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Abstract

Rapid emotion processing is an ecologically essential ability for survival in social

environments in which threatening or advantageous encounters dynamically and rapidly

occur. Efficient emotion recognition is subserved by different processes, depending on

one's expectations; however, the underlying functional and structural circuitry is still

poorly understood. In this study, we delineate brain networks that subserve fast recog-

nition of emotion in situations either congruent or incongruent with prior expectations.

For this purpose, we used multimodal neuroimaging and investigated performance on a

dynamic emotion perception task. We show that the extended amygdala structural and

functional networks relate to speed of emotion processing under threatening condi-

tions. Specifically, increased microstructure of the right stria terminalis, an amygdala

white-matter pathway, was related to faster detection of emotion during actual presen-

tation of anger or after cueing anger. Moreover, functional connectivity of right amyg-

dala with limbic regions was related to faster detection of anger congruent with cue,

suggesting selective attention to threat. On the contrary, we found that faster detection

of anger incongruent with cue engaged the ventral attention “reorienting” network.

Faster detection of happiness, in either expectancy context, engaged a widespread

frontotemporal-subcortical functional network. These findings shed light on the func-

tional and structural circuitries that facilitate speed of emotion recognition and, for the

first time, elucidate a role for the stria terminalis in human emotion processing.
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1 | INTRODUCTION

In a dynamic social environment, the ability to quickly recognise a

potential friend or threatening foe is essential for survival. In social sit-

uations in which, for example, threat is expected, allocation of atten-

tion toward aggressive cues to enable a faster response is paramount

(Adolphs, 2013; Barbalat, Rouault, Bazargani, Shergill, & Blakemore,

2012). Conversely, in seemingly innocuous social situations, threat

may appear unexpectedly, requiring a rapid shift of attention toward

aggressive cues (Ohman, Lundqvist, & Esteves, 2001; Schmidt-Daffy,

2011). Identification of the neural circuitry, facilitating rapid recogni-

tion of realistic, dynamic representations of emotion in the healthy
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brain, is essential for our understanding of aberrant neural connectiv-

ity in pathologies characterised by impaired emotion processing, such

as schizophrenia, major depression, or anxiety (Barkl, Lah, Harris, &

Williams, 2014; Chan, Li, Cheung, & Gong, 2010; Demenescu,

Kortekaas, den Boer, & Aleman, 2010). Therefore, in the current

study, we investigated the neural networks underlying the fast recog-

nition of happy and angry emotional expressions, in conditions where

these emotions were either congruent or incongruent with prior

expectations (induced by an explicit cue). For this purpose, we exam-

ined the functional networks that subserve rapid response to emo-

tions presented in a dynamic, audio-visual environment. Critically, for

the first time, we related these functional networks to structural net-

works previously linked to emotion processing, but with an unknown

relationship to emotion processing speed.

Previous studies exploring rapid emotion processing (particularly

threat) in humans and animals have provided converging evidence

that implicate an amygdala network as core circuitry (Anderson,

Christoff, Panitz, De Rosa, & Gabrieli, 2003; Gross & Canteras, 2012;

Hooker, Germine, Knight, & D'Esposito, 2006; LeDoux, 1998;

Marstaller, Burianová, & Reutens, 2016b; Reinders et al., 2006). In

humans, the amygdala is found to enable rapid processing by means

of selectively directing attention to relevant and salient, coarse cues

(Dolan & Vuilleumier, 2003; Garvert, Friston, Dolan, & Garrido, 2014;

Mendez-Bertolo et al., 2016; Pessoa & Adolphs, 2010; Vuilleumier,

Armony, Driver, & Dolan, 2003). There is evidence that the amygdala

may play a central role in processing unconscious stimuli, via a subcor-

tical route, which has been dubbed the neural “alarm” system for rapid

alerting to threat (Liddell et al., 2005). However, there is debate

whether this entails specifically processing threatening stimuli uncon-

sciously, or any relevant stimulus (Pessoa & Adolphs, 2010; Tamietto &

de Gelder, 2010; Williams, Morris, McGlone, Abbott, & Mattingley,

2004). The extended amygdala, including the bed nucleus of the stria

terminalis (BNST), has been consistently found to have a role in

directing attention to threatening cues (Herrmann et al., 2016;

Somerville, Whalen, & Kelley, 2010; Walker, Toufexis, & Davis, 2003)

and involvement in emotional face perception (Sladky et al., 2017).

The stria terminalis, a white matter tract, which connects the amyg-

dala, hippocampus, BNST, caudate, and thalamus, and which branches

out to multiple septal and hypothalamic nuclei, has recently been

traced in humans (Rafal et al., 2015), but its role in human emotion

processing remains unknown. In the current study, our aim was to

provide the first evidence for the role of the stria terminalis in human

social behaviour.

Another tract, which connects the amygdala to visual regions, is the

inferior longitudinal fasciculus (ILF). In a recent study, Marstaller et al.

(2016b) demonstrated that increased microstructure (i.e., fractional

anisotropy; FA) in the ILF is associated with faster detection of anger

and fear. Despite these findings, the emotion stimuli consisted of only

threat-related expressions (i.e., positive emotions, such as happiness,

were not explored), and the stimuli were presented in the form of static

images of faces. The use of static stimuli in experimental paradigms fails

to uncover processes involved in fast detection of realistic, dynamic

emotions, and limits our understanding of the neural circuitries that

underlie these processes. Crucially, compared to static expressions,

dynamic emotion has been shown to rely on predictive processes to a

greater extent, due to the uncertainty in the constantly moving and

changing features (Kaufman & Johnston, 2014; Palumbo & Jellema,

2013). Prior expectations direct attention to features that are aligned

with predictions (Friston, Kilner, & Harrison, 2006) and are a vital pro-

cess in naturalistic emotion perception.

