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A B S T R A C T

Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have
continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical
examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs,
magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochem-
ically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage
prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct.
Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software
tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary
of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to
clinical practice.

I N T R O D U C T I O N
Since the description of femoroacetabular impingement
(FAI), there has been increasing recognition and interest
in this condition [1]. The understanding of the patho-
biomechanics has evolved over the past decades leading to
a variety of surgical treatment options including open [2]
and arthroscopic procedures [3] with promising reported
results [4–15]. Selecting the right patient for surgical treat-
ment is imperative. Although the diagnosis is primarily
made clinically, imaging plays a crucial role in the pre-
operative assessment. Over the past years, an increasing
number of imaging modalities for the evaluation of FAI
have made their way into clinical practice. While plain radi-
ography and MR-arthrography (MRA) remain the gold
standard in preoperative assessment [16], other imaging
modalities including biochemical sequences of magnetic
resonance imaging such as dGEMRIC as well as computed

tomography (CT) and preoperative computer assisted ani-
mation and treatment simulation play an increasingly im-
portant role when evaluating pathologies associated with
FAI [17–21].
The following article provides a literature review on pre-
operative evaluation of patients suffering FAI, highlighting
the roles of different imaging modalities used in the detec-
tion of the underlying pathologies.

B A C K G R O U N D F A I
FAI is a dynamic conflict of the hip defined by an early
abutment of the proximal femur onto the acetabulum [1].
Intra-articular impingement is subdivided into cam- and
pincer type FAI (Fig. 1). Cam Type FAI is predominantly
the result of an aspherical contour at the antero-superior
femoral head-neck junction that (when rotating into the
acetabulum) applies compression and shearing forces at
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the chondro-labral junction leading to chondro-labral sep-
aration, degeneration of the labrum and detachment of the
cartilage from the subchondral bone [1, 22]. Pincer type
FAI is characterized by an excessive acetabular wall that re-
sults in a compression of the labrum between the femoral
neck and the acetabular rim. Pincer type impingement is
typically seen in hips with deep acetabula (i.e. acetabular
protrusion, Fig. 2) or focal acetabular expansion (i.e. ace-
tabular retroversion; [1, 22, 23]). Cam and pincer type
FAI frequently occur concomitantly. While FAI describes
the pathomechanism, the abnormal morphology can be
caused by various underlying conditions such as Legg-
Calvé-Perthes disease (LCPD) [24], slipped capital fem-
oral epiphysis [25, 26] or post-traumatic deformities [27].
In the majority of cases, however, the etiology of FAI is de-
velopmental, or idiopathic.

P L A I N R A D I O G R A P H Y
Plain radiography is the primary imaging modality in the
diagnostic process of FAI. It is cheap, fast, and widely avail-
able. Plain radiographs allow recognition of a wide variety of

underlying hip disorders (i.e. Perthes disease, developmental
dysplasia of the hip, slipped capital femoral epiphysis, etc.)
and exclusion of preexisting advanced osteoarthritis (OA;
[28]). In order to correctly interpret plain radiographs, stand-
ardized acquisition techniques have to be applied as plain
films represent a 2D image of a 3D structure. Plain radiog-
raphy is based on a point-shaped source with conical beam
projection. Conical beam projection results in a more lateral
projection of the object [29]. This is in contrast to CT utiliz-
ing a very narrow fan beam as small as 1 mm avoiding distor-
tion of the object. Therefore, film-tube and patient-film
distance, as well as centering and direction of the X-ray beam,
and pelvic orientation during image acquisition have been
proven to be factors with direct influence on the accuracy of
the radiograph in the evaluation of hip morphology and path-
ology [30–34].

Film-tube distance affects the magnification of the object
but also the projection of overlying 3D structures. In general,
the closer an object to the X-ray source the larger its projec-
tion [29]. In the context of FAI, selected radiographic param-
eters can be influenced such as acetabular version: with
increasing film-tube distance, acetabular anteversion increases
and vice versa. Patient-film distance has been shown to be of
minor importance as it remains relatively constant [30].

Centering of the X-ray beam plays an important role for
the correct interpretation of radiographic parameters in
FAI [30]. On the standard antero-posterior (AP) radio-
graph of the pelvis, the X-ray beam is centered between
a line connecting both anterior superior iliac spines and
the upper border of the symphysis. Acetabular orientation

Fig. 1. The two pathomechanisms of intraarticular impingement
are shown. (A) Cam-type impingement is caused by an aspheric-
ity of the femoral head-neck junction that when entering the
acetabulum (B) applies shearing and compression forces to the
articular cartilage. Frequently, fibrocartilaginous dissociation at
the chondrolabral junction is observed. (C) Pincer-type impinge-
ment is caused by an overgrowth of the acetabular rim. (D) This
leads to a compression of the labrum with labral tears. Often
contre coup lesions are seen due to leverage of the femoral neck
against the acetabular wall.

