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Abstract

How does the visual system encode natural scenes? What are the basic structures of natural scenes? In current models of
scene perception, there are two broad feature representations, global and local representations. Both representations are
useful and have some successes; however, many observations on human scene perception seem to point to an
intermediate-level representation. In this paper, we proposed natural scene structures, i.e., multi-scale spatial
concatenations of local features, as an intermediate-level representation of natural scenes. To compile the natural scene
structures, we first sampled a large number of multi-scale circular scene patches in a hexagonal configuration. We then
performed independent component analysis on the patches and classified the independent components into a set of
clusters using the K-means method. Finally, we obtained a set of natural scene structures, each of which is characterized by
a set of dominant clusters of independent components. We examined a range of statistics of the natural scene structures,
compiled from two widely used datasets of natural scenes, and modeled their spatial arrangements at larger spatial scales
using adjacency matrices. We found that the natural scene structures include a full range of concatenations of visual
features in natural scenes, and can be used to encode spatial information at various scales. We then selected a set of natural
scene structures with high information, and used the occurring frequencies and the eigenvalues of the adjacency matrices
to classify scenes in the datasets. We found that the performance of this model is comparable to or better than the state-of-
the-art models on the two datasets. These results suggest that the natural scene structures are a useful intermediate-level
representation of visual scenes for our understanding of natural scene perception.
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Introduction

How does the visual system encode natural scenes? What are

the basic structures of natural scenes and what are their statistics?

These are important research topics in both human and computer

vision [1–9]. We now know that humans can grasp the gist of

complex natural scenes quickly and remember extraordinarily rich

details in thousands of scenes viewed for a brief period [10–12].

These observations impose significant constraints on neural

representations and computations underlying natural scene

perception. In current models of scene perception such as scene

classification, there are two broad feature representations, global

representations and local representations. Global representations

such as GIST [8] and CENTRIST [9] encode structures of whole

scenes and leave out local visual features and their spatial

relationships at various scales. Local representations such as SIFT

[13] and SURF [14] encode statistics of local features such as

luminance gradients. Although both representations are useful and

have some successes, the above observations on human scene

perception seem to point to a representation that lies in between

local and global representations.

We recently developed methods to explore concatenations of

visual features at intermediate-level spatial and temporal scales in

natural scenes and their applications in natural visual tasks. We

developed a model of probability distribution (PD) of natural scene

patches and derived a measure of visual saliency [15], a model of

natural object structures and object detection in natural scenes

[16], and a model of natural action structures and action

recognition [17]. By extending this line of work to natural scene

perception, we proposed Natural Scene Structures (NSSs), i.e.,

multi-scale spatial concatenations of local features, as an interme-

diate-level representation of natural scenes. Thus, any natural

scene and category can be represented by a set of NSSs and their

spatial arrangements. These NSSs encompass all possible combi-

nations of local visual features, which include smooth patterns of

luminance, textures, edges, junctions, and any combinations of

these four patterns of luminance. Thus, the NSSs proposed here

are quite different from many other scene statistics, including the

second-order statistics, the statistics of edges in two-dimensional

natural scenes [18-20], the statistics of natural luminance patterns

[21], and the statistics of distances and surfaces in three-

dimensional natural scenes [22,23].
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To compile the NSSs from images of natural scenes, we first

sampled a large number of circular patches in a hexagonal

configuration at multiple spatial scales. Then, we performed

Independent Component Analysis (ICA) [24] on the circular

patches and classified the Independent Components (ICs) into

clusters using the K-means method. Finally, we obtained a set of

NSSs with each corresponding to a set of dominant clusters of ICs.

To use the NSSs for scene classification, we examined a range of

statistics of the NSSs compiled from two widely used datasets of

natural scenes and modeled the spatial arrangements of the NSSs

at larger spatial scales using adjacency matrices. We then selected

a set of NSSs with high information about scene identifies, and

used the occurring frequencies and the eigenvalues of the

adjacency matrices as inputs to a Support Vector Machine

(SVM) to classify the scenes in the datasets. We found that the

performance of this model is comparable to or better than the

state-of-the-art models on the two datasets. These results suggest

that the concept of natural scenes as concatenations of NSSs is a

useful model for our understanding of natural scene perception.

Finally, we discuss possible neural representations of the NSSs.

Results

Possible neural codes of natural scenes
Neural codes of natural visual scenes have been a focus of visual

neuroscience in the last 50 years. Along the ventral visual pathway,

neural codes of visual scenes become progressively complex from

V1 to V2, V4, and the IT area (Figure 1). V1 neurons have a

typical receptive field (RF) size of 0.1u–1u of visual angle in the

central visual field, and encode a range of basic visual features such

as orientation, contrast, and spatial frequency. The responses of

V1 neurons can be described by the linear-nonlinear (LN) model

[26]. Recent studies also showed that the complex cells in V1 have

multiple excitatory and suppressive subunits, each of which is

similar to an oriented bar [27]. V2 neurons have a typical RF size

of 1.4u, integrate inputs from multiple V1 neurons, and respond

selectively to both single and multiple orientations and shapes of

intermediate complexity such as crosses and angles [28,29]. V4

neurons have a typical RF size of 4.8u, integrate inputs from

multiple V2 neurons, and respond selectively to curvature,

orientation, and object-relative positions [30]. IT (including

TEO and TE) neurons have a typical RF size of 5.8u–12u and

respond selectively to complex configural relationships, shapes,

and features (including skeletal shapes, faces, and places). The

neural codes in the IT area are structural, configurational, and

compositional and neural codes of populations of IT neurons are

especially relevant for detection, recognition, and classification

[31].