The functional and structural networks, associated with expectancy-

driven rapid detection of positive and negative emotions, remain

unknown. Previous research has provided evidence for differential

regional activation in the right amygdala (rAMY) and parietal cortex—in

particular right temporoparietal junction (rTPJ)—for emotions congruent

or incongruent with prior expectations, respectively (Bermpohl et al.,

2006; Browning & Harmer, 2012; Dzafic, Martin, Hocking, Mowry, &

Burianova, 2016; Ueda et al., 2003). However, how these regional differ-

ences relate to network level differences, for both functional and struc-

tural circuitry, has not been investigated. In regards to incongruency

with expectations, seminal work by Corbetta, Patel, and Shulman (2008)

established that “reorienting” to unexpected, but relevant stimuli

(e.g., threatening human faces) involves a right ventral frontoparietal net-

work, labelled the ventral attention network (Corbetta & Shulman,

2002). Although the ventral attention network has consistently been

linked to the rapid processing of unexpected stimuli, the role of the

underlying structural connections that enable this efficiency in

processing have not yet been established. Regions comprising the ven-

tral attention network are interconnected by the inferior fronto-occipital

fasciculus (IFOF) (Hattori et al., 2017), which runs within the frontal lobe,

insula, and temporal stem, and connects the frontal operculum with the

occipital, parietal, and temporobasal cortex (Catani & De Schotten,

2008; Chechlacz, Gillebert, Vangkilde, Petersen, & Humphreys, 2015).

Damage to the right IFOF has been shown to impair emotion recogni-

tion (Philippi, Mehta, Grabowski, Adolphs, & Rudrauf, 2009), and greater

FA in the IFOF has been related to better emotion discrimination

(Unger, Alm, Collins, O'Leary, & Olson, 2016). Also, the speed of visual

information processing has been related to hemispheric lateralization of

the IFOF (Chechlacz et al., 2015). In the current study, we investigated if

the IFOF has a role in the speed of processing emotions that are incon-

gruent with cues.

The objective of the current study was to delineate the structural

and functional networks underlying fast response to naturalistic emo-

tions, in conditions congruent or incongruent with prior expectations.

For this purpose, we used a previously validated Dynamic Emotion

Perception (DEP) task, in which instruction cues and frequency of dis-

play were used to elicit prior expectations during viewing of angry

and happy audio-visual videos (Dzafic et al., 2016). Based on the

results of previous studies, we predicted that faster recognition of

anger congruent with cue would involve the recruitment of rAMY

functional network and greater FA in the right stria terminalis and ILF-

amygdala structural networks. Conversely, we expected that faster

recognition of anger incongruent with cue would involve the recruit-

ment of rTPJ [a core region of the ventral attention network

(Corbetta et al., 2008)] functional network and greater FA in the right

IFOF-TPJ structural network.
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2 | METHODS

2.1 | Participants

Forty-six healthy, right-handed males [mean (M) age = 39.83, standard

deviation (SD) = 12.04] were recruited through on-line advertising to

staff and students across the University of Queensland. A telephone

interview was conducted before recruitment to ensure that partici-

pants had normal or corrected-to-normal vision, were not taking med-

ication, and had no history of neurological disorders, or metal implants

in their body. The cohort scored within the normal healthy range on

IQ, estimated using 2 subsets (vocabulary and matrix reasoning) of the

Wechsler abbreviated scale of intelligence (WASI; Wechsler, 1999;

M = 111.65; SD = 13.48; range = 80–140).

Participants were provided with an information sheet that

included a full description of the study and fMRI procedure. After

reading and understanding the document, written informed consent

was obtained from each participant. This research was approved by

the Medical Research Ethics Committee of the University of Queens-

land. Participants received $30 as reimbursement.

2.2 | Paradigm: dynamic emotion perception task

2.2.1 | Materials

Participants completed the DEP task (Dzafic et al., 2016) during fMRI.

The DEP task involved viewing audio-visual video clips of an actor

expressing emotions congruent or incongruent with prior expectations.

Prior expectations were induced by displaying an emotional instruction

cue before the video clips (Barbalat, Bazargani, & Blakemore, 2013) and

by having a greater number of videos congruent with the emotion in

the instruction cue (Chambon et al., 2011).

Experimental stimuli included emotion videos, instruction cues,

and emotion cues, as described below. For an in-depth description of

the development, editing, and piloting of these stimuli, please see

Dzafic et al. (2016). (1) Emotion videos: there were 48 emotional

videos in total, 16 for each emotion condition: angry, happy, and neu-

tral. The videos presented a female actor speaking 16 different sen-

tences, which were emotionally ambiguous (i.e., the semantic content

made sense for multiple emotions). By keeping the content constant

across the three emotions, we controlled for linguistic confounds.

(2) Instruction cue: the instruction cue contained a still picture of the

actor expressing an emotion (either angry, happy, or neutral), with

the expressed emotion written in white text underneath the picture.

The picture and the writing were presented in the centre of the cue

and overlaid on a black background. Above the picture, the instruction

cue contained white text, instructing the participant to make an “index

finger press” for the emotion in the picture (see Figure 1). (3) Emotion

cues: the emotion cues were identical to the instruction cues, except

that they did not contain the text above the picture to make an “index

finger press.”