Fig. 2. The AP pelvic radiograph of a 26 years old female patient
with bilateral general acetabular overgrowth and subsequent pin-
cer type FAI is shown. The femoral head crosses the ilio-ischial
line on both sides indicating acetabular protrusion. This is repre-
sented by an increased lateral center edge angle (LCE)>40�, a
negative acetabular index (AI) and a decreased extrusion index
(EI)<16%.
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varies considerably when the central beam is moved to
another position, such as low-centered projections
(routinely performed for hip arthroplasty) or hip-centered
projection (Fig. 3). Both will result in an increase of the
projected acetabular anteversion. A recent study compared
differences of acetabular parameters obtained from AP pel-
vic radiographs and PA, hip centered fluoroscopy [35].
There were no differences between an AP pelvic radio-
graph and a PA hip centered fluoroscopic projection in
terms of the lateral center edge angle (LCE; [41]), acetab-
ular index (AI; [52]), ACM angle [42], Sharp’s angle [43]
and total femoral coverage [32]. However, compared with
the AP pelvis radiograph, the anterior (posterior) femoral
coverage was decreased (increased), the prevalence of a
crossover sign was 30% lower, and the retroversion index
underestimated on fluoroscopy [35].

Many radiographic parameters for the evaluation of FAI
are highly dependent on the positioning of the patient dur-
ing image acquisition [31, 33, 36]. Although AP pelvic
radiographs are usually obtained according to a standar-
dized protocol [16], variations of pelvic orientation are a
natural consequence of a patient’s posture, body habitus
and level of discomfort with certain positions. Pelvic orien-
tation can vary in three dimensions: pelvic tilt, pelvic rota-
tion and pelvic obliquity. Malorientation can lead to
misinterpretation of acetabular and pelvic parameters
(Fig. 4). Inter-individual differences of up to 60� of pelvic
tilt have been reported depending on patient’s posture
(standing versus supine; [37]). Variations of pelvic tilt can
be assessed with the pelvic inclination angle on a true

lateral pelvic radiograph. It is defined by the intersection of
a line connecting the anterior border of the sacral promon-
tory with the upper border of the symphysis and a horizon-
tal line. Normal pelvic inclination has been found to be
60� [38–40]. Pelvic inclination can also be estimated by
measuring the distance between the upper border of the
symphysis and the midpoint of the sacro-coccygeal joint
on the AP pelvic radiograph. The mean values for this ver-
tical distance in a normal population have been reported to
be 32 mm in men and 47 mm in women [36]. Pelvic mal-
rotation is present if the center of the sacrococcygeal joint
and the symphysis are not in line. Malrotation results in an
increase of retroversion on the ipsilateral and an increase
of acetabular anteversion on the contralateral side (Fig. 4;
[31]). Alterations in pelvic obliquity can easily be over-
come by assessing acetabular parameters with regard to a
horizontal reference line such as the inter-tear drop line. A
recent study [31] assessed the effect of pelvic tilt and rota-
tion on 11 common radiographic hip parameters associated
to FAI (LCE [41], AI [52], EI [16], ACM angle [42],
Sharp angle [43], anterior and posterior acetabular cover-
age [32], crossover sign [44], retroversion index [36], pos-
terior wall sign [44]). Using a validated computer software
program (Hip2Norm; [32, 45]), neutrally oriented radio-
graphs were virtually rotated and tilted in pre-defined in-
crements. Anterior and posterior acetabular coverage,
cross-over sign, retroversion index and posterior wall sign
changed significantly (Fig. 4) while LCE angle, acetabular-,
extrusion index, ACM angle, Sharp angle and craniocaudal
coverage remained unchanged [31].

Fig. 3. The left hip of (A) an AP pelvic radiograph with the central beam directed to the center of the pelvis and (B) a PA hip cen-
tered fluoroscopic radiograph of the same cadaver pelvis is shown. The acetabular rim was marked with wires for better identification
on the radiographs. Pelvic tilt and rotation was standardized for both projections. (A) On the AP radiograph, cranial retroversion
with a positive crossover sign is present as the anterior wall (yellow dashed line) projects laterally to the posterior wall (blue dashed
line) in the cranial portion of the acetabulum. On the hip centered fluoroscopy, the crossover sign is not depicted (anterior wall pro-
jects completely medial to posterior wall).
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Radiographic projections in FAI
The routine radiographic projections for the evaluation of
FAI pathomorphologies consist of an AP radiograph of the
pelvis as well as a lateral view of the proximal femur [16,
46]. Additional projections include the Dunn Rippstein
Müller view and modified Dunn view [47, 48], frog leg
view and Lauenstein view [49], false profile view [50] or
true lateral view of the pelvis. Radiographs performed for
FAI allow assessment of both femoral and acetabular/pel-
vic pathomorphologies, including depth, coverage and
orientation on the acetabular side, as well as head spher-
icity, head-neck offset and torsion on the femoral side.
Additional findings may include joint incongruency due to
several underlying hip pathologies.

Acetabular depth is assessed on the AP pelvic radio-
graph. It is quantified by the coxa profunda and protusio
acetabuli sign. Coxa profunda is defined as positive if the
acetabular socket touches or crosses the ilio-ischial line.
Acetabular protrusion is present, if the femoral head
touches or crosses the ilio-ischial line (Fig. 2). Nepple et al.
found no differences in the prevalence of the coxa pro-
funda sign between normal hips and pincer impingement.
It was therefore concluded that the profunda sign may be
considered a normal radiographic finding [51]. On plain
radiographs, lateral acetabular coverage is assessed by the
LCE angle [41], the AI [52] and the EI [53]. The LCE
angle is defined by a line connecting the center of the fem-
oral head and the lateral edge of the acetabular sourcil and
a vertical reference line (Fig. 2; [41]). While a low LCE