In summary, converging evidence suggests that neural codes of

natural visual scenes are progressive concatenations of basic

features (e.g., oriented bars) along the ventral visual pathway.

Thus, we propose NSSs, i.e., topology-conserving, multi-size,

multi-scale concatenations of visual features in natural scenes, as

intermediate-level neural codes of visual scenes. In the next

section, we briefly compare the NSSs to other models of visual

codes.

Relationship to other work
There are two lines of related work. The first line of work is

computational models of scene classification. For this task, several

low-level representations of visual features, including SIFT [13],

SURF [14], and HOG [32], have been used. However, these low-

level representations are limited since they are computed from

small image patches and their spatial arrangements are usually

ignored. To overcome these limitations, spatial pyramid matching

[33,34] and object bank representation [35] were developed, both

of which can achieve good classification performance. In the

spatial pyramid matching, images are partitioned into grids and

concatenated histograms of low-level features in the grids are used

for classification. In the object bank representation, scenes are

represented by the responses of a set of object filters learned from

training data. Another approach to scene classification is holistic

representations where scenes are represented by global structures

[8,9] but the spatial arrangements of low-level or intermediate-

level features are not explicitly examined. Our approach is

different from these methods since the proposed NSSs provide a

classification of scene patches of large sizes (,3160 and ,11620

pixels in two tested datasets) and encode local scaling-invariance,

and the spatial arrangements of the NSSs in natural scenes are

explicitly encoded by adjacency matrices (see below).

The second line of work is computational models of visual

neurons. The forms learned from natural scenes in [36] are a set of

shape features such as extended contours, multi-scale edges,

textures, and texture boundaries. In [37], by extracting slowly

varying signals from training data, the authors found some

stimulus patterns that have features (e.g., non-orthogonal inhibi-

tion and side-inhibition) that resemble the response properties of

some V1 complex cells. In [38], the authors trained a two-layer

sparse deep belief network on natural scenes and obtained stimulus

patterns (e.g., corners and junctions) that resemble the response

properties of some V2 cells. In [39], the authors used a distribution

coding model to learn correlational patterns (e.g., groups of

oriented bars) in local image regions and found that the model can

reproduce some response properties of V1 complex cells. The

NSSs proposed here differ from these studies in several ways. First,

each NSS is a concatenation of features (i.e., ICs) in 7 circular

patches in a hexagonal configuration of multiple sizes and scales

(see next section). Thus, the NSSs have much larger sizes than the

stimulus patterns obtained by other models and each NSS has a

range of natural variations. Second, the NSSs encompass all

possible concatenations of local features in natural scenes,

including smooth patterns of luminance, textures, edges, junctions,

and any combinations of these four patterns of luminance. Thus,

in principle, some NSSs have features to which V1 neurons

respond selectively; some NSSs have features to which V2 neurons

respond selectively; and some NSSs have features to which V4 or

IT neurons respond selectively. Third, only three operations, i.e.,

categorization (via clustering), projection, and concatenation, are

used to derive the NSSs. The ICs of circular scene patches are

categorized into clusters, each of which shares similar orientations;

each circular patch is projected to the clusters of the ICs; and the

projected features in 7 circular patches in a hexagonal configu-

ration of multiple sizes and scales are categorized as a set of NSSs

(see next section). Finally, the spatial arrangements of the NSSs at

various larger scales can be accessed. In graph theory [40], an

adjacency matrix represents the connectivity of a graph and the

eigenvalues of the adjacency matrix characterize the topological

structure of a graph [41]. To apply this tool of graph theory, we

partitioned scenes into grids and defined a neighboring relation-

ship on the grids to obtain adjacency matrices. We then obtained

the eigenvalues of the adjacency matrices as features for scene

classification.

Finally, our approach can be contrasted with a computational

model of rapid scene categorization that has some neurobiological

basis [5]. In this model, a set of S- and C- units are trained to

extract visual features at several levels. The basic S-units are

Gabor functions and the S- and C- units at the higher levels are

learned from the inputs from the lower levels via the tuning and

Natural Scene Structures for Scene Classification
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max operations respectively. Our approach is different. First, the

NSSs are compiled from natural scenes and there are no

parameters of the NSSs to be learned (only the total numbers of

the ICs, the clusters of the ICs, and the NSSs are determined via

cross-validation). Second, the NSSs provide a classification of

natural scene patches, and each has a PD. Third, the NSSs are

very different from the optimal features of the S- and C- units

because of the different operations in the two approaches. The

NSSs are topology-conserving, multi-size, multi-scale concatena-

tions of visual features in natural scenes, and any NSS looks like

patches in real scenes. In contrast, the local topology and

continuity in natural scenes are not conserved in the S- and C-

units and thus the visual features of the S- and C- units are very

different from patches in real scenes. Fourth, local scaling-

invariance and scaling-variance are explicitly encoded in the

NSSs since scene patches at multiple scales can be classified as a

single NSS (scaling-invariant) or several NSSs (scaling-variant).

Finally, the occurring frequencies of the NSSs and the eigenvalues

of the adjacency matrices of the NSSs are features for scene

classification.

In the following sections, we describe compiling the NSSs from

datasets of natural scenes, concatenations of visual features in the

NSSs, the spatial arrangements of the NSSs in natural scenes, the

statistics of the NSSs, and scene classification using the NSSs and

their spatial arrangements as features.

