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Novel pleiotropic risk loci for melanoma and nevus
density implicate multiple biological pathways
David L. Duffy 1, Gu Zhu1, Xin Li2, Marianna Sanna3, Mark M. Iles4, Leonie C. Jacobs5, David M. Evans6,7,

Seyhan Yazar 8, Jonathan Beesley1, Matthew H. Law 1, Peter Kraft9, Alessia Visconti 3, John C. Taylor 4,

Fan Liu10, Margaret J. Wright 1, Anjali K. Henders1,17, Lisa Bowdler1, Dan Glass3, M. Arfan Ikram 11,

André G. Uitterlinden11,12, Pamela A. Madden13, Andrew C. Heath13, Elliot C. Nelson13, Adele C. Green 1,14,

Stephen Chanock 15, Jennifer H. Barrett 4, Matthew A. Brown 7, Nicholas K. Hayward1,

Stuart MacGregor 1, Richard A. Sturm16, Alex W. Hewitt 8, Melanoma GWAS Consortium#,
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The total number of acquired melanocytic nevi on the skin is strongly correlated with mel-

anoma risk. Here we report a meta-analysis of 11 nevus GWAS from Australia, Netherlands,

UK, and USA comprising 52,506 individuals. We confirm known loci including MTAP,

PLA2G6, and IRF4, and detect novel SNPs in KITLG and a region of 9q32. In a bivariate analysis

combining the nevus results with a recent melanoma GWAS meta-analysis (12,874 cases,

23,203 controls), SNPs near GPRC5A, CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and

SYNE2 reached global significance, and other loci, including MIR146A and OBFC1, reached a

suggestive level. Overall, we conclude that most nevus genes affect melanoma risk (KITLG an

exception), while many melanoma risk loci do not alter nevus count. For example, variants in

TERC and OBFC1 affect both traits, but other telomere length maintenance genes seem to

affect melanoma risk only. Our findings implicate multiple pathways in nevogenesis.
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The incidence of cutaneous malignant melanoma (CM) has
increased in populations of European descent in North
America, Europe, and Australia due to long-term changes

in sun exposure behavior, as well as screening1. The strongest CM
epidemiological risk factor acting within populations of European
descent is the number of cutaneous acquired melanocytic nevi,
with risk increasing by 2–4% per additional nevus counted2. Nevi
are benign melanocytic tumors usually characterized by a sig-
nature somatic BRAFmutation. Their association with CM can be
direct, in that a proportion of melanomas arise within a pre-
existing nevus (due to a “second hit”mutation), or indirect, where
genetic or environmental risk factors for both traits are shared.
Total nevus count is highly heritable (60%–90% in twins)3,4, but
only a small proportion of this genetic variance is explained by
loci identified so far5–9. The known nevus count loci all have
pleiotropic effects on CM risk5–9, which implies both that nevus
count loci are medically important and that a genetic analysis
combining nevi and CM phenotypes will have increased statistical
power. Here we present a new large nevus genome-wide asso-
ciation meta-analysis, and combine these results with those of a
previously published meta-analysis of melanoma10.

Results
Nevus GWAS meta-analysis. Genome-wide single-nucleotide
polymorphism (SNP) genotype data were available for a total of
52,806 individuals from 11 studies in Australia, UK, USA, and the
Netherlands (Table 1), where nevus number had been measured
by counting or ratings, by self or observer, and of the whole body
or selected regions. Analyses show that these are measuring the
same entity and are therefore combinable for GWAS (genome-
wide association study; see Supplementary Results). The genomic
inflation factors were λ= 1.41 and λ1000= 1.008 (Q–Q plot,
Supplementary Fig. 1), consistent with polygenic inheritance and
the total sample size.11 Five genomic regions contained associa-
tion peaks that reached genome-wide significance in the nevus
count meta-analysis (Fig. 1, Table 2, Supplementary Fig. 2),