angle is pathognomonic for developmental dysplasia of the
hip [53], abnormally high LCE angles account for pincer
type FAI (Fig. 2). There is controversy regarding both the
lower and upper threshold values. Most studies refer to
lower cut off values, however, values of 34–39� have been
found in patients suffering pincer type FAI requiring
isolated acetabular rim trimming, while an angle of above
40� was found in hips with protrusio acetabuli [54].
Tönnis et al. defined values between 39� and 44� in hips
with a deep acetabulum and values above 44� in hips with
acetabular protrusion [52]. The AI is defined by a line con-
necting the medial and lateral edge of the acetabular sourcil
and a horizontal reference line (Fig. 2; [52]). High AI is
found in dysplastic hips, while low AI is associated with
overcoverage. The normal range of the AI has recently
been defined between 3� and 13� [54]. Angles below 3�

were found in hips with pincer type FAI and hips with ace-
tabular protrusion [54]. The extrusion index is measured
on the AP pelvic radiograph and is defined as the percent-
age of femoral head that is not covered by the acetabulum
(Fig. 2; [53]). The cut off from normal to over-coverage
has previously been defined at >16% [54]. Values between
0 and 16% were reported to be associated pincer FAI
induced OA [55]. The anterior femoral head coverage is
assessed by the anterior center edge (ACE) angle on the
false profile view described by Lequesne and Sèze [50].
The ACE angle is constructed by a line connecting the
center of the femoral head and the anterior edge of the
acetabular sourcil and a second vertical reference line.

Fig. 4. Two AP pelvic radiographs of the same 33 year old female patient are shown. (A) The rotation of the pelvis during image ac-
quisition is correct, the midline of the coccyx/sacrum and the symphysis are in line. The resulting projected, acetabular anteversion
on both sides is normal: the anterior wall (yellow dashed line) projects medially to the posterior wall (blue dashed line). There is no
positive posterior wall sign (¼ the center of the femoral head projects medially to the posterior wall). Pelvic tilt can be estimated by
measuring the distance between the sacro-coccygeal joint and the upper boarder of the symphysis (yellow arrow). In females, a dis-
tance of 47 mm represents normal pelvic tilt [36]. (B) This pelvis was grossly malrotated to the right side during image acquisition
which is represented by a malalignment between the midline of the coccyx/sacrum and the symphysis. On the right side, this results
in false positive retroversion with nearly complete retroversion of the acetabulum represented by the anterior wall (yellow dashed
line) projected laterally to the posterior wall (blue dashed line) on almost the entire length (retroversion index of 95%). The posterior
wall sign and the ischial spine sign (IS) are positive. On the left side, because of the malrotation, the acetabulum appears excessively
anteverted.
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While values below 25� are associated with dysplastic hips,
angles above 41� was found in hips with pincer type FAI
[56]. Posterior coverage is assessed qualitatively by the
posterior wall sign on the AP pelvic radiograph [44]. The
posterior wall is deficient, if the contour of the posterior
acetabular rim lies medially to the femoral head. This is fre-
quently found in acetabular retroversion that is associated
with anterior overcoverage. The acetabular wall index semi-
quantitatively assesses anterior and posterior femoral head
coverage on the AP pelvic radiograph. It is defined as the
ratio of the distance of anterior (posterior) wall covering
the femoral head and the radius of the femoral head [57].

In a normally anteverted hip, the contour of the anterior
wall is projected completely medially to the contour of the
posterior wall. Retroversion is visualized by partial or com-
plete lateral projection of the anterior wall in relation to the
posterior wall, which was first described by Reynolds et al
as the ‘cross over sign’ (Fig. 4; [44]). The posterior wall
sign is positive if the posterior wall is located medially to
the femoral head center (Fig. 4; [44]). However, it can be
present with posterior wall deficiency without concomitant
anterior wall overgrowth. The retroversion index is a quan-
titative measure using the ratio of the retroverted cranio-
lateral acetabular opening to the entire opening of the
acetabular socket [16]. Another parameter indicative of
retroversion, the ‘ischial spine sign’, is present if the ischial
spine projects medially to the ilio-pubic line (Fig. 3; [58]).
Tannast et al showed in their study that retroversion was

not an isolated pathomorphology of the acetabulum but of
the entire hemipelvis externally rotated [59]. It was recently
shown that the size of the lunate surface in retroverted ace-
tabula did not differ compared to normal hips [60].

Several radiographic parameters exist to analyse the cam
lesion, most of which appear on the axial ‘cross-table’-,
Dunn- or Lauenstein view due to the typical location of
the asphericity at the antero-superior femoral head-neck
junction. The alpha angle is comprised by a line connecting
the femoral head center and the point where the anterior
head-neck contour exceeds the femoral head radius (Figs.
5 and 7). An angle above 50� has been found to be associ-
ated with cam-type FAI [61]. Although the alpha angle has
only been validated on the cross-table view [61], the alpha-
angle is commonly measured on almost all other projec-
tions of the proximal femur. The complementary angle at
the posterior head-neck junction is called beta angle [62].
Femoral head-neck offset is another measure to character-
ize a cam deformity [61, 63]. The head-neck offset is typic-
ally reduced in cam type FAI [61, 63]. The femoral head-
neck offset is defined as the distance between a line parallel
to the femoral neck axis passing tangentially through the
widest diameter of the femoral head and a parallel line that
passes through the point where the femoral head-neck con-
tour exceeds the femoral head radius [16, 63]. The femoral
head-neck offset is reduced in aspherical heads with low
neck-width to head-radius ratio (Fig. 11). It has been
shown to become negative in cases of slipped capital