Figure 1. Hierarchical representations along the ventral visual pathway. (A), Information flow along the components of the ventral visual
pathway of the macaque brain, including V1, V2, dorsal portion of V4 (V4d), ventral portion of V4 (V4v), the occipitotemporal cortex (TEO), and
anterior part of the inferior temporal (IT) cortex (TE). The information along the ventral pathway is finally projected to the ventroloateral prefrontal
cortex (VLPFC) and the orbitofrontal cortex (OFC) for tasks such as detection, recognition, and classification. (B), Receptive field (RF) sizes of the
components along the ventral pathway for parafoveal vision. (C), Illustration of the representations along the ventral pathway. From V1 to TE, the
encoded patterns become more and more complex. Based on the information encoded in a population of TE neurons, tasks (such as detection,
recognition, and classification) are performed in the VLPFC and the OFC area. Adapted from [25]. Note that the basic oriented features are ICs of
natural scenes. See descriptions in text.
doi:10.1371/journal.pone.0076393.g001
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Compiling natural scene structures
We propose NSSs as an intermediate-level representation of

natural visual scenes. In this scheme, a visual scene is a spatial

concatenation of a set of NSSs, each of which is a concatenation of

a set of structured patches in natural scenes. Thus, any natural

scene and category can be represented by a set of NSSs and their

spatial arrangements. We took five steps to compile NSSs in two

widely used datasets of natural scenes, a dataset of 15 scenes and a

dataset of 8 sports (see Figure 2 and Materials and Methods).

These steps are illustrated in Figure 3.

1. Sample a large number of circular patches in a hexagonal

configuration at multiple spatial scales.

2. Perform ICA on all the circular patches P in the hexagonal

configuration and obtain ICs at each spatial scale.

3. Fit Gabor functions to the ICs and classify the ICs at multiple

spatial scales into a set of clusters (referred to as IC clusters)

using the parameters of the fitted Gabor functions as features.

4. Project the circular patches to the IC clusters, compute the

features of the circular patches, and pool the features of the

patches in the hexagonal configuration at multiple spatial scales

(Equation 1).

5. Partition the space of feature vectors into a set of NSSs.

There are several reasons for using ICs. First, the PDs of the

amplitudes of ICs are statistically independent of each other.

Second, the PDs of the amplitudes of the ICs of natural scenes are

sparse. Third, ICs derived from natural scenes are much like the

RFs of simple cells in V1. Finally, there is no need to set any

parameters since ICs are learned from natural scenes. Also for

these reasons, ICs are used instead of Gabor filters. Here, ICs are

categorized according to orientations since neurons in V1, V2, and

V4 are organized into orientation maps where neurons in a

cortical column have similar tuning to orientations.

To compile the NSSs, we first sampled densely the images in the

datasets as in other studies [42,33]. At each selected location, we

Figure 2. Scenes in the datasets of 15 scenes and 8 sports. (A), Sample images of the dataset of 15 scenes. There are 10 outdoor scenes and 5
indoor scenes. (B), Sample images of the dataset of 8 sports in three scales.
doi:10.1371/journal.pone.0076393.g002
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sampled seven non-overlapping circular patches in a hexagonal

configuration. As shown in Figure 3, each circle is a circular patch

and the configuration has multiple spatial scales. The diameters of

patches at two spatial scales were 16 and 24 pixels, respectively.

The rationale for using this configuration is to explore combina-

torial concatenations of local visual structures at multiple spatial

scales. To make computing more efficient, we down-sampled the

patches at larger spatial scales. For the dataset of 15 scenes, we

Figure 3. Procedure for compiling NSSs. First, we sampled circular scene patches in a hexagonal configuration at two spatial scales. Second, we
performed ICA on the circular patches and classified the ICs into a set of clusters. For each IC cluster, we computed a feature, defined as the root
mean square amplitudes of the ICs in the cluster, and obtained a feature space by merging the feature vectors of the circular patches in the
hexagonal configuration. Finally, we digitized the feature space into a set of non-overlapping regions using the K-means method, assigned a
structural index to each region, and designated all the patches in the hexagonal configuration that share the same structural index as a NSS. The
patches at the hexagonal configuration at multiple sizes sampled at any location in a scene may be clustered to different NSSs (case a) or the same
NSS (case b). Note that each NSS shown here is the average of all the patches that share the same structural index.
doi:10.1371/journal.pone.0076393.g003
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down-sampled the larger patches by 2/3 using bi-cubic interpo-

lation. Thus, all the circular patches at the two spatial scales had

the same diameter of 16 pixels.

We then performed ICA on the all the circular patches in the

hexagonal configuration at the multiple spatial scales separately,

and fitted Gabor functions to the obtained ICs. The fitting

algorithm worked well, accounting for about 90% of the variance

of the ICs. Figure 4 shows a few examples. To derive a compact

representation of the ICs obtained at the multiple spatial scales, we

performed clustering in the parameter space of the fitted Gabor

functions. For this purpose, we used 6 parameters of the Gabor

functions as in [17], i.e., 4 parameters of the Gaussian envelope

and 2 parameters of the sinusoid carrier. Since different values of

the parameters may correspond to the same Gabor function (e.g.,

adding 2p to the phase does not change Gabor function), we

converted the estimated parameters to pre-set intervals (see

Materials and Methods). Using these parameters, we clustered

the ICs in two steps. First, we clustered the ICs into 16 equally

divided orientations. Second, for each orientation, we performed

the K-means clustering using the Euclidian distance in the

parameter space of the Gabor functions as the metric.