MTAP/CDKN2A on chromosomes 9p21.3 (peak SNP, P= 2 × 10
−37) and 9q31.1-2 (P= 1 × 10−8), IRF4 on chromosome 6p (peak
SNP, P= 4 × 10−37), in KITLG in the region of the known tes-
ticular germ cell cancer risk locus (P= 8 × 10−9), rs600951 over
DOCK8 on chromosome 9p24.3 (P= 2 × 10−8), and PLA2G6 on
chromosome 22 (P= 3 × 10−18). We have previously detected
three of these in analyses using subsets of the meta-analysis
sample5,10. A SNP, rs251464, in PPARGC1B (P= 5 × 10−7),
reached a suggestive level of association. We detected statistical
heterogeneity in association with nevus count especially for IRF4,
MTAP, PLA2G6, and DOCK8 (see Supplementary Tables 1 and 2)
—that for IRF4 was expected—given our original studies of this
gene showing crossover G × age interaction.10 Meta-regression
including age of the current study participants confirmed the age
effect in the case of IRF4 (Supplementary Table 1).

Combining nevus and melanoma GWAS meta-analyses—
Bayesian analysis. We then combined these nevus meta-analysis
P values with those from the melanoma meta-analysis10 (Table 1,
Fig. 2, Supplementary Figs 1, 2). We used simple combination of
P values (weighted Stouffer method), as well as the GWAS-PW
program,12 which combines GWAS data for two related traits to
investigate the causes of genetic covariation between them
(see Supplementary Methods). Specifically, it estimates Bayes
factors and posterior probabilities of association (PPA) for four
hypotheses: (a) a locus specifically affects melanoma only or (b)
affects nevus count only; (c) a locus has pleiotropic effects on
both traits; and (d) there are separate alleles at a locus indepen-
dently determining each trait (colocation).

There were 30 regions containing SNPs that met our threshold
for “interesting” (PPA > 0.5) for any of these hypotheses (Fig. 3,
Supplementary Table 3). Twelve of these loci exhibited no
evidence of association to nevus count, but were strongly
associated with melanoma risk, one of the most extreme being
MC1R. A total of 18 loci showed pleiotropic action with
consistent directional and proportional effects of all SNPs on

Table 1 GWAS studies of nevus count contributing to the present meta-analysis

Study Nevus assessment SNP chip Imputation Individuals (families) Age range
(mean)

Location (center)

ALSPAC39 Self-count on limbs 550k 1000Gv.3 3309 14–17 (15.5) UK (Bristol)
Harvard8 Self-count >3 mm on

limbs
Affy+Illumina
various

1000Gv.3 32,975 35–75 (52) US (Boston)

Leeds40 Whole-body count >2
mm

OmniExpressExome HRC v.1 397 21–80 (57) Yorkshire

QIMR BTNS
children3

Whole-body count >0
mm

610k, CoreExome 1000Gv.3 3261 (1309) 9–23 (12.6) SE Queensland
(Brisbane)

QIMR BTNS
parents9

Self-rating 4-point scale 610k+CoreExome 1000Gv.3 2248 (1299) 29–72 (44.1) SE Queensland

QIMR adult twins41 Self-rating 4-point scale 317k+370k+610k
+CE

1000Gv.3 1848 (1113) 29-–79 (52.3) Australia wide

QIMR >50 twins42 Self-count right arm >4
mm

370k+610k+CE 1000Gv.3 893 (596) 50–92 (60.7) Australia wide

Raine43 Nurse-count right arm 660k 1000Gv.3 808 22 Western Australia
(Perth)

Rotterdam44 Whole-body rating 4-pt
scale

550k, 610k 1000Gv.3 3319 51–98 (67) Rotterdam (NL)

TEST45 Whole-body count >0
mm

610k+CE 1000Gv.3 136 (71) 5–18 (9.7) Tasmania+Victoria

Twins UK5 Whole-body count >2
mm

317k+610k+1M
+1.2M

1000Gv.3 3312 (1839) 18–80 (47) UK wide (London)

Total nevus 52,506
Melanoma
GWASMA10

12,874 cases; 23,203
controls

Nevus+melanoma 88,583 (inc. controls)
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above the central solid line and those for the melanoma GWAS meta-analysis are below that line. Novel nevus loci are highlighted

Table 2 SNPs associated with total nevus count and cutaneous melanoma (CM) in their respective meta-analyses

