasma cfDNA and genomic DNA from five healthy pregnant
women and their husbands were sequenced. The women were
aged 30.72 years (range, 28.5–32.6 years) bearing fetuses at a mean
gestational age of 24.2 weeks (range, 13–33 weeks) (Supplementary
Table S1). The cfDNA was sequenced at a depth of 100X (range,
112.03–256.12X); the genomic DNA, to a depth >30X (range,
28.77–68.39X; Supplementary Table S2, Figure 1). Umbilical
cord blood DNA was sequenced at a depth of 48X (range,
41.85–52.34X; Supplementary Table S2). The estimated FF had a
mean of 13% (range, 4%–27%; Supplementary Table S1).

ABayesianmodel to infer fetal SNVs showed the greatest accuracy
with fetus JK-16, who had the highest FF (27%), and lowest accuracy
with JK-53, who had the lowest FF (4%). These results indicate the
strong influence of FF on fetal genotype inference. Increasing the
cfDNA sequencing depth from128 to 256.12X increased the accuracy
of JK-53 genotyping (Table 1). The genotyping accuracy across the
five families was 96.2 ± 5.8% at homozygous maternal and
heterozygous paternal loci (AAAB), 74.6 ± 9.5% at ABAA loci,
and 64.3 ± 11.9% at ABAB loci (Table 1; Figure 2).

Improving the Accuracy of Fetal Genotype
Inference Using Haplotyping
Given the Bayesian model’s poor performance at predicting fetal
genotypes at ABAA and ABAB loci, we genotyped complex
haploid subsets of maternal and paternal genomic DNA at
these loci while preserving long-range contiguity (Figure 2).
We directly phased over 99% of ABAA loci into long
haplotype blocks, giving an average N50 of 18.72 Mb, and over
99% of ABAB loci into long haplotype blocks, giving an average
N50 of 13.57 Mb (Supplementary Table S2). This haplotype-
based method successfully classified 90%–97% of maternally
inherited SNVs at ABAA loci and correctly predicted
98%–99% of SNVs (Table 1). Nevertheless, this haplotype-
based method was unable to infer genotype at 3%–10% of
ABAA loci, so we inferred these gaps using the Bayesian
model. This combination of haplotype-based and Bayesian-
based prediction (hereinafter referred to the combined
method) gave SNV genotyping accuracies of 94%–98% at
ABAA loci (Table 1; Figure 3A). The haplotype-based
method successfully classified 74%–92% of maternally
inherited SNVs at ABAB loci and correctly predicted
93%–98% of SNVs. Adding Bayesian inference to fill in gaps
led to accuracies of 82%–95% (Table 1; Figure 3B).

We also utilized the haplotype-based method to infer paternal
and maternal inheritances for fetal InDels, which was successful
for 95% of all InDels (range, 93.6%–97%) across the fetuses.
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Accuracy was highest at ABAA loci (94.6%), followed by AAAB
loci (80.2%) and ABAB loci (79.3%) (Supplementary Table S3,
Supplementary Figure S2).

Combining Haplotype- and Bayesian-Based
Prediction for NIPD of Monogenic Diseases
We sequenced the cfDNA from the plasma of five pregnant
women with a mean age of 29 years (range, 25–34 years) at a
mean gestational age of 13 weeks (range, 11–18 weeks) whose

fetuses were at risk for monogenic diseases. Mean FF was 0.15
(range, 0.08–0.20; Table 2). The cfDNA was sequenced at a depth
of 121X (Supplementary Table S4). In parallel, stLFR sequencing
of parental genomic DNA was performed at a depth of 24X. The
combination of haplotype- and Bayesian-based prediction
identified 8 pathogenic variants in five genes in the plasma
cfDNA from all five mothers (Table 2, Supplementary Table
S5). Our method correctly identified 6 heterozygous carriers of
monogenic disease variants, including tetrahydrobiopterin
deficiency hyperphenylalafivemia, Duchenne/Becker muscular

FIGURE 1 | Schematic of this study. We first recruited five families and performed stLFR sequencing of parental genomic DNA and genome sequencing of cell-free
DNA in maternal plasma. The fetal genome was successfully inferred using a combination of Bayesian- and haplotype-based prediction. Genome sequencing of fetal
DNA in umbilical cord blood was used to determine the accuracy of our genotype inferences. WGS, whole genome sequencing, NIPD, non-invasive prenatal diagnosis;
stLFR, single-tube long fragment reads.