2.2.2 | Design

The experimental procedure consisted of three runs of the DEP task

and nine experimental conditions: three cues (happy, angry, and neutral)

× three emotional videos (happy, angry and neutral). When the emotion

in the cues and video matched, this was a “congruent” condition,

whereas when the emotion in the cues and video did not match, this

was an “incongruent” condition. Please note that the task included

angry, neutral, and happy video clips. However, for the purposes of this

study and research question, we conducted analyses only on the angry

and happy video clips, as the objective of the study was to investigate

emotion perception in different expectancy contexts. The different

F IGURE 1 A graphical depiction of congruent and incongruent angry (threat) and happy trials within the dynamic emotion perception task.
In an angry block, participants were asked to press a button with their index finger for angry videos (angry congruent trial) and press a button with
their middle finger for happy videos (happy incongruent trial). However, in a happy block, participants were asked to press a button with their
index finger for happy videos (happy congruent trial) and their middle finger for angry videos (angry incongruent trial)
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expectancy conditions were: angry congruent (angry video preceded by

angry cues; AC), angry incongruent (angry video preceded by happy

cues; AI), happy congruent (happy video preceded by happy cues; HC),

and happy incongruent (happy video preceded by angry cues; HI) (see

Figure 1).

Within each imaging run, there were nine experimental blocks. Each

experimental block began with an instruction cue (3 s), followed by six

or nine trials, consisting of an emotion cue presented for 1 s, followed

by an inter-stimulus interval (ISI; a black screen presented for a mean

duration of 1 s), which was followed by an emotion video presented for

3 s. The ISI was jittered within a block, with a uniform distribution

between 500 ms and 1,500 ms, of either 6 × 200 ms intervals (during

blocks of six videos) or 9 × 125 ms intervals (during blocks of nine

videos). The reason the blocks were of different lengths was to reduce

the predictability of how many trials each block contained, and thus the

ability of participants to predict the number of incongruent or congru-

ent videos. Alternating the number of videos was also done to eliminate

repetitiveness, as this may result in fluctuations of attention.

The experiment was a mixed design, meaning that different emo-

tion videos were presented in an event-related fashion within the

blocks of a specific emotion cue. In other words, within each block,

the cue always carried the same emotion (e.g., angry), but the videos

within that block would alternate the emotion (e.g., four angry videos,

one happy video, and one neutral video). The video clips within a

block were randomised using Microsoft Excel, so that the appearance

of congruent or incongruent videos could not be predicted. The emo-

tion blocks were counterbalanced between runs, as were the runs

between participants, using the Balanced Latin Squares method.

2.3 | Experimental procedure

The participants were asked to respond to the video clips by indicating

if the emotion presented in the instruction cue matched the emotion

expressed in the video. Specifically, participants were told to press the

button with their index finger when the video clip was congruent with

the instruction cue emotion or press with their middle finger when it

was not. All responses occurred within 3 s during the video clips. Accu-

racy and reaction times (RTs) were recorded for each trial.

Before the fMRI experiment, participants were trained with a

practice task outside the MRI scanner. Both the practice and fMRI

tasks were presented using E-Prime 2.0 software [https://www.

pstnet.com/eprime.cfm, 2013; Schneider et al., (2012)] on a Windows

computer screen. The practice task consisted of nine blocks, and feed-

back was given if the correct/incorrect button was pressed. The goal

was to ensure that participants understood the aim of the task, and

that the finger response became familiar outside of the scanner. Dur-

ing the fMRI experiment, the DEP task was seen by participants

through a tilted mirror attached to the head coil. Responses were

recorded using a custom-built MRI-compatible response box. Partici-

pants were instructed to respond as quickly and as accurately as pos-

sible. No feedback was provided during the actual experiment.

After the fMRI experiment, participants completed the WASI

(Wechsler, 1999) in a testing room outside the MRI scanner. The

study was conducted at the Centre for Advanced Imaging, University

of Queensland.

2.4 | MRI acquisition and preprocessing

Structural and functional MRI images were acquired by a 3T Siemens

Magnetom TrioTim system using a 12-channel head coil. The scans

collected for each subject, in a session were as follows: localizer,

T1-weighted anatomical image MP2RAGE sequence (repetition

time (TR): 1900 ms, echo time (TE): 2.32 ms, resolution: 1 mm3, FoV:

230 mm, 196 slices), T2* weighted echo-planar sequence (TR:

3000 ms, TE: 30 ms, resolution: 2.5 mm3, FoV: 192 mm, 46 slices),

diffusion-weighted imaging [high-angular-resolution diffusion-

weighted imaging (HARDI) acquisition protocol; TR: 8400 ms,

TE: 100 ms, resolution: 2 mm3 isotropic, slices: 60, FoV: 300 mm, b-

value: 2000 s/mm2, 64 directions], and resting-state (TR: 3000 ms,

TE: 30 ms, resolution: 2.5 mm3, FoV: 192 mm, 46 slices). The total

scanning time per session was 45 min.

2.4.1 | Functional magnetic resonance images

Standard preprocessing of the images was carried out using Statistical

Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8). The preprocessing steps were as follows: slice timing on the func-

tional images to correct for differences in slice acquisition times within

each volume, using the middle slice as reference; realignment (estimate

and reslice) on the functional images, to correct for inter-scan movement

within each run (no participant was excluded for excessive movement

(defined as >3 mm translation or >2� rotation); co-registration of the

functional and structural images; segmentation of the structural image,

with heavy regularisation (0.1) recommended for MP2RAGE sequence;

normalisation of the resliced images into a standardised, stereotaxic

space (according to the Montreal Neurological Institute template); and

smoothing of normalised images with 6 mm full-width-at-half-maximum

isotropic Gaussian kernel.

2.4.2 | Diffusion-weighted images

The preprocessing was conducted using tools implemented in MRtrix3

(Tournier, Calamante, & Connelly, 2012). Diffusion-weighted images

were corrected for head movements (Smith et al., 2004) and eddy cur-

rent distortions (Andersson & Sotiropoulos, 2016), and inhomogenei-

ties were removed (Zhang, Brady, & Smith, 2001). The response

functions were estimated using the single-fibre tournier algorithm and

used to calculate the fibre orientation distributions using constrained

spherical deconvolution (Tournier, Calamante, & Connelly, 2013).