SNP Position (hg19) Combined P CM P Nevus P Gene/interval

rs869329 9:21804693 7.48E−67 1.14E−31 2.12E−37* MTAP
rs11532907 9:21844772 1.72E−34 1.42E−19 2.30E−17
rs132985 22:38563471 2.07E−28 4.76E−12 3.06E−18* PLA2G6
rs2005974 22:38537112 3.30E−23 7.83E−11 3.31E−14
rs12203592 6:396321 5.84E−01 8.22E−01 4.21E−67* IRF4
rs7313352 12:88949124 2.27E−05 6.61E−01 8.40E−09 KITLG**
rs600951 9:224742 9.89E−13 5.52E−06 1.95E−08* DOCK8**
rs10816595 9:110709735 1.70E−14 1.49E−07 1.08E−08 9q31.2
rs251464 5:149196234 1.92E−09 4.58E−04 4.71E−07 PPARGC1B
rs4670813 2:38317710 1.14E−10 2.40E−05 5.70E−07 CYP1B1
rs1640875 12:13069524 3.30E−11 4.08E−07 5.72E−06* GPRC5A**
rs1148732 12:13068291 1.08E−09 2.08E−04 6.21E−07
rs55875066 2:240076002 1.35E−09 2.16E−04 7.59E−07 HDAC4**
rs12696304 3:169481271 8.30E−10 1.64E−05 5.73E−06 TERC
rs117648907 15:33277710 1.13E−10 1.43E−06 6.52E−06 FMN1**
rs45575338 10:5784151 2.16E−08 2.87E−04 1.02E−05 FAM208B**
rs1484375 9:109067561 1.56E−10 2.30E−08 1.35E−04 9q31.1
rs2357176 14:64409313 3.89E−08 1.74E−05 1.95E−04 SYNE2**
rs34466956 19:3353622 2.92E−08 1.02E−05 2.22E−04 NFIC**
rs1636744 7:16984280 1.29E−09 1.84E−09 0.002 TCONS_l2_00025686
rs380286 5:1320247 3.18E−14 1.66E−17 0.003* TERT
rs2695237 1:226603635 1.49E−11 3.59E−13 0.004 PARP1
rs73008229 11:108187689 8.21E−11 1.38E−12 0.006 ATM
rs72704658 1:150833010 1.90E−10 3.88E−12 0.007 SETDB1
rs12596638 16:54115829 2.30E−08 1.81E−09 0.014 FTO
rs416981 21:42745414 3.90E−10 3.28E−15 0.063 MX2
rs75570604 16:89846677 1.64E−45 6.24E−92 0.067 MC1R
rs7582362 2:202176294 4.32E−06 8.88E−09 0.134 CASP8
rs498136 11:69367118 1.42E−06 1.01E−10 0.209 TPCN2/CCND1
rs56238684 20:33236696 5.14E−13 8.36E−25 0.215 ASIP
rs2125570 6:21166705 9.14E−05 3.27E−08 0.351 CDKAL1
rs184628474 14:91185865 4.32E−07 4.63E−14 0.415 TTC7B
rs10830253 11:89028043 2.32E−11 1.01E−26 0.605 TYR
rs250417 5:33952378 5.18E−05 2.30E−12 0.755 SLC45A2
rs4778138 15:28335820 5.52E−03 3.11E−09 0.935 OCA2

The weighted Stouffer method was used to combine the nevus and melanoma P values (Combined P). The SNP with the smallest combined P value under each peak is shown, but the table rows are
ordered by strength of association to nevus count. In three cases where significant between-study heterogeneity is detected (unadjusted Phom < 0.05, denoted by *), the nevus P value is from the
random-effects model of Han and Eskin38, and a result for a nearby SNP where Phom > 0.05 is included on the line beneath (italicized) to confirm genome-wide significance (in the case of IRF4 and
DOCK8, there is no such nearby SNP).
*Unadjusted Phom < 0.05
**Novel loci
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nevi and melanoma risk, the strongest beingMTAP, PLA2G6, and
an intergenic region on 9q31.1 (Fig. 4a shows a bivariate regional
association around GPRC5A, all loci are shown in Supplementary
Figs 5–19). There were no “pure nevus” regions using the binned
GWAS-PW test (hypothesis b, PPAb > 0.2), with even the region
of KITLG appearing as a pleiotropic region (PPAb= 0.52, PPAc
= 0.11), even though the pattern of bivariate association appears
more consistent with a “nevus-only” locus (Fig. 4b). For another
five regions, support was split between the pure melanoma and
pleotropic models. In the case of IRF4, this is certainly driven by
the marked between-study heterogeneity in melanoma associa-
tion due to their different age distributions and latitudinal
origins13.