Fig. 5. (A) A radial proton density weighted MRA slice (1 o’clock position) of a 21-year-old male patient with an increased alpha
angle of 85� is shown. The alpha angle is comprised by the femoral neck axis and a line connecting the femoral head neck center and
the point where the anterior head-neck contour exceeds the femoral head radius. (B) Acetabular version can be measured on axial
MRI/MRA sequences. Version is comprised by a line connecting the posterior and anterior margins of the acetabular rim at labral at-
tachment site onto the acetabular wall and the sagittal axis. Note that acetabular version cannot be corrected for pelvic tilt and rota-
tion on MRI/MRA of the hip. Acetabular depth (arrow) is measured as the distance between the line connecting the acetabular
margins and a parallel line tangential to the deepest point of the acetabular socket [82].
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femoral epiphysis [25]. On the AP pelvic radiograph, the
asphericity of the femoral head-neck junction can appear
as a pistol grip deformity [64]. Severe asphericities such as
sequelae of LCPD appear with a sagging rope sign on the
AP radiograph [65].

Additional findings related to FAI include torsional
deformities of the femur as well as coxa vara and coxa valga
[66]. Coxa vara and valga are quantified using the center-
collum-diaphyseal (CCD) angle on AP pelvic radiographs.
In normal hips, the CCD angle ranges between 129� and
135� [62, 67]. It appears too high with external rotation.
The assessment of femoral torsion is best achieved by 3D
imaging modalities. However, plain radiography allows the
assessment of femoral torsion according to the techniques
described by Dunn, Müller and Rippstein [47, 48, 68].
Finally, although cut off values for the majority of radio-
graphic parameters associated with FAI have been defined,
it is important to note that a variety of studies reported
pathologic radiographic findings both on the acetabular
and femoral side in completely asymptomatic patients
[69–74]. Thus, the diagnosis of FAI syndrome and subse-
quent treatment indications must never be based on the
presence of plain radiographic parameters alone but must
be correlated with clinical findings and further imaging.

M A G N E T I C R E S O N A N C E I M A G I N G
MRI and MRA of the hip are essential imaging modalities
in the preoperative work up of FAI [16, 75–81].
Examinations are optimally performed on a 3T MRI unit
for maximal spatial resolution. Dedicated small field of
view imaging is used for optimal labral and cartilage evalu-
ation. MRI with MRA provides information on articular
cartilage and labral injury as well as osseous pathology and
any surrounding soft tissue abnormality around the hip.
Sequences are performed post intra-articular injection of
gadolinium (MRA), and typically include three plane Fat
saturated T1 sequences (Coronal, Sagittal and Axial ob-
lique in the plane of the femoral neck), Fat saturated fats
Spin Echo (FSE) T2 in the coronal and Sagittal plane, and
axial T1 or PD sequences and Radial FSE PD or volumet-
ric thin slice GRE allowing radial reconstructions along the
axis of the femoral neck (or any other plane). As an alter-
native to reconstructing radial slices from 3D volumetric
data, higher resolution and subsequent more accurate as-
sessment is achieved from separate radial proton density
weighted sequences that are based on a sagittal oblique
localizer from coronal sequences [77]. A Coronal T1
weighted sequence without Fat saturation may also be use-
ful for osseous evaluation. Technical difficulties of MRI/
MRA in the evaluation of FAI related pathomorphologies
are encountered with the deep location of the hip within

the body with thin cartilage layers, a spherical shape of the
joint requiring both a high signal-to-noise ratio as well as
high spatial resolution [78]. Although technical progress
has been made including high MR strength field, cartilage
specific sequences and movable surface coils, it remains
challenging to obtain a conclusive evaluation of the general
status of the articular cartilage in the hip joint. To date,
there is no comprehensive classification system stratifying
the degree of osteoarthritis of the hip based on MRI/
MRA.

MRI/MRA is very useful to assess morphologic param-
eters related to the osseous configuration of both the
acetabulum and the proximal femur. These include depth
(Fig. 5) and width [82], femoral head coverage [60, 82] or
version (Fig. 5; [82]) on the acetabular side and the alpha
angle (Fig. 5) as well as femoral head neck offset [25, 61],
and tilt and epiphyseal angles [25] on the femoral side.
Multiplanar reconstructions render the potential of a 3D
assessment of the hip joint allowing depiction of the exact
location and extent of the pathomorphology associated
with FAI. Radial sequences around the axis of the femoral
neck providing the possibility to assess the 3D geography