TABLE 1 | Performance metrics for inferring fetal SNPs in 5 healthy families.

Family Heterozygous The bayesian model The haplotype-based method The combined method

Accuracy (%) Number of
true predictions/

number
of loci

Accuracy (%) Number of
true predictions/

number
of loci

Accuracy (%) Number of
true predictions/

number
of loci

JK-7 AAAB loci 96.8 631788/652391
ABAA loci 72.6 909990/1253908 98.8 1171962/1186610 96.1 1209126/1253908
ABAB loci 61.4 429479/698962 96.4 572296/593618 89.8 627424/698962

JK-16 AAAB loci 97.7 576306/590073
ABAA loci 91.8 1014224/1104405 99.2 1061980/1070070 98 1082868/1104405
ABAB loci 85.9 540677/629324 97.5 562304/576574 94.9 597082/629324

JK-18 AAAB loci 96.4 463476/480708
ABAA loci 75.7 901292/1190790 99 1112107/1123516 96.7 1151107/1190790
ABAB loci 65.9 439900/667062 92.7 488305/526841 86.5 576938/667062

JK-28 AAAB loci 95.2 313500/329369
ABAA loci 69.5 440760/633774 98.5 581675/590448 96 608483/633774
ABAB loci 57.3 222910/388712 93.1 268695/288587 83.2 323556/388712

JK-53 AAAB loci 95.6 540046/564870
(128X) ABAA loci 59.6 667583/1120831 97.3 926919/952660 92.0 998262/1085313

ABAB loci 49.4 325416/658784 89.1 363047/407606 74.7 481240/644645
JK-53 AAAB loci 95 590368/621392
(256.12X) ABAA loci 63.5 706502/1112899 97.7 979699/1002260 93.6 1041875/1112899

ABAB loci 51 341350/668854 93.9 462865/492889 81.8 547115/668854
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dystrophy, ocular albinism, muscular dystrophy
polysaccharide glycosylation deficiency A11 and deafness
and 1 wildtype variant in a fetus at risk of
Tetrahydrobiopterin deficiency hyperphenylalaninemia. The
method also correctly predicted the heterozygous deletion
c.8371delC (CDH23 in NM_022124) in a fetus at risk of

deafness. The inferred fetal variants were validated by
Sanger sequencing of DNA from umbilical cord blood,
which revealed only one incorrect inference (Table 2,
Supplementary Table S5). Therefore, in this sample of five
fetuses, our method was able to non-invasively determine
pathogenic variants with an accuracy of 87.5%.

FIGURE 2 |Non-invasive fetal genomic analysis based on cell-free DNA in maternal plasma. Parental combinations of single-nucleotide polymorphisms (SNVs) and
insertions-deletions (InDel) were grouped into four types, each of which we predicted using a different strategy (see Methods). AA, homozygous; AB, heterozygous;
SPRT, sequential probability ratio testing.

FIGURE 3 |Comparison of how accurately fetal genotypes were inferred using the Bayesian model alone, the haplotype-based method alone, or the two methods
together for (A) ABAA and (B) ABAB loci.
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DISCUSSION

In this study, we developed a Bayesian model for non-invasively
inferring fetal genotypes based on sequencing of cfDNA in maternal
plasma and of parental genomic DNA. The model accurately
predicted fetal genotype at AAAB loci but poorly at ABAA and
ABAB loci. By combining this approachwith haplotype information,
we accurately predicted SNVs and InDels at AAAB, ABAA and
ABAB loci with high prediction accuracy despite a relatively low FF.
We demonstrated the potential of our combined method for NIPD
of monogenic diseases.

Over the past decade, several haplotype-based strategies
have been reported for inferring fetal genotypes based on
deep sequencing of maternal plasma (Lo et al., 2010; Fan
et al., 2012b; Kitzman et al., 2012; Chen et al., 2013; Chan
et al., 2016). In these strategies, the parental haplotype is
determined directly (Kitzman et al., 2011; Lam et al., 2012) or
derived from analysis of pedigrees (Lo et al., 2010; Chen et al.,
2013; New et al., 2014) or founder haplotypes in selected
populations (Zeevi et al., 2015). Haplotype blocks in these
strategies average in size from 300 kb to >1 Mb, which
restricts the resolution at which maternal inheritance of
the fetus can be inferred (Lo et al., 2010; Fan et al., 2012b;
Kitzman et al., 2012). The lack of complete haplotype
information or genome phasing information in these
strategies means that only ~70% of paternally inherited
haplotypes or ABAB loci can be analyzed (Fan et al.,
2012b; Kitzman et al., 2012). A Bayesian method has been
reported that can predict SNVs and InDels independently of
the inheritance model and parental origin, but it cannot
detect DNVs, multi-allelic loci or X-linked inheritance
(Rabinowitz et al., 2019).