One interesting SNP (rs34466956), 2 kbp upstream from NFIC
on chromosome 19p13.3 (see Fig. 5), achieved a combined P
value of 3 × 10−8 and a SNP-wise PPAc for pleiotropism of 0.9,
even though the binned GWAS-PW assigned the region a highest
PPA of 0.28.

Pleiotropy. The 18 pleiotropic loci each come from multiple
pathways, indicating that nevogenesis is a more complicated
process than previously anticipated. Pathways already implicated
include those of MTAP (purine salvage pathway, possibly a rate
limiting step to cell proliferation), PLA2G6 (phospholipase A2,
implicated in apoptosis), and IRF4 (melanocyte pigmentation and
proliferation). Newly implicated here in nevogenesis, TERC is a
strong candidate given its involvement in telomere maintenance
and prior suggestive evidence of association with melanoma/
nevi10,14,15, as well as several other cancers.16–18 PPARGC1B has
previously been investigated as a skin color locus17 and there is
functional evidence for its effects on melanocytes.18 GPRC5A (see
Fig. 4a, Supplementary Fig. 15) has also been suggestively asso-
ciated with melanoma10 and is a known oncogene in breast and
lung cancer19,20. DOCK8 deficiency predisposes to virus-related

malignancy and is deleted in some cancers, but not markedly in
melanoma.21,22 DOCK8 regulates Cdc42 activation especially in
immune effector cells—Cdc42 has been implicated in melanoma
invasiveness23 and variants in CDC42 have been previously
associated with melanoma tumor thickness24 —though our best
association P value in the region of that latter gene is 3 × 10−4.

The novel pleiotropic loci are: (a) the region around HDAC4 on
chromosome 2; (b) chromosome 9q31 (two separate peaks); (c)
near SYNE2 on chromosome 14; (d) in DOCK8 on chromosome
9p; and (e) near FMN1 on chromosome 15p (see Supplementary
Results). For those loci that unequivocally lie within a gene, in
each case that gene is expressed in melanocytes25 and these
implicate several different pathways. The “master regulator” in
melanocytogenesis26 is MITF (microphthalmia-associated tran-
scription factor), and we confirmed that our top candidate genes
in each of the 30 regions contain MITF binding sites.27 For
example, three genes in the FMN1 region harbor MITF binding
sites, viz. SCG5, RYR3, and FMN1 themselves (enrichment P=
0.01). Furthermore, in several of these genes (MTAP, IRF4,
PLA2G6, GPRC5A, and TERC), the most associated SNP lies
within or close to the actual MITF binding sites, in some cases a
rarer MITF–BRG1–SOX10–YY1 combined regulatory element
(MARE)27 (Supplementary Figs 20–40).

Gene based tests. The genes most strongly implicated in a gene-
based association analysis (PASCAL) are MTAP, PLA2G6, GPR5A,
ASB13 (adjacent to FAM208B), and KITLG (P= 2.3 × 10−6); see
Supplementary Table 4). At a suggestive level, we note FAM208B,
MGC16025 (both P= 6 × 10−6), and HDAC4 (1 × 10−5). Among
genes at a significance level of <10−4, we highlight LMX1B (P= 5 ×
10−5), where rs7854658 gave a nevus P value of 3.3 × 10−6.