A deterministic tractography algorithm based on spherical

deconvolution with a step size of 0.2 mm, maximum path length of

200 mm, and minimum path length of 10 mm was used to generate

streamlines of the right stria terminalis, ILF, and IFOF. FA was

extracted from the maps of the individual white matter pathways,

which was defined by the fraction of tracks to traverse each voxel.
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2.4.3 | Tractography

The regions of interest (ROIs) for the tractography were defined using

an online FSL Harvard-Oxford atlas. The stria terminalis was

reconstructed by placing a seeding ROI in the right amygdala—the

seeding ROI was dilated two times. Inclusion ROIs were also created

for the right hypothalamus and thalamus/caudate, and dilated two

times. An exclusion ROI was created inferior to the right caudate head

to prevent the formation of the amygdafugal tract. These ROIs were

then warped to individual space from MNI space and manually shaped

to the individual person's anatomy with guidance from the FSL

Harvard-Oxford atlas. Tracts for the stria terminalis were indetermin-

able for eight participants. The IFOF was reconstructed by placing a

seeding ROI in the coronal slice, anterior to the genu of the corpus

callosum, delineating the majority of the cerebral hemisphere. An

inclusion ROI was drawn in the superior and middle temporal gyri, and

a third ROI in the occipital lobe, posterior to the splenium of the cor-

pus callosum, on a coronal slice. For the reconstruction of the ILF, a

seeding ROI was placed in the occipital lobe, posterior to the splenium

of the corpus callosum, and covering the majority of the cerebral

hemisphere. A second ROI was drawn in the anterior temporal lobe.

For the IFOF and ILF, exclusion ROIs were drawn in the midline sagit-

tal plane, to exclude interhemispheric projections. Further exclusion

ROIs were drawn to exclude outlier tracts not consistent with the

known anatomy of the pathways of interest. Examples of the stria ter-

minalis, ILF, and IFOF tracts and ROIs used for the tractography are

displayed in the Supplementary Materials (see Figures S1–S3).

3 | DATA ANALYSIS

We used a multivariate, partial least squares (PLS) approach for the

functional/structural connectivity analysis and relating behavioural

performance to the delineated networks. PLS examines the relation

between activity in a selected brain region and activity in the rest of

the brain across task conditions, as well as the relation of these func-

tional networks to structural networks, and behavioural performance

in each experimental condition. The PLS technique allows identifica-

tion of distributed patterns of neural activity, rather than the indepen-

dent activity of a single brain region; thus, this analysis is optimally

suited to investigating emotion perception, which engages a wide-

spread and interactive brain network (Arsalidou, Morris, & Taylor,

2011; Vuilleumier & Pourtois, 2007).

Based on the findings of regional activations underlying congruence

or incongruence with cue (Barbalat et al., 2013; Dzafic et al., 2016), we

conducted an analysis in which two regions were selected: the right

amygdala [18-8-18] and the right temporoparietal junction [60−50 34].

In our study, the selection of the regions was both data-driven (please

see Dzafic et al., 2016) and literature-driven (Bishop, 2008; Vuil-

leumier & Pourtois, 2007; Marstaller et al., 2016b; Corbetta et al.,

2008; Decety & Lamm, 2007; Doty, Japee, Ingvar, & Ungerleider,

2014). We conducted two separate analyses to identify the correlation

between activity in the (1) rAMY with activity in the rest of the brain,

right stria terminalis FA values, right ILF FA values, and behaviour; and

(2) rTPJ with activity in the rest of the brain, right IFOF FA values, and

behaviour. Our behavioural measure in each analysis was accurate RTs

from each participant in the congruent/incongruent, happy/angry con-

ditions. Three participants were removed from the final analyses due to

being outliers (z-score > 3).

The procedure for the functional connectivity analysis involved

extracting the blood-oxygen-level dependent (BOLD) values from the

two regions, from the onset of each angry/happy video, across 6 time

points (TRs), as this time period captures the hemodynamic response

function. The averaged activity for each region, as well as the mean FA

values and mean RTs (the functional, structural, and behavioural vari-

ables), were then correlated with activity in all other brain regions, across

all participants, and within each experimental condition, to form a covari-

ance matrix. Next, the covariance matrix is decomposed with singular

value decomposition (SVD), resulting in a set of orthogonal variables

(latent variables; LVs). Each LV consists of three components: singular

values (significance for a given LV), voxel saliences (spatiotemporal activ-

ity for a given LV), and task saliences (degree to which each condition is

related to the brain-variable correlations within the given LV). Finally, the

significance for each LV was determined by conducting 500 permuta-

tions (McIntosh, Bookstein, Haxby, & Grady, 1996). Corrections for mul-

tiple comparisons are not necessary in PLS, as the voxel saliences are

calculated in a single mathematical step on the whole brain. For each LV,

“brain scores” are computed for each participant, which indicate the

degree to which each participant shows the pattern of brain activity

identified, across conditions. We calculated the correlation between the

brain scores from each significant LV and the rAMY/rTPJ BOLD values

to assess the relation between the whole-brain pattern and activity in

the two regions. The robustness of the voxel saliences was assessed

with bootstrap estimation of the standard errors (SE), with 100 iterations.