Fig. 6. The arrangement of radial MR-sequences rotating around
the femoral neck axis are shown. This allows a three dimensional
assessment of the hip joint in a clockwise fashion depicting FAI
associated lesions that are frequently prevalent in the antero-
superior quadrant (3 o’clock to 12 o’clock) and corresponding
postero-inferior quadrant (6 o’clock to 9 o’clock). Radial slices
can be reconstructed from 3D volumetric datasets. Higher reso-
lution is achieved by obtaining separate radial proton density
weighted sequences based on a sagittal oblique localizer.
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of the acetabulum have proven to be very useful both in
diagnosis and planning (Fig. 6; [16, 77, 83]). A study by
Dudda et al. compared the alpha angles on plain AP and
cross-table radiographs with radial MRA slices of the fem-
oral head neck junction (Fig. 5; [83]). The authors found
increased alpha angles at the antero-superior head neck
junction on MRA in hips that had a normal appearance on
plain radiographs [83]. Another recent study confirmed
these findings and noted the highest correlation between
increased alpha angles measured on radial MRI sequences
and plain films on the 45� Dunn view representing the
anterosuperior portion of the head neck junction [84].
A recent MRA based study investigated the three dimen-
sional femoral head coverage as well as the shape of the lu-
nate surface using the outer and inner center edge angles
[60]. The authors demonstrated significant differences of
both size and shape of the lunate surface between hips
with acetabular retroversion, deep acetabula, acetabular
protrusion and normal/asymptomatic hips thereby provid-
ing theoretical implications for joint preserving surgical
treatment of each entity [60]. Acetabular version can be as-
sessed in the axial plane using MRI/MRA (Fig. 5).
Previous studies reported distinct differences of acetabular
version depending on the cranio-caudal level at which the
measurements were performed: whereas decreased version
was found at the more cranial sections below the acetabu-
lar dome, more pronounced anteversion was present when
the measurements were performed at the level of the fem-
oral head center [82, 85–87].

Next to the assessment of bony lesions, MRI/MRA
allow an excellent assessment of intra- and extraarticular
soft tissue structures, particularly labral and chondral
abnormalities [88, 89]. Labral lesions include alterations in
size (hypo-/hyperplastic), labral tears and intrasubstance
changes. Labral tears can appear as chondro-labral separ-
ation, partial and complete labral undersurface tears, intra-
substance tears or complex labral tears (Fig. 7).
Intrasubstance changes include mucoid degeneration, cal-
cific changes, ossification of the labrum, or labral ganglia
[22, 90–92]. There is no sophisticated classification system
on MRI relating to FAI associated labral lesions. Czerny et
al. [93] introduced their classification in 1996 prior to the
introduction of the femoroacetabular impingement con-
cept. Cartilage lesions can be partial and full thickness le-
sions. Full thickness lesions are subdivided in defects or
delamination from the subchondral bone. Delamination
occurs as bubbles (chondral detachment from bone with
intact periphery), pockets (cartilage detached from bone
with one open edge) or flaps (cartilage detached with
more than one open edge; [22, 90–92]). The overall sensi-
tivity (specificity) by two readers to detect cartilage

delamination by a subchondral contrast agent collection on
MRA has been found in 22 and 30% (95 and 95%) of the
cases compared with the intraoperative analysis [80].
In pincer type FAI, typical findings include partial ossifica-
tion of the labrum with possible labrum avulsion.
Fibrocystic lesions at the femoral head-neck junction (her-
niation pit or linear indentation sign) are occasionally seen
[16]. Cartilage lesions involve large areas of thin cartilage
that may be associated with a posteroinferior contre-coup
cartilage lesion ([81]; Fig. 1D). Cam impingement

Fig. 7. Preoperative images of a 33 years old male with cam type
FAI are illustrated. (A) The AP pelvic radiograph reveals an
asphericity at the femoral head-neck junction with a radiolucent
herniation pit (arrow). The acetabulum shows normal version
with a negative cross over sign (white dashed lines). There are
no posterior wall deficiencies (negative posterior wall sign). (B)
On the frog leg view, the alpha angle is increased. (C) Radial
MRI images (TRUFI sequences) confirm the high signal inten-
sity herniation pit at the 1 o’clock position (arrow). In addition,
the asphericity of the femoral head neck junction is depicted.
(D) Sagittal slices of proton density weighted MRI sequences are
shown. An undersurface labral tear is depicted anterosuperiorly
as a result of the aspherical femoral head entering the acetabulum
(asterisk).
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involves cartilage lesions that are larger in width and more
focal. Often, cartilage delamination from the subchondral
acetabular bone is present with associated undersurface
tears of the labrum [80, 88].

The intraarticular injection of contrast agent facilitates the
diagnosis of chondral and labral lesions by separating intraar-
ticular structures and delineating the anatomy [88]. A recent
prospective study proved superiority of MRA versus non-
contrast MRI with regard to the detection of labral tears and
partial thickness acetabular cartilage lesions compared with
the intraoperative findings [94]. The sensitivity to depict la-
bral tears was 81 and 69% with MRA and 50 and 50% on
MRI for two different readers. Acetabular cartilage defects
had a sensitivity of 71 and 92% on MRA and 58 and 83% on
MRI. There were no differences with regard to the detection
of cartilaginous lesions of the femoral head [94]. A recent
meta-analysis revealed a sensitivity and specificity of 83 and
57% respectively using MRA for labral lesions [95]. Other
studies reported similar sensitivities (specificities) ranging be-
tween 85 and 97% (33–100%) on MRA [93, 94, 96]. A re-
cent study comparing preoperative MRI and MRA with the
arthroscopic findings in 43 hips reported a near equivalent
sensitivity for the detection of labral lesions using MRA (sen-
sitivity, 90–93%) and MRI (sensitivity, 88–90%). However,
superior results were noted for the detection of acetabular
cartilage lesions using MRA (sensitivity, 71–81%) compared
with MRI (sensitivity, 58–65%; [97]).