Pathway analysis. Using different approaches (GWAS PRS,
GWAS-PW, and REML using SNP sets; see Supplementary
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Table 5), we tested candidate pathways28 for their overall con-
tribution to variance in nevus number, the contribution of the
telomere maintenance pathway was 0.8%. A contribution of the
immune regulation/checkpoint pathway was surprisingly absent,
given our knowledge that immunosuppression increases nevus

count quite promptly and the recent success of CTLA4 inhibitors
in the treatment of melanoma. We did see a weak signal (Com-
bined P= 1 × 10−7) for rs870191, very close to SLE-associated
SNPs just upstream from MIR146A, an important immune
regulator.

Scale
chr19:

d.moles.ucsc variants

.and.moles.ucsc SNP

All SNPs(147)

K562 CTCF Int 1

K562 Pol2 Int 1

HeLaS3 Pol2 Int 1

Vista enhancers

N.PEN.FRSK.MEL.01
N.PEN.FRSK.MEL.03
N.PEN.FRSK.MEL.01
N.PEN.FRSK.MEL.03
N.PEN.FRSK.MEL.01
N.PEN.FRSK.MEL.03

10 kb hg19

3,340,000 3,345,000 3,350,000 3,355,000 3,360,000 3,365,000 3,370,000
SKIN HISTONE signals overlapping mel.and.moles.ucsc variants

IM-PET SKIN enhancers overlapping mel.and.moles.ucsc SNP

SKIN CHROMATINACCESS signals overlapping mel.and.moles.ucsc variants

–log10 (nevus association P -value)

–log10 (combined P -value)

UCSF-UBC.penis_foreskin_melanocyte_primary_cells.H3K27ac.skin03

GSE50681_MITF

MITF (GSM1517751)

SOX10 (GSM1517752)

NHGRI-EBI catalog of published genome-wide association studies
Simple nucleotide polymorphisms (dbSNP 147)

Chromatin interaction analysis paired-end tags (ChIA-PET) from ENCODE/GIS-Ruan

Vista HMR-conserved non-coding human enhancers from LBNL

Basic gene annotation set from GENCODE version 24lift37 (Ensembl 83)

chromHMM tracks from roadmap

admap_E059_DNase
Spots,ENCFF001WBX
Peaks,ENCFF001UXD
Spots,ENCFF001VYR
Spots,ENCFF001VZX

Spots,ENCFF001WCB
Spots,ENCFF001WBV
Rep1,ENCFF001WQX
t,rep1,ENCFF001WIX

Rep1,ENCFF001WDD
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AC007792.1 NFIC
NFIC
NFIC

NFIC
NFIC
NFIC

AC005514.2

Nevus metaanalysis 

4.17934_

0.0138555_

Meta-analysis -logP

6.34041_

0_
53_

0_
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K562 CTCF Sig 1
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Fig. 5 UCSC Genome Browser view of region near NFIC (19p13.3). The pale blue line highlights location of rs34466956, which coincides with a narrow
regulatory region as seen in in the 22 short red bars indicating open chromatin in melanocytes and skin. These align in the bottom 6 tracks with narrow
yellow regions indicating results of hidden Markov models summarizing the evidence from multiple experiments for open chromatin in melanocytes. An
MITF ChipSeq peak also overlies this same region (gray track, GSM1517751). NFIC is expressed in melanocytes, and a second larger MITF peak overlies
intron 1 in two ChipSeq experiments viz. GSE50681_MITF, see short solid black bar, and also the tall sharp gray peak below it in GSM1517751.
See Supplementary Methods for details
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Genetic relationships with telomere length and pigmentation.
In the GWAS-PW analysis combining melanoma and telomere
length (TL) (see Supplementary Methods), there was considerable
locus overlap, while by contrast only TERC was detectably shared
between nevus count and TL (Supplementary Fig. 41). Note that
SNPs in OBFC1 were only significantly associated with melanoma
in the phase 2 analysis of Law et al.10—which are not utilized in
the GWAS-PW analysis—although they were suggestively asso-
ciated (P= 10−5) with nevus count. In the parallel analysis with
pigmentation (indexed by dark hair color), only IRF4 overlapped
with nevus count (Supplementary Fig. 42). Again, multiple pig-
mentation loci acted as risk factors for melanoma (with no
overlap with TL). The fact that only TERC (and OBFC1) are
associated with nevus count, while multiple loci are associated
with melanoma, is not necessarily surprising. Telomere main-
tenance may predispose to melanoma directly as well as via nevus
count, an extension of the “divergent pathway” hypothesis for
melanoma29. However, the link with telomere length-associated
SNPs may need a bigger sample size to look at associations
further.