Let A = {A1, A2, …, Am} denote the i-th IC cluster containing m

filters at a spatial scale, each of which is a column vector with l

elements, where l is the number of pixels in each circular patch.

The feature, ai, of a circular patch P (which is a row vector with l

elements) was calculated by projecting P to the i-th IC cluster as

follows

ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
k~1

P:Akð Þ2
s

, 1Þ

Thus, for N IC clusters, there are N features which form a

feature vector for each circular patch. By pooling the circular

patches in the hexagonal configuration, we obtained the 76N

features for the 7 patches in the hexagonal configuration at

multiple spatial scales. Since the patches sampled from natural

scenes do not uniformly pack the high-dimensional feature space,

we partitioned the feature vectors into a set of clusters using the K-

means method with the Euclidean distance metric. We call all the

patches in the hexagonal configuration at the multiple spatial

scales that fall in the same cluster a NSS. Since visual features at

each scale are concatenated as a sample for categorization (via

clustering), the patches at the hexagonal configuration at multiple

scales sampled at any location in a scene may be clustered to

different NSSs (case a) or the same NSS (case b) (Figure 3) which

indicates local scaling-invariance. Thus, local scaling-invariance

and scaling-variance are encoded in the NSSs. It is worth

mentioning that for scene classification, we compiled NSSs from

each scene category and pooled the NSSs from all the categories to

form a master code book (see Materials and Methods).

In contrast to simple features such as ICs and SIFT descriptors,

the NSSs are highly structured intermediate-level representations

that are building blocks of natural scenes. Roughly speaking, as a

result of the K-means clustering procedures, each of the NSSs

contains a large set of patches of natural scenes that entails a

specific pattern of spatial concatenation, ranging from simple to

complex, of local features in natural scenes.

Concatenations of visual features in NSSs
Since topology is conserved, i.e., the neighboring relationships

among the pixels in the scene patches are maintained, the NSSs

obtained here include all possible combinations of local visual

features in small regions in natural scenes. The only limitations on

the combinations are induced by the clustering procedures, which

can be made looser or tighter depending on specific applications.

Thus, the NSSs include smooth patterns of luminance, textures,

edges, junctions, and any combinations of these four patterns of

luminance and carry a variety of amount of information about

natural scenes at multiple scales.

Figure 5 shows 6 frequent NSSs of each of the nine selected

scenes categories in the datasets of 15 scenes and 8 sports. The

NSSs shown here are actually the averages of the scene patches

that share the same concatenations of local features (see above).

We arranged the selected natural scenes in three groups, outdoor

scenes (Figure 5A), indoor scenes (Figure 5B), and sports scenes

(Figure 5C). The locations of the NSSs in the scenes and the boxes

around the NSSs are indicated by the same color. The NSSs

represent coarse but informative descriptions of a variety of scene

components. For example, in the mountain scene (first row of

Figure 5A), the first frequent NSS (indicated by red color) is a

blurred texture pattern and is near the top of the mountain in the

scene. In the open-country scene (second row of Figure 5A), the

first frequent NSS is located at the boundary between the

mountain and the sky and is a mixture of a blurred texture, a

blurred edge, and smooth luminance ramps. In the living room

scene (the first row of Figure 5B), the first frequent NSS is located

at the chair and contains a sharp luminance change. In the kitchen

scene, the first frequent NSS is located on the cabinet and contains

a smooth luminance pattern generated by multiple light sources.

In the bocce scene (the second row of Figure 5C), the first frequent

NSS is located near the leg of the boy and is a mixture of a texture

and a luminance jump. In the rowing scene (the third row of

Figure 5C), the first frequent NSS is located at the boundary

between the oar and the water surface and is a mixture of smooth

luminance and a luminance jump.

Figure 5 shows the averages of the selected NSSs. In fact, each

NSS contains a large number of scene patches that share a specific

concatenation of local visual features, which means that each NSS

has a range of natural variations. To examine variations in the

NSSs, we performed Principal Component Analysis (PCA). Figure

6 shows the top six Principal Components (PCs) of each of the four

NSSs selected from each dataset. Overall, the changes in

luminance in the mean and the shown PCs are similar for each

of the NSSs. As a quantitative measure, the first 150 PCs of the

NSSs account for 34% more variance than those of natural scene

patches. Thus, the NSSs are less variable than natural scene

patches, as they should be.

Spatial arrangements of NSSs in natural scenes
To model the spatial arrangements of individual NSSs, we first

partitioned each scene into an 868 grid and obtained the

occurring frequencies of individual NSSs within each grid location.

Two examples are shown in Figure 7. We then used an adjacency

matrix [40] to represent the neighboring relationship among the

grid locations. To this end, we defined the distance L between two

grid locations, n(rown, coln) and m(rowm, colm) as

L~ max abs(rown{rowm),abs(coln{colm)ð Þ , ð2Þ

where abs(?) denotes the absolute value function and row and col are

the indices of the columns and rows of the grid. We assigned the

minimal number of occurrences of the NSS at two grid locations to

the corresponding element of the adjacency matrix if L was less

than Lc and the numbers of occurrences of the NSS at the two grid

locations were greater than zero. The fourth column in Figure 7

Natural Scene Structures for Scene Classification
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shows 4 adjacency matrices (Lc = 3). For the 868 grid, the

adjacency matrix is a 64664 symmetric matrix and most of its

elements are zeros. Finally, we calculated the eigenvalues of the

adjacency matrix, which are real numbers, and used the Nc largest

absolute eigenvalues to represent the spatial arrangement of the

NSS. As shown in the fifth column of Figure 7, the eigenvalues of

the adjacency matrices are more spread in scenes where the NSSs

are dispersed across larger areas. To use this information for scene

classification, we set Lc and Nc using cross-validation on the

training datasets (see Materials and Methods).