Bootstrap ratios are obtained by dividing each voxel's mean salience by

its bootstrapped SE. Peak voxels with a bootstrap ratio > 3.0 and cluster

size of 100 or more voxels were considered, as this approximates

p < 0.001. The results display the Pearson product–moment correlation

coefficient between whole-brain scores and other variables (e.g., the

RTs, FA values, and rAMY/rTPJ percent signal change) for each condi-

tion. These correlations reflect the three-way relation between behav-

iour, structure, and function.

4 | RESULTS

4.1 | Structure–function–behaviour relation among
right amygdala, stria terminalis, and ILF

The analysis with right amygdala identified two statistically significant LVs

(p < 0.01), accounting for 20.53% and 12.97% of covariance in the data.

4.1.1 | LV1: right amygdala network, ILF, and faster
response to happy emotions

The first LV delineated a functional network connected to right amyg-

dala (AC: r = 0.57, 95% CI [0.44, 0.77]; AI: r = 0.47, 95% CI [0.25,
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0.78]; HC: r = 0.64, 95% CI [0.55, 0.83]; HI: r = 0.48, 95% CI [0.29,

0.71]), whose activity positively correlated with FA in the ILF during

congruent anger (r = 0.44, 95% CI [0.23, 0.65]) and with RTs during

incongruent anger (r = 0.32, 95% CI [0.07, 0.61]), and negatively cor-

related with RTs during conditions involving the happy emotion

videos (both congruent (r = −0.29, 95% CI [−0.60, −0.12] and incon-

gruent (r = −0.32, 95% CI [−0.61, −0.12])). This finding suggests that

the faster the recognition of happiness is, the stronger the activity in

this network, and that functional connectivity in this network is asso-

ciated with greater FA in the ILF during anger congruent with cue (see

Figure 2). This network involved left inferior frontal gyrus, right medial

and superior frontal gyri, left superior temporal gyrus, left thalamus,

right amygdala extending into the hippocampus, right posterior cingu-

late cortex, and left lingual gyrus (see Table 1).

4.1.2 | LV2: right amygdala network, stria terminalis,
and faster response to congruent anger

Critically, the second LV delineated a functional network connected

to right amygdala (r = 0.42, 95% CI [0.21, 0.81]) whose activity

F IGURE 2 LV1: functional connections with right amygdala (rAMY) and structural/behaviour PLS results. (Top left panel) A pattern of correlated
whole-brain activity, (bottom left panel) structural network: right inferior longitudinal fasciculus (ILF). (Top right panel) During angry conditions,
correlations between activity in rAMY seed and brain scores representing network activity displayed in the top left panel, with positive correlation for
ILF during congruent conditions, and positive correlation for reaction times during incongruent conditions. (Bottom right panel) During happy
conditions, correlations between activity in rAMY seed and brain scores representing network activity displayed in the top left panel, with negative
correlation for reaction times during congruent and incongruent conditions. rAMY seed activity is displayed in percent signal change and reaction
times are displayed in milliseconds. BSR threshold is set at 2 (p < 0.05), for visualisation purposes; however, reported whole-brain activity is set at BSR
3 (p < 0.001). All results display significant correlations based on 95% confidence intervals calculated from the bootstrap procedure; for further details,
including nonsignificant results, see Supplementary Materials Figure S4 [Color figure can be viewed at wileyonlinelibrary.com]
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negatively correlated with RTs (r = −0.49, 95% CI [−0.75, −0.42]) dur-

ing congruent angry conditions and positively correlated with FA in

the stria terminalis (r = 0.38, 95% CI [0.34, 0.62]). In other words, the

faster the recognition of anger congruent with cue is, the stronger the

activation and microstructure of this functional and structural net-

work, respectively (see Figure 3). This network involved right amyg-

dala and hippocampus extending into the mammillary bodies, caudate,

and subgenual anterior cingulate cortex (see Table 1). People who rec-

ruited this network of regions also had reduced FA in the stria ter-

minalis (AI: r = −0.31, 95% CI [−0.55, −0.12]; HI: r = −0.54, 95% CI

[−0.70, −0.46]) and slower RTs (AI: r = 0.33, 95% CI [0.21, 0.67]; HI:

r = 0.64, 95% CI [0.56, 0.82]) during the incongruent conditions (both

anger and happiness).

4.2 | Structure–function–behaviour relation between
right temporoparietal junction and IFOF

The analysis with rTPJ identified two statistically significant LVs

(p < 0.01), accounting for 20.95% and 13.25% of covariance in

the data.

4.2.1 | LV1: right TPJ network, IFOF, and slower
response to congruent anger

The first LV demonstrated a pattern of rTPJ functional connectivity

(AC: r = 0.47, 95% CI [0.26, 0.74]; HC: r = 0.40, 95% CI [0.30, 0.64]),

which also correlated positively with FA in the IFOF during both angry

(r = 0.50, 95% CI [0.34, 0.77]) and happy (r = 0.44, 95% CI [0.32,

0.71]) congruent conditions. The rTPJ functional network, during con-

gruent angry conditions, also correlated positively with RTs (r = 0.28,

95% CI [0.17, 0.49]); meaning that the slower the recognition of anger

congruent with cue is, the stronger the activation of this network (see

Figure 4). This network included the left middle and medial frontal

gyrus, bilateral inferior frontal gyri, left superior parietal lobule, right

globus pallidus, right middle temporal gyrus, and left lingual gyrus (see

Table 2).