SNP heritability and genetic correlation. Mixed-model twin
analyses with GCTA and LDAK (see Supplementary Methods)
utilizing the Australian and British samples estimate the total
heritability of nevus count to be 58% (and family environment
34%), with contributions from every chromosome and one-sixth
from chromosome 9 alone (see Supplementary Table 6). We
found that ~25% of the Australian and ~15% of British genetic
variance for nevus count could be explained by a panel of 1000
SNPs covering our 32 regions. We have also performed analyses
examining the overall architecture of the relationship between
nevus count and melanoma risk using bivariate LD score
regression analysis and estimated rg= 0.69 (SE= 0.16) (see Sup-
plementary Results). Alleles which increase nevus number pro-
portionately increase the risk of melanoma (Supplementary
Results, Supplementary Figs 43, 44) with KITLG, the interesting
exception is that the nevus-associated variants did not predict
melanoma risk (see Fig. 5b), rather, predisposing to other cancers
(e.g., testicular germ cell).

Discussion
It has been long suggested that carrying out genetic analyses using
multiple correlated phenotypes will increase power to detect trait
loci in such a way as to justify the statistical complications. Since
number of cutaneous nevus is strongly correlated with melanoma
risk, and known nevus loci were associated with CM, it seemed
likely that this would be a fruitful approach. We have highlighted
eight novel loci, including the genes HDAC4, SYNE2, and most
notably GPRC5A, where quite large samples of melanoma cases
or nevus count were not sufficiently powerful to reach formal
genome-wide significance in univariate analyses, but the com-
bined evidence is conclusive.

Given that lighter skin color is also associated with both these
phenotypes, we would expect a strong contribution from pig-
mentation pathway genes. Among those novel pleiotropic loci
implicated in nevus count, CYP1B1 and PPARGC1B both appear
in a recent skin pigmentation meta-analysis30 as harboring var-
iants lightening skin color. The SNPs in the chromosome 7p21.1
region near AHR and AGR3 previously associated with CM also
appear to be associated with skin color in that study. In our
analysis, the signal for nevus count from that interval (best P=
3 × 10−4) was half as strong as that for CM, and the GWAS-PW
analysis support was equal for the hypotheses of a pure CM locus
and a pleiotropic locus (region PPAa= 0.494, PPAc= 0.485). In
passing, the peak SNPs lie within a long noncoding RNA gene

(TCONS_I2_00025688) that is expressed in melanocytes, so this is
a potential candidate for both skin color and CM. In the case of
KITLG, the variant most strongly associated with pigmentation
(fair hair), rs12821256, modifies a distant enhancer, and was
associated neither with melanoma or nevus count in our study
(see Supplementary Results). We observe a similar pattern
(association Pnevus= 0.4, PCM= 0.8) for the strongest associated
variant for skin color from the skin color meta-analysis,
rs11104947.30

By contrast, HDAC4 and DOCK8 are in pathways that have not
been implicated as important to nevogenesis or melanoma
pathogenesis. HDAC4 is involved in transcriptional regulation in
many tissues, while DOCK8 acts to regulate signal transduction,
most notably in immune effector cells (see Supplementary
Results). The association peak for HDAC4 is quite wide (~80
kbp), and overlaps with the multi-tissue GTEx eQTL peak for this
gene.31 The best overlapping SNP was rs115253975, with a
combined nevus-CM P-value of 4 × 10−9 and fibroblast HDAC4
eQTL P-value of 2 × 10−5. The peak nevus-CMM DOCK8 SNP,
rs600951, is a cis-eQTL in two (non-cutaneous) tissues, and the
peak around it contains several eQTL SNPs detected in the GTEx
skin samples. These eQTL SNPs would be potential causal
candidates.