Using the top 2 to 5 eigenvalues of the adjacency matrices, we

calculated the Fisher score (between-class variation divided by

within-class variation) of individual NSSs for each pair of scene

categories. Thus, we obtained a symmetric discriminant matrix for

each NSS. The rows and columns of the discriminant matrix are

the indices of the scene categories as shown in Figure 2. Figure 8

shows four Fisher discriminant matrices for four NSSs and four

pairs of scenes. NSS1 and NSS2 were compiled from the dataset of

15 scenes and NSS3 and NSS4 from the dataset of 8 sports. Most

of the scene pairs for which NSS1 has a high discriminant score

include other scene categories vs. the highway scene (indexed by

3), the industry scene (4), the open-country scene (7), and the office

scene (14). For example, the spatial arrangement of NSS1 is more

spread in the street scene than in the open-country scene. Most of

the scene pairs for which NSS2 has a high discriminant score

include other scene categories vs. the inside-city scene and the

street scene. For example, the spatial arrangement of NSS2 is

more spread in the inside-city scene than in the office scene. Most

of the scene pairs for which NSS3 has a high discriminant score

include other scene categories vs. the snowboarding scene (8). For

example, the spatial arrangement of NSS3 is more spread in the

snowboarding scene than in the croquet scene (3). Most of the

scene pairs for which NSS4 has a high discriminant score include

other scene categories vs. the bocce scene (2), the rowing scene (6),

and the snowboarding scene. For example, the spatial arrange-

ment of NSS4 is more spread in the rowing scene than in the polo

scene (4). Thus, the spatial arrangements of NSSs at larger scales

can be indicative of scene categories even in cases where the

numbers of occurrences of NSSs are not.

Statistics of NSSs
The master book has 11,028 NSSs for the dataset of 15 scenes

and 4,761 NSSs for the dataset of 8 sports. Figure 9A shows the

numbers of the occurrences of the 11,028 NSSs in the 1,500

images in the training set for the dataset of 15 scenes. The NSSs

were arranged according to the indices of the scene categories

from which they were compiled. Thus, most NSSs occur more

frequently in the scene categories from which they were compiled.

To examine the information about natural scene categories

carried by individual NSSs, we randomly separated the training set

into two sub-sets (60% for training and 40% for evaluation) and

used the occurring frequency and the spatial arrangement of each

NSS to classify each pair of scene categories in the datasets. Figure

9B shows the matrix of classification accuracy on the dataset of 15

scenes. There are 105 pairs of scene categories in this database and

the indices are arranged in the following way: the first 14 pairs are

the first scene category vs. the rest of the categories in the order

shown in Figure 2 and so on. Overall, the NSSs convey more

Figure 4. Fitting Gabor functions to ICs. (A), Examples of ICs of the image patches at two scales sampled from the dataset of 15 scenes. (B),
Gabor functions that are fitted to the ICs shown in A.
doi:10.1371/journal.pone.0076393.g004
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Figure 5. Examples of NSSs. (A), Six frequent NSSs compiled from each of the 3 selected outdoor scenes in the dataset of 15 scenes. The locations
of the NSSs in the scenes and the boxes around the NSSs are indicated by the same color. (B), Same format as (A). Six frequent NSSs compiled from
each of the 3 selected indoor scenes in the dataset of 15 scenes. (C), Same format as (A). Six frequent NSSs compiled from each of the 3 selected
sports scenes in the dataset of 8 sports.
doi:10.1371/journal.pone.0076393.g005

Natural Scene Structures for Scene Classification

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e76393



information of the scene categories from which the NSSs were

compiled.

We repeated the above procedures on the dataset of 8 sports.

Figure 9C shows that most NSSs compiled from this dataset occur

more frequently in the scene categories from which they were

compiled. Figure 9D shows that the NSSs convey more

information of the scene categories from which the NSSs were

compiled.

Finally, we calculated a normalized occurrence matrix, M, to

examine the overall occurrences of the NSSs in the two datasets.

Each element Mij of the matrix is the total number of scenes of

scene category j that contain any of the NSSs compiled from scene

category i and each row of the matrix is normalized by the

diagonal element of the matrix. Figure 9E shows the occurrence

matrix for the dataset of 15 scenes. It is clear that the NSSs

compiled from indoor scenes (index 11-15) also occur frequently in

other indoor scenes. The occurrence matrix for the dataset of 8

sports is shown in Figure 9F. The NSSs compiled from bocce (2),

croquet (3), polo (4), and snowboarding (8) also occur frequently in

other scene categories. As it will become clear in the next section,

these cross-occurrences affect scene classification adversely.

Scene classification
To classify the scenes in the two datasets, we selected a set of

NSSs that occurred in more than Mc images in at least one of the

scene categories, and obtained 11,028 and 4,761 NSSs for the

dataset of 15 scenes and the dataset of 8 sports, respectively. We

determined Mc using a cross-validation procedure on a set of

randomly selected training images (see Materials and Meth-
ods). We concatenated the occurring frequencies and the

eigenvalues of the adjacency matrices of the selected NSSs as

feature vectors, and fed them to an SVM to classify the scenes.