4.2.2 | LV2: two right TPJ networks differentially
associated with (1) faster response to incongruent
anger and slower response to congruent anger versus
(2) faster response to congruent happiness

Importantly, the second LV delineated a functional network con-

nected to rTPJ (AC: r = 0.47, 95% CI [0.19, 0.76]; AI: r = 0.55, 95% CI

[0.47, 0.72]; HI: r = 0.46, 95% CI [0.31, 0.68]), whose activity nega-

tively correlated with RTs during incongruent angry conditions

(r = −0.52, 95% CI [−0.73, −0.45]); meaning that the faster the recog-

nition of anger incongruent with cue is, the stronger the activation of

this network. This same network was positively correlated with RTs

during congruent anger (r = 0.28, 95% CI [0.07, 0.55]), meaning that

this network is involved in slower recognition of anger congruent with

cue (see Figure 5). This network involved right inferior frontal gyrus

and supramarginal gyrus, left superior parietal lobule, and right cuneus

(see Table 2). Interestingly, an alternative rTPJ network was engaged

during happy congruent conditions (r = 0.45, 95% CI [0.35, 0.71]) and

negatively correlated with RTs (r = −0.57, 95% CI [−0.84, −0.47]). This

network involved left inferior frontal gyrus, right middle frontal gyrus,

bilateral anterior cingulate cortex, left middle temporal gyrus, bilateral

thalamus, right amygdala, left caudate, red nucleus, substania nigra,

and right globus pallidus (see Table 2 and Figure 5).

TABLE 1 Functional connections with right amygdala

MNI coordinates

Brain region Hem BA x y z Voxels BSR

LV1

Inferior frontal gyrus L 47 −38 30 −16 204 5.92

Medial frontal gyrus R 8 12 50 30 156 4.73

Superior frontal gyrus R 9 2 60 18 106 4.46

Amygdala extending into the hippocampus R 22 −8 −18 3,336 6.93

Posterior cingulate cortex R 30 18 −56 12 160 5.33

Parahippocampus R 19 22 −50 −4 107 5.04

Thalamus L −28 −22 8 247 6.27

Superior temporal gyrus L 22 −52 −12 0 5,991 8.00

Lingual gyrus L 18 −8 −58 6 141 5.15

LV2

sACC L 32 −6 24 −14 110 5.69

Mammillary bodies extending into the hippocampus R 10 −14 −20 124 5.08

Caudate L −8 8 16 136 5.02

Abbreviations: Hem = hemisphere; BA = Brodmann area; R = right; L = left; BSR = bootstrap ratio; subgenual anterior cingulate cortex (sACC);

voxels = number of voxels (one voxel volume = 6 mm3). All reported activations are from TR 3 and 5 ≥100 voxels (600 mm3).
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5 | DISCUSSION

The current study identified functional and structural networks that

facilitate speed of emotion processing, in situations either congruent

or incongruent with prior expectations. We identified a role for the

stria terminalis, a white-matter pathway connecting the extended

amygdala network, in emotion processing. Specifically, we found that

greater FA in the right stria terminalis was associated with faster

response to emotion during actual presentation of, or after cueing,

anger. Greater FA in the stria terminalis pathway was also associated

with stronger connectivity in a rAMY-limbic functional network, and

individuals with greater recruitment of this functional network

responded faster to anger congruent with cue. In contrast, faster

response to anger incongruent with cue was associated with a ventral

frontoparietal network, which was functionally connected to the rTPJ.

Furthermore, we found that a widespread network, involving

frontotemporal and subcortical regions, which was functionally con-

nected to both the rAMY and rTPJ, was associated with faster

F IGURE 3 LV2: functional connections with right amygdala (rAMY) and structural/behaviour PLS results. (Top left panel) A pattern of
correlated whole-brain activity, (bottom left panel) structural network: right stria terminalis (stria). (Top right panel) During angry conditions,
correlations between activity in rAMY seed and brain scores representing network activity displayed in the top left panel, with positive
correlation for stria FA and negative correlation for reaction times during congruent anger conditions. Negative correlation for stria FA and
positive correlation for reaction times during incongruent angry conditions. (Bottom right panel) Negative correlation for stria FA and positive
correlation for reaction times during incongruent happy conditions. rAMY seed activity is displayed in percent signal change and reaction times
are displayed in milliseconds. BSR threshold is set at 2 (p < 0.05), for visualisation purposes; however, reported whole-brain activity is set at BSR
3 (p < 0.001). All results display significant correlations based on 95% confidence intervals calculated from the bootstrap procedure; for further
details, including nonsignificant results, see Supplementary Materials Figure S5 [Color figure can be viewed at wileyonlinelibrary.com]
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response times for happy videos. In sum, we provide evidence that

the extended amygdala circuitry facilitates speed of response in

threatening situations and, for the first time, highlight a key role for

the stria terminalis in the efficient recognition of emotion under

threat. Furthermore, we advance on current knowledge by demon-

strating differential influence of the rAMY-limbic and rTPJ-ventral

attention network on fast processing of anger, depending on if anger

is congruent or incongruent with prior expectations, respectively.

We found that both functional and structural connectivity within

the extended amygdala network facilitate speed of emotion processing

in threatening conditions. The extended amygdala network includes the

amygdala and the BNST. Evidence suggests that these two regions have

distinct roles in threat perception, specifically phasic versus sustained

response (Alvarez, Chen, Bodurka, Kaplan, & Grillon, 2011; Herrmann

et al., 2016; Naaz, Knight, & Depue, 2019). The most recent paper by

Naaz et al. (2019) found that the amygdala is involved in phasic

responses to explicit (cued) threat and the BNST involved in sustained

responses to ambiguous threat. In line with the results from Naaz et al.