Traction MRA
Cartilage delamination from the subchondral bone is a fre-
quent finding in hips with cam-type FAI. However,
femoro-acetabular coaptation prevents contrast agent from
undermining this subchondral space resulting in a misjudg-
ment/underestimation of the lesion [88, 98–100].
To achieve better radiographic visualization of the chon-
drolabral interface and the articular cartilage layers, the ap-
plication of axial leg traction during MRA has previously
been proposed [90, 101–103]. Prior to the application of
traction with the hip slightly flexed, 10–27 ml of iodinated
contrast agent (1–2 ml), local anesthetic (2–5 ml) and
diluted MR contrast agent (10–20 ml) are injected into
the joint under fluoroscopic guidance [90, 101, 102].
MR-compatible traction devices are routinely used for con-
tinuous traction during the examination. Traction devices
consist of a pulley system, a cable or rope connected to the
leg either with an ankle brace [90, 102] or with adhesive
straps for skin traction [101]. A weight is connected to the
other end. The contralateral leg can be stabilized to avoid
tilting of the pelvis to the side where axial traction is
applied [90, 102]. The amount of traction varies between
6 and 23 kg for a period ranging between 3 and 19 min
among different studies [90, 101–103]. Temporary trac-
tion is tolerated well without complications [90, 101, 102].
MRA with traction results in separation of the femoral and
acetabular articulating surfaces [101]. This allows

Fig. 8. A 25-year-old-woman with surgically confirmed cartilage delamination at the femoral head due to traumatic hip subluxation is
shown. Direct MR arthrograms (2D radial PD-weighted images) without (A) and with leg traction (B). (A) A partial labrum tear can
be seen (arrow). Without traction the cartilage seems intact. (B) Traction (18 kg) leads to joint distraction and concomitant accumu-
lation of contrast agent between cartilage layers. Subchondral contrast accumulation and disrupted femoral cartilage surface corres-
ponding to chondral delamination becomes visible (circle).
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delineation of the femoral and acetabular cartilage layers
(Fig. 8). However, in a recent study complete separation
between the cartilage layers was achieved in only 8% after
applying 8-10kg of traction and 10-14ml injection of con-
trast agent [103]. A recent study utilizing MRA with trac-
tion reported the detection of acetabular cartilage lesions
with a sensitivity of 85–88% and specificity of 78–96% for
two different readers [90]. In most cases, contrast agent
accumulated in the pathologic, subchondral space. The
same study reported the depiction of femoral cartilage le-
sions with a sensitivity of 81–86% and a specificity of 91–
94% respectively [90]. This is in contrast to studies obtain-
ing images from MRA without traction reporting a sensitiv-
ity (specificity) ranging between 40 and 83% (41–91%)
[94, 104, 105].

Biochemical MRI/MRA
Evidence suggests that successful outcome after surgical
intervention in patients with FAI depends on the degree of
pre-existing joint degeneration [4, 106]. It is therefore crit-
ical to identify patients with FAI in an early phase of chon-
drolabral damage prior to the onset of irreversible
degeneration to achieve a successful outcome after joint
preserving surgery. Recent developments include biochem-
ically sensitive MRI sequences. Biochemical MRI has been
shown to reproducibly detect and quantify alterations of
the extracellular cartilage matrix. These alterations include
the reduction of extracellular glycosaminoglycan, cartilage
matrix (de)hydration and collagen fiber integrity. They
occur in the early phase of joint degeneration when struc-
tural abnormalities of the cartilage are not visible on con-
ventional MRA, plain radiography or intraoperatively.
Biochemically sensitive MRI sequences for cartilage

include the techniques of delayed gadolinium enhanced
MRI of cartilage (dGEMRIC; Fig. 9), T2/T2* mapping
and T1q (T1-rho).

dGEMRIC
Glycosaminoglycans (GAG) are a negatively charged poly-
saccharides that highly attract water and serve as a lubricant
or shock absorber. High contents are found in the extracel-
lular matrix of healthy cartilage. A reduction of GAG is asso-
ciated with an early, histochemical change in degenerative
joint disease [17]. Negatively charged gadolinium-based
contrast agents reduce T1 relaxation time (T1Gd). They dis-
tribute in cartilage in an inverse relationship to the content
of GAG [107–110]. Therefore, higher T1Gd values are en-
riched in healthy cartilage, lower T1Gd diseased cartilage
(Fig. 9). Most commonly, the double negatively charged
contrast agent is applied intravenously (Gd-DTPA2�),
however, single negatively charged contrast agent (Gd-
DOTA�) has been used both intravenously as well as intra-
articularly [109, 110]. Both techniques (intra-articular
versus intravenous contrast application) generate compar-
able information [111]. However, T1Gd after intra-articular
contrast application was shown to be lower compared with
intravenous application [110]. After intravenous contrast
application, a ‘wash in’-time of 15–90 min is necessary to
achieve the best possible sensitivity of T1Gd. This time
frame is shorter after intra-articular contrast application and
is influenced by the thickness of the cartilage layers, and the
degree of degeneration [112, 113]. Physical exercise such as
walking for 10–15 min immediately after intravenous con-
trast agent application was shown to increase the delivery of
the contrast agent into the articular cartilage [114–116]. In
contrast, no exercise is recommended after intra-articular

Fig. 9. Anterosuperior radial reformats dGEMRIC scans at 3 Tesla (i.v. contrast injected; 3D dual-flip angle gradient echo-technique)
of (A) an asymptomatic woman and (B) a man with symptomatic cam impingement are shown. As T1Gd decreases in an inverse rela-
tionship to the amount of glycosaminoglycan content, lower T1Gd values are measured in the diseased acetabular cartilage (dark
blue; B).
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administration to prevent contrast medium escape from the
joint [114]. The need for pre-contrast imaging (T10) was
assessed in several studies. Studies of the knee joint and hip
joint assessing the need for pre contrast imaging (T10)

showed high correlation between T1Gd and DR (defined as
the difference of relaxation rate (R1¼ 1/T1) between T10

and T1Gd measurements (1/T1Gd � 1/T10) [117, 118].
Based on this, it was suggested that isolated T1Gd assess-
ment of the hip joint cartilage is sufficient for the evaluation
without the need for expensive and time consuming pre
contrast imaging [119]. However, in the setting of cartilage
repair therapy (e.g. autologous chondrocyte implantation),
pre-contrast imaging for the calculation of DR may add to a
more accurate GAG evaluation as T10 values differ from val-
ues in normal, hyaline cartilage [120, 121].