SVM is suited for cases where feature vectors have many elements

and a relatively small number of training samples are available

[43]. The rationale was to let SVM make use of both types of the

information to find the optimal decision boundaries between scene

categories. SVM has been successfully used for object and scene

classification [33,44]. In this work, we used C-SVM with the 1-x2

Figure 6. Variations in NSSs. (A), Four selected NSSs (marked with red boxes) and the top six Principal Components (PCs) (marked with blue
boxes) for each NSS. The NSSs are selected from the dataset of 15 scenes. (B), Same format as (A). The NSSs are selected from the dataset of 8 sports.
doi:10.1371/journal.pone.0076393.g006
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kernel [45].

k(x1,x2)~2
Xn

i~1

x1i
: x2i

x1izx2i

, ð3Þ

where x1i is the i-th element of x1. For multi-category

classification, we used the One-vs.-Rest strategy and the LIBSVM

implementation of SVM [46,47].

The results of our model and several other methods on the

dataset of 15 scenes and the dataset of 8 sports are reported in

Table 1 and Table 2, respectively. For the dataset of 15 scenes, we

randomly selected 100 samples of each category for training and

used the rest of the samples for testing. For the dataset of 8 sports,

we randomly selected 70 and 60 samples of each category for

training and testing respectively. The classification accuracies are

the averages of the accuracies obtained in 5 training-testing runs.

The classification accuracy of our model is 82.3% on the dataset of

15 scenes, which is the same as the state-of-the-art model (82.5%).

The classification accuracy is 85.8% on the dataset of 8 sports,

which is better than the best current model (84.4%).

To demonstrate the contributions of the components of our

model to classification accuracy, we performed scene classification

by dropping one or more components of the model. The results on

the dataset of 8 sports (Table 3) show that classification

performance was improved significantly (20% error reduction)

for the concatenated features of the scene patches in the hexagonal

configuration. The multi-scale coding strategy also achieved 10%

error reduction relative to the best single-scale features on this

dataset. The results also showed that adjacency matrices only

improved classification slightly. This is presumably because the

NSSs already encode considerable spatial information due to the

dense sampling procedure and the large sizes of the circular

patches and the hexagonal configurations relative to usual local

visual features.

Since the dataset of 8 sports has considerable scale variations

(Figure 2), we extracted patches at four spatial scales. The high

accuracy of our model indicates that the NSSs proposed here can

encode multi-scale information effectively. Unfortunately, we

could not include more spatial scales in our model for the dataset

of 15 scenes since the image resolution (,3006250 pixels) is too

low.

Figure 7. Spatial arrangements of NSSs. The grid matrices, the adjacency matrices, and the eigenvalues of the adjacency matrices for two
selected NSSs in four selected images.
doi:10.1371/journal.pone.0076393.g007
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Figure 10 shows the confusion matrices of the performance of

our model on the two datasets. For the dataset of 15 scenes (Figure

10A), the mean error rates are 4.4% on the indoor scenes, 1.1% on

the outdoor scenes, and 0.8% on the indoor vs. outdoor scenes,

i.e., most of the misclassifications occurred within the indoor

scenes. Our model achieved better performance on the outdoor

scenes (87.0%) than on the indoor scenes (73.1%). In the worst

cases, our model misclassified 16.3% of the living-room scenes as

Figure 8. Discriminant information of NSSs. (A), The lower half of the Fisher discriminant matrix for four selected NSSs. The gray-scale bar
indicates the logarithmic values in the base of 2. (B), Spatial locations of the NSSs in selected pairs of scenes. The numbers in the parentheses are the
indices of the scene categories shown in Figure 2.
doi:10.1371/journal.pone.0076393.g008
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Figure 9. Statistics of NSSs. (A), Histograms of the NSSs in the training images. (B), Accuracy on classifying each pair of scene categories based on
the occurring frequency and the spatial information of each NSS. (C, D), Same format as (A, B). (A, B) are the results for the dataset of 15 scenes. (C, D)
are the results for the dataset of 8 sports. (E), Occurrence matrix for the dataset of 15 scenes. (F), Occurrence matrix for the dataset of 8 sports.
doi:10.1371/journal.pone.0076393.g009
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the bedroom scenes, and 11.7% of the open-country scenes as the

coast scenes. On a subset of the dataset of 15 scenes, i.e., coast,

forest, highway, inside city, mountain, open country, street, and

tall building, which is another popular dataset of scene categories

[8], our model achieved an accuracy of 87.3%, the same as the

state-of-the-art result (87%) [48]. On the dataset of 8 sports (Figure

10B), the model misclassified 18.0% of the croquet scenes as the

bocce category because these two scene categories are quite

similar.

As a final note, the large numbers of the NSSs did not adversely

affect the generalization power of our model for two reasons. First,

as described above, we selected a set of NSSs with high

information. Second, we compiled NSSs separately from each of

the categories and built a master book of NSSs. The redundancy

in the master book presumably limited over-fitting via the cross-

validation procedure.