(2019), we found that recognition of explicitly cued anger was faster in

those participants who had stronger functional connectivity with the

F IGURE 4 LV1: functional connections with right temporoparietal junction (rTPJ) and structural/behaviour PLS results. (Top left panel) A
pattern of correlated whole-brain activity, (bottom left panel) structural network: right inferior fronto-occipital fasciculus (IFOF). (Top right panel)
During angry congruent conditions, correlations between activity in rTPJ seed and brain scores representing network activity displayed in the top
left panel, with positive correlation for FA in the IFOF, and positive correlation for reaction times. (Bottom right panel) During happy congruent
conditions, correlations between activity in rTPJ seed and brain scores representing network activity displayed in the top left panel, with positive
correlation for FA in the IFOF. rTPJ seed activity is displayed in percent signal change and reaction times are displayed in milliseconds. BSR
threshold is set at 2 (p < 0.05), for visualisation purposes; however, reported whole-brain activity is set at BSR 3 (p < 0.001). All results display
significant correlations based on 95% confidence intervals calculated from the bootstrap procedure; for further details, including nonsignificant
results, see Supplementary Materials Figure S6 [Color figure can be viewed at wileyonlinelibrary.com]
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right amygdala. The stria terminalis links these two regions within the

extended amygdala network, connecting the amygdala to the BNST. It is

not surprising then that our findings show that individuals who have

greater FA in the stria terminalis recognised anger faster when it was

both congruent and incongruent with the cue. No prior study has inves-

tigated the stria terminalis and its association with human social behav-

iour; however, previous studies have linked the stria terminalis with

traits that impair threat processing. For example, FA in the stria ter-

minalis has been found to be related with high levels of anxiety sensitiv-

ity in patients with panic disorder (Kim, Kim, Choi, & Lee, 2017);

similarly, variability in the microstructure of the stria terminalis was

found to vary with post-traumatic stress severity (Harnett, Ference,

Knight, & Knight, 2018). FA in the stria terminalis was also found to dif-

fer across levels of consciousness in patients with disorders of con-

sciousness (Wu et al., 2018). The current study provides novel evidence

that the stria terminalis is related to speed of emotion processing in

threatening or potentially threatening social situations, which may

explain the association with anxiety-related disorders.

We found a strong association between the stria terminalis and

the functional rAMY-limbic network, demonstrating that the increased

TABLE 2 Functional connections with right temporoparietal junction

MNI coordinates

Brain region Hem BA x y z Voxels BSR

LV1

Precentral gyrus R 9 38 14 36 807 6.82

Middle frontal gyrus L 6, 46 −34 20 44 366 5.80

Inferior frontal gyrus B 47, 46 −54 32 −10 190 5.68

34 30 −8 101 5.28

Medial frontal gyrus L 8 −6 36 38 646 5.29

Globus pallidus R 16 0 4 118 4.85

Middle temporal gyrus R 21 62 −48 −2 324 6.13

Supramarginal gyrus R 40 58 −52 34 659 5.74

Superior parietal lobule L 7 −30 −62 56 450 5.40

Lingual gyrus L 18 −10 −94 −10 381 4.81

LV2 network 1

Inferior frontal gyrus R 10 44 52 −14 119 5.40

Supramarginal gyrus R 40 60 −48 34 164 10.76

Superior parietal lobule L 7 −34 −64 58 161 4.68

Precuneus R 7 4 −48 56 250 6.23

Paracentral lobule L 5 −20 −34 48 138 4.33

Cuneus R 19 6 −78 42 115 3.97

LV2 network 2

Inferior frontal gyrus L 47, 9 −40 26 −4 380 6.38

Precentral L 9 −40 18 34 124 6.04

Anterior cingulate cortex B 32, 24 −4 42 2 114 4.95

10 34 −2 283 4.30

Middle frontal gyrus R 46 54 26 20 122 4.77

Amygdala R 30 −12 −14 102 5.57

Claustrum L −34 8 −2 396 6.20

Caudate L −8 20 14 103 5.78

Red nucleus L −4 −24 −18 111 5.24

Thalamus B 14 −24 12 254 5.09

−20 −12 18 121 4.36

Substania Nigra L −12 −20 −16 202 4.84

Globus pallidus R 24 −10 −4 270 4.67

Middle temporal gyrus L 20 −56 −40 −8 107 5.56

Abbreviations: Hem = hemisphere; BA = Brodmann area; R = right; L = left; B = bilateral; TPJ = temporoparietal junction; BSR = bootstrap ratio;

voxels = number of voxels (one voxel volume = 6 mm3). All reported activations are from TR 1–5 ≥100 voxels (600 mm3).
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microstructure and, subsequently, the ability for regions within the

network to communicate are crucial for faster processing in threaten-

ing situations. To date, the role of the stria terminalis in human cogni-

tion has been difficult to study due to the difficulty in tracing the

tract. The use of conservative deterministic tractography and manual

tracing of tracts, and the advancement of diffusion imaging (e.g., using

HARDI acquisition protocol) have given us the possibility to trace the

stria terminalis with high confidence. The stria terminalis tract con-

nects the AMY with the caudate, thalamus, hippocampus, and septal

and hypothalamic nuclei (Avery et al., 2014; Kwon, Byun, Ahn, Son, &

Jang, 2011). In the current study, we found high concordance

between regions connected by the stria terminalis and the regions

within the rAMY-limbic functional network, which included: caudate,

hippocampus, mammillary bodies, and subgenual anterior cingulate

cortex (sACC). Theories pertaining to the role of the rAMY state that

it is involved in allocating processing resources to prioritise cues

relevant in a given situation (Pessoa & Adolphs, 2010) and, as such,

would facilitate rapid detection of threat, relevant for survival (Bishop,

2008; Marstaller et al., 2016b; Vuilleumier & Pourtois, 2007). Previous

studies have found that the sACC and caudate are associated with

fast responses to threatening versus neutral faces, with evidence for

involvement in prioritising attention towards threatening faces (Doty

et al., 2014). Connectivity between the hippocampus and amygdala

has been strongly associated with contextual fear conditioning, in

which participants are exposed to a particular context paired with a

threatening stimulus, such as a shock, resulting in an automatic fear

response during that specific context (Alvarez, Biggs, Chen, Pine, &

Grillon, 2008; Marstaller, Burianová, & Reutens, 2016a). Mammillary

bodies, thought to be part of the extended hippocampal system, rap-

idly relay hippocampal inputs to the thalamus (Vann, 2010). The inter-

play between the rAMY and the extended hippocampal system may

produce contextual fear conditioning, in which there is a focus on

F IGURE 5 LV2: functional connections with right temporoparietal junction (rTPJ) and structural/behaviour PLS results. (Left panel) Two
alternative patterns of correlated whole-brain activity. (Top right panel) During angry conditions, correlations between activity in rTPJ seed and