2D T1 weighted [122, 123] and 3D T1Gd -sequences
[18, 124] are available, the latter allow multiplanar recon-
structions for a better geographic evaluation. However,
post-processing (e.g. multiplanar reconstruction) is needed
for interpretation of the images. Classically the T1 relax-
ation time is measured manually by defining regions of
interest [125, 126] which restricts the routine evolution to
just a few selected slices [127]. New automated segmenta-
tion methods for assessment of whole-joint dGEMRIC val-
ues with presentation as two-dimensional (2D) planar maps
have been presented [127, 128]. Several clinical studies
have been conducted applying the dGEMRIC technique in
hips with FAI. Bittersohl et al. found decreased T1Gd values
in the anterosuperior region in patients with FAI compared
with asymptomatic subjects [129]. Similar damage patterns
were reported in another study [130]. Pollard et al. found
decreased T1Gd values in a population of asymptomatic sub-
jects with a cam deformity compared with morphologically
normal hips [131] with an inverse linear correlation be-
tween the extent of alpha-angles and the T1Gd [131]. These
findings were confirmed in another study [132]. Despite
technical developments and promising results in clinical
studies as well as standardized protocols, direct clinical im-
plementation of dGEMRIC based on the results obtained
from previous studies is not recommended [17, 18, 131], as
several factors related to the individual tissue properties or
acquisition techniques bear the risk for false interpretations
and restrict direct comparability.

T2/T2* mapping
T2 relaxation time is increased with decreased water and
collagen fiber integrity, both of which is found in an early
stage of cartilage degeneration [133–135]. Subburaj et al.
reported higher T2 relaxations times in the cartilage of FAI
patients compared with asymptomatic volunteers [136].
An ovine study conducted 3 Tesla MRI on Swiss alpine

sheep 10–14 weeks after surgically inducing cam-type FAI
[137]. Negative correlation between T2 relaxation values
and the histological ranking of OA according to Mankin
[138, 139] with a positive predictive value of 100% and a
negative predicted value of 84% was noted [140].

Similarly to the T2, T2* mapping measures water con-
tent in the cartilage as well as the interaction with hydro-
philic collagen fibers [141]. However, on a physical level,
both techniques differ distinctly. The T2 technique is based
on a T2 spin echo sequence comprising a 180�spin re-
phasing radio frequency pulse. The T2* technique, in con-
trast, is conducted based on a gradient echo pulse lacking
the 180� refocusing pulse. This leads to faster acquisition
times of the images using the T2*. Another advantage of
T2* versus T2 is the possibility to perform high resolution
with three dimensional cartilage assessment. Both, T2 and
T2* do not require the application of contrast agents (Fig.
10). Bittersohl et al. identified decreased T2* relaxation
times in 29 hips with FAI compared with 35 asymptomatic
volunteers [142]. Another study found an inverse relation-
ship between T2* relaxation times and the Mankin score,
and a positive predictive value (negative predictive value)
of 100% (94%) to detect advanced cartilage lesions [140].
Apprich et al. compared the T2* values of acetabular cartil-
age between a group of 22 patients with FAI symptoms and
a control group of 27 asymptomatic volunteers. With
increasing time of unloading of the joint, the authors noted
increased T2* values in the control group, and decreased
values in the symptomatic group [143].

T1q (T1-rho)
GAG content in hyaline cartilage is depicted by T1q map-
ping technique. Unlike dGEMRIC, T1q does not require
contrast agent. This allows for direct acquisition of the
images without the necessity to await contrast agent uptake
into the cartilage. However, T1q uses a high radio frequency
pulse the bears the risk of tissue heating. In a study by
Subburaj et al., the authors reported increased T1q relaxation
times in nine FAI hips compared with 12 asymptomatic con-
trols [136]. Rakhra et al. demonstrated a specific T1q relax-
ation time distribution pattern across the level of the cartilage
layer: T1q relaxation times in asymptomatic volunteers re-
vealed decreasing values from the superficial to the deep level
of the cartilage. In the FAI group, this distribution pattern
was depleted [144]. Another recent study investigated T1q
values in the weight-bearing zone of 19 patients with bilateral
cam deformities. All patients had unilateral symptoms. The
authors did not reveal any differences between the symptom-
atic and asymptomatic side, and concluded that regardless of
hip pain, a cam deformity predisposes to cartilage degrad-
ation increasing the risk for OA [145].
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C O M P U T E D T O M O G R A P H Y
The role of computed tomography (CT) in the primary diag-
nostic process of patients suffering FAI is limited. Due to better
bone to soft tissue contrast properties with CT, 3D assessment
of purely osseous pathologies is superior compared with MRI/
MRA (Fig. 11). To dynamically assess FAI, computer-assisted-
image-guiding software tools have been developed [19, 146].
These programs are based on CT data of the pelvis and the
proximal and distal femur exposing the femoral condyles.
Because of its excellent bone to soft tissue contrast properties
CT is the method of choice [147]. One software called
HipMotion [19, 146] is based on two coordinate systems, one
for the femur using the femoral head center, the mechanical
axis and the femoral condyles as landmarks and another one
for the pelvis using the anterior superior iliac spines and pubic
tubercles (anterior pelvic plane) as landmarks [21, 37, 148,
149]. After automated segmentation of the volumetric CT
data, algorithms for hip motion patterns are implemented [19,
146]. Virtual range of motion (ROM) simulation allows detec-
tion of potential sources of intra- and extra-articular impinge-
ment (Fig. 12), and treatment simulation can be conducted by