Discussion

Natural scene structures
In this study, we proposed NSSs as an intermediate-level

representation of natural visual scenes. Each NSS is a concatena-

tion of visual features in multi-scale circular patches in a hexagonal

configuration. The NSSs encompass all possible concatenations of

local features in natural scenes, including smooth patterns of

luminance, textures, edges, junctions, and any combinations of

these four patterns of luminance. The only limitations on the

possible concatenations are induced by the clustering procedures,

which can be made looser or tighter depending on specific

applications. There are several advantages of the NSSs over usual

local visual features. First, the NSSs provide a classification of

natural scene patches for the purpose of generalization. Second,

since the NSSs are topology-conserving, multi-scale, intermediate-

level structures with sizes considerably larger than usual local

features and encode local scaling-invariance, they can be very

informative for specific applications and robust against noises and

changes in scale. Third, there is no need to perform any image-

based processing or to detection specific features or combinations

of specific features. Fourth, spatial information in visual scenes can

be assessed by examining the spatial arrangements of the NSSs at

even larger scales. Finally, encoding of natural scenes in terms of

the NSSs is more or less equivalent to specifying the spatial

arrangements of the NSSs. It is worthy of pointing out that the

NSSs proposed here share some similarity to the fragments

advocated by several researchers [52,53]. Because we provided a

principled way to compile NSSs at multiple scales and to examine

their spatial arrangements at larger scales, the NSSs proposed

here, with all the above advantages, are a novel contribution and

represent an addition to current research on natural scene statistics

and their relationships to vision [54–58]. Also, as explained in

detail in section ‘‘Relationship to other work’’, the NSSs proposed

here are different from other recent work on computational

models of scene classification and models of neuronal responses to

natural scenes.

We compiled NSSs from two widely used datasets of natural

scenes, examined a range of statistics of the NSSs, and found that

the NSSs contain a range of information about natural scenes. We

also used adjacency matrices to model the spatial arrangements of

the NSSs at larger scales. For scene classification, we selected a set

of NSSs with high information and used the occurring frequencies

of the NSSs and the eigenvalues of the adjacency matrices to

classify the scenes in the datasets. We found that the classification

performance of this model is significantly improved by concate-

nating visual features at multiple spatial locations (i.e., the

hexagonal configuration) and scales, and is comparable to or

better than the best current models on the two datasets. These

results show that the NSSs proposed here are a useful interme-

diate-level representation of natural visual scenes.

Possible neural representations of NSSs
The computational model of the NSSs and scene classification

proposed here does not have any direct neurobiological support;

nonetheless, it is useful to speculate how visual neurons can encode

the NSSs. Along the ventral pathway of the primate visual system,

neurons assemble progressively visual features. In V1, neurons are

tuned to simple features such as oriented bars; neurons in V2

respond selectively to multiple simple features [28]; and in V4,

neurons respond selectively to simple shapes [2,30]. In the IT area,

neurons respond selectively to complex features and the responses

show tolerance to views, scales, positions, and poses [1]. Given this

hierarchical coding strategy, it is plausible that populations of

neurons along the ventral pathway encode the NSSs proposed

here (see also Possible neural codes of natural scenes and Figure 1).

As explained in sections ‘‘Possible neural codes of natural

scenes’’ and ‘‘Relationship to other work’’ (see also Figure 1 and

Figure 3), the NSSs are ensembles of features in natural scenes

obtained by three operations, i.e., categorization (via clustering),

projection, and concatenation. These operations can be roughly

mapped to nonlinear tuning, nonlinear filtering, and integrating

multiple inputs by visual neurons, respectively. Thus, it is plausible

that the neural circuitry and neuronal responses along the ventral

pathway may implement these operations, as elaborated further

below.

Each NSS has two layers (Figure 3). In the first layer, the basic

visual features are ICs, similar to the features to which V1 neurons

are tuned. The feature element ai of each circular patch is the root

mean square of the amplitudes of the ICs in an IC cluster

(Equation (1)). Although ai may not be mapped to the response of

any single V1 neuron, it is a simple nonlinear function (as in the

standard LN model of V1 neurons) of the responses of a small

Table 1. Performance of our model and other models on the
dataset of 15 scenes.

Methods 15 Scenes

Our model 82.360.4%

Niu et al. [48] 82.5%

Lazebnik et al. [33] 81.4%

Li et al. [35] 80.9%

Yang et al. [49] 80.4%

doi:10.1371/journal.pone.0076393.t001

Table 2. Performance of our model and other models on the
dataset of 8 sports.

Methods 8 Sports

Our model 85.860.7%

Dixit et al. [50] 84.4%

Wu et al. [51] 84.2%

Niu et al. [48] 78.0%

Li et al. [35] 76.3%

doi:10.1371/journal.pone.0076393.t002
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Table 3. Contributions of the components of our model to classification on the dataset of 8 sports.

Methods Without adj. matrices With adj. matrices

Multi-scale & hexagonal config. 85.160.5% 85.860.7%

Best single-scale & hexagonal config. 83.460.3% 84.260.3%

Best single-scale & circular patch 79.460.6% 80.060.8%

doi:10.1371/journal.pone.0076393.t003

Figure 10. Confusion matrices. (A), Confusion matrix of the model performance on the dataset of 15 scenes. The average accuracy is 82.3%. (B),
Confusion matrix of the model performance on the dataset of 8 sports. The average accuracy is 85.8%. In both A and B, the values at the empty
matrix elements are 0.
doi:10.1371/journal.pone.0076393.g010
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number of V1 neurons whose tuning to orientation, frequency,

and phase are similar (since the ICs in an IC cluster have similar

parameters). This neural model of ai would be a generalization of

the standard LN model of V1 neurons to the population level [26].