Our haplotype-based method was able to infer genotypes at
AAAB, ABAA and ABAB loci with high accuracy, yet it could
not do so for 3%–10% of ABAA loci or 8%–26% of ABAB loci.
Therefore, we used a Bayesian model to predict the loci missed
by the haplotype-based method. This combined approach

allowed the accurate prediction of SNVs and InDels at all
fetal loci at single-base resolution. Our method appears to be
able to infer fetal genotype with much higher resolution than
previously reported methods. For example, one previous
method predicted only a fraction of ABAA loci, whereas it
was unable to analyze ABAB loci (Chan et al., 2016). Another
method predicted SNVs at ABAA loci with an accuracy of only
64.4%, but it was able to analyze SNVs at only some ABAB loci
for lack of paternal haplotype information (Fan et al., 2012b).
In contrast, our method correctly predicted SNVs at AAAB,
ABAA and ABAB loci with accuracies of 82%–95%. In
addition, our method accurately predicted SNVs and
InDels. For example, our method predicted Indels at AAAB,
ABAA and ABAB loci with accuracies of 79%–95%. In fact,
during analysis of five fetuses at risk of monogenic disease, our
method detected five disease-causing mutations. Thus, our
method appears to be the only one reported so far that can
comprehensively predict SNVs and InDels. Moreover, our
method delivered accurate predictions at FFs as low as 4%,
much lower than in previously published methods (Kitzman
et al., 2012; Rabinowitz et al., 2019), indicating the potential
for NIPD early in pregnancy.

By using stLFR technology we were able to determine
parental haplotypes without the need for proband DNA and
with a much shallower sequencing depth than a previously
published method (Chan et al., 2016). Our approach may
become accessible to more institutions as genome-wide direct
phasing becomes less expensive and technically demanding
(Che et al., 2020). At the same time, our method needs to be
improved to increase its clinical feasibility, such as increasing
the accuracy of predicting SNVs at ABAB loci and InDels at
AAAB and ABAB loci. The Bayesian model that we applied here
calculates the likelihood of the fetal genotype using the maternal
genotype and FF. Adding other features to the model may
improve its ability to discriminate fetal and maternal reads;
such features may include fragment size (Rabinowitz et al.,
2019) and clusters of preferred ending positions of fetal

TABLE 2 | Summary of non-invasive prenatal diagnosis in 5 families with monogenic diseases by the combined model.

Family
ID

Age Gestational
week

FF
(%)

Monogenic diseases Maternal genotype Paternal genotype Inferred fetal
genotype

(bayesian model
prediction/

haplotype-based
prediction)

SFY-10 25 12 16 Tetrahydrobiopterin deficiency
hyperphenylalaninemia

PTS(NM_000317)
heterozygous c.73C > G

PTS(NM_000317) heterozygous
c.155A > G

C/C (C/C, NA)
A/G (A/G, A/G)

SFY-15 34 11 16 Duchenne/Becker Muscular
Dystrophy

DMD (NM_004006)
heterozygous c.187–2A > T

Wild-type A/T (A/T, NA)

SFY-32 29 11 8 Deafness CDH23(NM_022124)
heterozygous c.8371delC

CDH23(NM_022124)
heterozygous c.1606C > T

AC/A (NA, AC/A)
C/T (C/T, NA)

SFY-05 27 18 20 Muscular dystrophy
polysaccharide glycosylation
deficiency A11

B3GALNT2(NM_152490)
heterozygous c.181C > T

B3GALNT2(NM_152490)
heterozygous c.261–2A > G

C/C (C/C, not in
block)a

A/G (A/G, NA)
SFY-18 30 13 14 Ocular albinism GPR143 heterozygous c.885 +

748G > A
Wild-type G/A (G/A, G/A)

aIndicates incorrect prediction.
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fragments (Chan et al., 2016). Another approach to improve
inference accuracy may be to apply scalable FF amplification
technology (Welker et al., 2020).

CONCLUSION

We have established a haplotype- and Bayesian-based method
that can accurately predict fetal genotype at single-base
resolution. Our method may be useful for accurately
recovering fetal genomes and for NIPD of monogenic diseases
caused by SNVs or InDels.
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