virtually resecting the acetabular rim or performing a head-
neck osteochondroplasty [20].

CT based image-guiding software tools are increasingly
used for patients suffering FAI. Frequently, complex deform-
ities of the hip such as sequelae of Legg-Calvé-Perthes dis-
ease, slipped capital femoral epiphysis, proximal femoral
deficiency or torsional alterations of the femur require a
more detailed preoperative assessment to better understand
the dynamic pathomechanism [21, 66, 150–154].
Computer-assisted image-guiding software tools are also
applied in the pre-clinical setting. In a study by Kubiak-
Langer et al., the effects of virtual osteochondroplasty in hips
with impingement morphologies on the ROM pattern were
studied. The authors reported a restoration ROM after vir-
tual correction of the head-neck offset to the degree of nor-
mal hips [20]. Another study analyzed ROM patterns in hips
with sequelae of LCPD revealing complex motion patterns
with both intra- and extra-articular impingement conflicts
[152]. Siebenrock et al. shed light on the necessity to address
torsional deformities of the femur in FAI. Hips with a valgus
deformity and high antetorsion had distinctly different

Fig. 10. (A–C) Preoperative imaging of a 35-year-old woman with mixed type FAI. (A) Axial-oblique T2* measurements at 1.5 T (na-
tive MRI; two-dimensional gradient echo sequence) show decreased T2* relaxation times in the peripheral compartment
(p; T2*¼ 23 ms) compared with the central department (c; T2*¼ 36 ms). (B) On the corresponding morphological sequence, no obvi-
ous cartilage lesions are depicted apart from cartilage thinning adjacent to the acetabular rim (arrows). (C) Preoperative axial radio-
graphs reveal the cam deformity with decreased femoral head neck offset (HNO). (D) The cam deformity was corrected resulting in
increased head neck offset (HNO’). Acetabular rim trimming and labrum refixation was performed to address the pincer component.
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motion patterns compared with normal hips [66]. Despite
their practicability, there are drawbacks to these applications.
These include radiation exposure during image acquisition
(dose range: 6–8 mSv), limited availability and high costs of
sophisticated software packages. Although MRI is

increasingly used for automated segmentation to avoid
radiation [155–157], applications for dynamic assessment of
FAI such as virtual ROM simulation based on CT data is su-
perior compared with MRI mainly due to the decreased con-
trast threshold between bone and soft tissue.

Fig. 11. The preoperative images of a 27 years old patient male patient with right hip pain after an old basketball injury are shown.
(A) The AP radiograph reveals an irregularity of the superior acetabular wall (arrow). (B) A three dimensional reconstruction of a
CT scan reveals a malunited antero-superior acetabular wall fracture causing focal over-coverage and subsequent pincer type FAI (as-
terisk). After removal and acetabular rim trimming at the site of the malunion through a surgical hip dislocation, the patient was pain
free with unlimited hip function.

Fig. 12. Complex case of cam impingement in a 30-year-old man. (A) AP pelvic view and (B) radial MRA demonstrate supero-lateral
cam and postero-inferior secondary osteophyte. (B) Joint space narrowing at the acetabular rim and adjacent partial labrum tear. (C)
CT based dynamic impingement simulation confirms early anterosuperior abutment with flexion and internal rotation (red area) and
(D) postero-inferior provoked in extension, abduction and external rotation (red area).
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S U M M A R Y A N D F U T U R E P E R S P E C T I V E S
As our understanding of the pathologies and mechanisms
associated with FAI continue to evolve there is a need for
simultaneous advances in both static and dynamic imaging
techniques. In particular, there is a need for better evalu-
ation of articular cartilage status to allow both assessments
of patients who may benefit from FAI surgery as well as
allowing long term evaluation of the results of surgery. The
acquisition of plain radiographs and MRA as primary imag-
ing modalities is essential prior to treatment planning. CT
based software tools allow dynamic assessment of FAI,
however, MRI based techniques to avoid exposure to radi-
ation in the mainly young patient population are desirable.
In addition, image guided intraoperative navigation tools
for FAI surgery have not been established for routine clin-
ical use. The goal of hip joint preserving surgery is to im-
prove pain and function, and to delay or prevent the onset
of osteoarthritis. Recognition of pre-existing degenerative
changes at an early stage is crucial to achieve this goal.
Biochemical MRI has opened up a new field to noninva-
sively detect early stage cartilage degeneration. Although
preliminary results are promising, it remains an ongoing
subject of research and future developments are necessary
to allow the wide spread use.
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Schenkelhalses bei der Coxa vara durch Röntgenstrahlen.
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