Both SYNE2 (encoding nesprin-2) and FMN1 (formin-1) are
involved in nuclear envelope and cytoskeleton function, and
through this in regulating as well as facilitating numerous bio-
logical pathways. Both, for example, are involved in directed cell
migration. The nesprin and formin families have been implicated
in efficient repair of double strand DNA breaks, so this might
point to a mechanism for an association with nevi and CM
(see Supplementary Results).

We did see heterogeneity between studies in strength of SNP
association with nevus count or melanoma for four loci, most
extremely for IRF4 (Supplementary Fig. 10). Meta-regression
analysis suggested this is partly due to interactions with age in the
case of IRF4 (Supplementary Table 1)—different nevus subtypes
are known to predominate at different ages, with the dermoscopic
globular type most common before age 20.32 We suspect sun
exposure another important interacting covariate, given large
differences in total nevus count by latitude.33,34

Epidemiologically, the etiology of melanoma has been divi-
ded35 into a chronic sun-exposure pathway and a nevus path-
way, where intermittent sun exposure is sufficient to increase
risk. At a genetic level, pigmentation genes such as MC1R
contribute only via the former pathway (though this can
include effects on DNA repair36), others such as MTAP via the
latter, while yet others such as IRF4 seem to act via both
routes13. We interpret our results as consistent with the
hypothesis that nevus number is the intermediate phenotype in
a causative chain to melanoma originating in all these biolo-
gically heterogeneous nevus pathways. However, we acknowl-
edge that there may also be some genes where there is a direct
causal pathway to both phenotypes.

Methods
We carried out a meta-analysis of 11 sizeable GWAS of total nevus count in
populations from Australia, Netherlands, Britain, and the United States, subsets of
which have been reported on previously5,6,8, and then combined these results with
those from a recently published meta-analysis of melanoma GWAS10 to increase
power to detect pleiotropic genes. While nevus counts or density assessments are
available for melanoma cases from a number of studies, in the meta-analysis of
nevus count we included only samples of healthy individuals without melanoma,
all of European ancestry (for more details, see Supplementary Methods).

Nevus phenotyping. The assessment of nevus counts varies considerably between
the 11 studies in four respects (see Table 1): (a) nevus counts vs. density ratings; (b)
whole body vs. only certain body parts; (c) all moles (> 0 mm diameter) or only
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moles >2 mm, or 3 mm, or 5 mm; and (d) count by trained observer or self-count
by study participant. These differences could contribute statistical heterogeneity
into our analyses, so we have done considerable preliminary work to convince
ourselves that all assessments are measuring the same biological dimension of
“moliness” (see Supplementary Fig. 3). A pragmatic test of this is the relative
contribution of each study to the detection of the known loci of large effect, which
is evident from the forest plots (Supplementary Figs 5–19).

Statistical methods. Given this, we combined results from each study as regres-
sion coefficients and associated standard errors in standard fixed and random
effects meta-analyses using the METAL37 and METASOFT38 programs. Man-
hattan and Q–Q plots for the nevus GWAS meta-analysis (GWASMA) are shown
in Supplementary Fig. 45 and for each of the contributing studies in Supplementary
Figs 46–55.

We combined the results from the nevus meta-analysis above with results from
stage 1 of a recently published meta-analysis of CM10. Stage 1 of the CM study
consisted of 11 GWAS data sets totaling 12,874 cases and 23,203 controls from
Europe, Australia, and the United States; this stage included all six published CM
GWAS and five unpublished ones. We do not utilize the results of stage 2 of that
study, where a further 3116 CM cases and 3206 controls from three additional data
sets were genotyped for the most significantly associated SNP from each region,
reaching P < 10−6 in stage 1. As a result, certain melanoma association peaks are
not genome-wide significant in their own right in the present bivariate analyses.
Further details of these studies can be found in the Supplementary Note to Law
et al.10. The combination of the nevus and melanoma results was performed using
the Fisher method. A Manhattan plot for the combined nevus GWASMA plus
melanoma GWASMA is shown in Supplementary Fig. 4. For more details of
statistical methods, see Supplementary Methods.

Data availability
All relevant data are available from the authors upon application.
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