In the second layer, each NSS in the space of the feature vectors

is characterized by a set of dominant IC clusters at multiple spatial

scales. As a result, each NSS is a function of the responses of a

population of V1 neurons via linear and simple nonlinear

operations (i.e., operations in the standard LN model of V1

neurons). This is also true for V2 neurons that are similar to V1

neurons, but only some of the NSSs can be functions of the

responses of populations of V2 neurons that encode multiple

orientations via linear and simple nonlinear operations. The rest of

the NSSs are functions of the responses of these V2 neurons via

complex nonlinear operations (i.e., more complex than the

operations in the standard LN model) and the relative portion of

these NSSs is unknown at this time. In the same fashion, some of

the NSSs can be functions of the responses of populations of V4

and IT neurons via linear and simple nonlinear operations and

some of the NSSs can be functions of the responses of populations

of V4 and IT neurons via complex nonlinear operations. Thus,

even though highly speculative, it is plausible that populations of

neurons along the ventral pathway of the primate visual system

encode the NSSs that include a full range of concatenations of

visual features.

Materials and Methods

We implemented our model in Matlab (Version 7.10.0.499)

running on a Dell Optiplex 980 desktop (with an Intel Core i7 860

processor and 16G RAM).

Datasets of natural scenes
We used two datasets of natural scene categories, the dataset of

15 scenes and the dataset of 8 sports [33,59]. The first dataset

contains 4,485 images of 10 categories of outdoor scenes (i.e.,

coast, forest, highway, industrial, inside city, mountain, open

country, street, suburb, and tall building) and 5 categories of

indoor scenes (i.e., bedroom, kitchen, living room, office, and

store). Each category has 200 to 400 images of , 3006250 pixels.

Figure 2A shows sample images of the 15 scene categories.

The dataset of 8 sports contains 1,579 images of 8 scene

categories of sports, i.e., badminton, bocce, croquet, polo, rock

climbing, rowing, sailing, and snowboarding. Each category has

130 to 250 images of , 90061100 pixels, which were acquired at

various camera distances. Figure 2B shows sample images of the 8

scene categories.

Training and cross-validation
As in several other studies [33,59], we randomly selected 100

samples of each category for training and used the rest of the

images for testing for the dataset of 15 scenes; and for the dataset

of 8 sports, we randomly selected 70 and 60 samples of each

category for training and testing respectively. The classification

accuracies reported in this paper are the averages of the accuracies

obtained in 5 training-testing runs.

Cross-Validation (CV) is a way to control over-fitting and is

widely used in pattern recognition and statistical modeling. We

used five-fold CV on the training sets to select model parameters,

which included: 1) the number of clusters in the K-means method,

2) Lc and Nc, the parameters for extracting spatial information, 3)

Mc, the threshold for selecting NSSs, and 4) the parameters of the

SVM classifier. In this procedure, we separated the training data

into five equal folds, tested the model on a single fold using the

remaining 4 folds to train the model, and repeated this procedure

on each of the five folds.

Pre-processing
As in several other studies [33,42], we sampled patches densely

in the dataset of 15 scenes and the dataset of 8 sports. In dataset of

15 scenes, we sampled two sets of circular patches in hexagonal

configurations at a step of 4 pixels. The diameters of the circular

patches in the two sets were 16 and 24 pixels. In the dataset of 8

sports, we sampled four sets of circular patches in hexagonal

configurations at a step of 8 pixels. The diameters of the circular

patches in the four sets were 16, 24, 32, and 46 pixels. Since the

sizes of images vary in the dataset of 8 sports, we resized the larger

dimension to 840 pixels while maintaining the aspect ratios of the

images.

Testing on the dataset of 15 scenes
We randomly sampled 46106 patches at each spatial scale,

performed ICA on the patches, and obtained 160 ICs that

accounted for 99% of the variance of the patches. We fitted Gabor

functions to the 160 ICs at each of the 2 scales, converted the fitted

parameters into pre-set intervals (i.e., the scale of the Gaussian

envelope to [0, +‘), the orientation of sinusoid carrier to [0, p),

and the phase of the sinusoid carrier to [0, 2p)). We then classified

the ICs of the patches at the two scales into 100 IC clusters using

the K-means method with the Euclidean distance as a function of

the parameters of the Gabor functions.

To compile the NSSs, for each scene category, we randomly

selected 26105 patches, projected them to the IC clusters, and

obtained 1,000 NSSs using the K-means method. The distance

used in this step was the Euclidean distance between the root mean

square of the amplitudes of the ICs in the IC clusters. We obtained

14,600 NSSs for this dataset.

To select NSSs for the SVM classifier, we set the threshold,

Mc = 7, the number of images in which the NSS occurred. We

selected 11,028 NSSs, set Lc = 3 and Nc = 3, and used the 1- x2

kernel in the SVM classifier (C = 0.125).

Testing on the dataset of 8 sports
We randomly sampled 46106 patches at each spatial scale,

performed ICA on the patches, and obtained 160 ICs that

accounted for 99% of the variance of the patches. We fitted Gabor

functions to the ICs, converted the fitted parameters, and classified

the ICs of the patches at 4 scales into 40 clusters using the K-

means method with the Euclidean distance (see above). To

compile NSSs, for each scene category, we randomly selected

36105 samples, projected them to the IC clusters, and obtained

600 NSSs using the K-means method (see above). We obtained

4,761 NSSs for this dataset. We used all the NSSs for classification,

set Lc = 5 and Nc = 1, and used the 1- x2 kernel in the SVM

classifier (C = 0.125).
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