brain scores representing network activity displayed in the top left panel, with positive correlation for reaction times during congruent conditions,
and negative correlation for reaction times during incongruent conditions. (Bottom right panel) Correlations between activity in rTPJ seed and
brain scores representing network activity displayed in the bottom left panel, with negative correlation for reaction times during congruent happy
conditions. rTPJ seed activity is displayed in percent signal change and reaction times are displayed in milliseconds. BSR threshold is set at
2 (p < 0.05), for visualisation purposes; however, reported whole-brain activity is set at BSR 3 (p < 0.001). All results display significant
correlations based on 95% confidence intervals calculated from the bootstrap procedure; for further details, including nonsignificant results, see
Supplementary Materials Figure S7 [Color figure can be viewed at wileyonlinelibrary.com]
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threatening stimuli. In summary, our findings align with the idea that

memory-encoded fear conditioning and prioritisation of attention to

threatening cues underlie fast responding to anger that is congruent

with prior expectations.

We found that greater engagement of an rTPJ functional network

was associated with faster recognition of anger incongruent with cue.

This network comprised of right inferior frontal gyrus, right

precuneus, right cuneus, and left superior parietal lobule connecting

to the rTPJ, part of the ventral attention network (Corbetta, Kincade,

Ollinger, McAvoy, & Shulman, 2000; Corbetta & Shulman, 2002;

Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005). This ventral

attention network specialises in bottom-up processing, interrupting

top-down attention and shifting focus to unexpected, but relevant

stimuli—such as unexpected threat (Corbetta et al., 2008). Moreover,

we found that individuals who engaged this rTPJ ventral attention

network more had slower recognition of anger congruent with cue,

which may point to inefficient inhibition of the reorienting network

during congruent trials (DiQuattro & Geng, 2011). Individuals who

recruited the rTPJ ventral and dorsal attention networks together dur-

ing viewing of congruent emotions had increased white matter micro-

structure in the IFOF, suggesting that the IFOF may connect both

ventral and dorsal networks. Contrary to our hypothesis, we did not

find evidence that individuals who engaged the rTPJ ventral attention

network more, and had faster responses to anger incongruent with

cue, had increased FA in the IFOF. However, we found that the rTPJ

structural network is important for the perception of emotions con-

gruent with cue. Future studies should examine other structural net-

works of the rTPJ, such as the superior longitudinal fasciculus III

(Hattori et al., 2017), to elucidate the white matter pathways involved

in fast re-orienting to unexpected, but relevant, stimuli.

One limitation in the present study is that despite the high resolu-

tion of our DWI there is a chance that fibres external to the stria ter-

minalis have been incorrectly classified. Previous studies have traced

the stria terminalis using similar voxel resolutions to ours, with a single-

shell sequence, using DTI acquisition (Kamali et al., 2015; Kwon et al.,

2011; Mori & Aggarwal, 2014). However, HARDI fibre tracking (used in

this study) has been found to perform significantly better than DTI at

following white matter tracts through regions of crossing fibres,

avoiding erroneous tracing, and enabling better discrimination of more

complex white matter pathways, such as stria terminalis (Berman,

Lanza, Blaskey, Edgar, & Roberts, 2013). Second, we distinguished the

stria terminalis from the fornix by use of a right amygdala seeding ROI.

The stria terminalis reaches the amygdala, whereas the fornix termi-

nates in the hippocampus (Kamali et al., 2015; Kwon et al., 2011). As

such, we only included tracts that reach the amygdala in our analyses.

A further limitation is that the results pertain only to a male population.

The male sample was recruited in order to reduce heterogeneity, as

males and females may differ in their emotion perception (Lambrecht

et al., 2014; Stevens and Hamann, 2012). The generalizability of our

findings to females should be the focus of follow-up studies.

The results from the current study provide important insights into

our neuroscientific understanding of emotion processing, which can

elucidate the pathogenesis of psychiatric disorders in which impaired

emotion processing is a key feature. In psychosis, for example, there is

a deficit in recognising threatening emotions (Behere, 2015; Mandal,

Pandey, & Prasad, 1998; van't Wout et al., 2007) and also mis-

attribution of threat (Premkumar et al., 2008). In contrast, in anxiety

and post-traumatic stress disorder, there is an abnormal anticipation

of threat (Gross & Hen, 2004). These abnormalities in threat

processing have strong links to neurobiological factors; specifically,

abnormal activation and connectivity in similar brain regions as those

identified in the current study (i.e., amygdala, temporoparietal junc-

tion, BNST, ACC, and hippocampus) (Bitsch, Berger, Nagels,

Falkenberg, & Straube, 2018; Bryant et al., 2008; Buff et al., 2017;

Felmingham et al., 2008; Rabellino et al., 2015; Rabellino et al., 2018;

Underwood, Kumari, & Peters, 2016; Underwood, Peters, & Kumari,

2015). In contrast to disorders of threat processing, depression has

been consistently linked with impaired perception of happiness

(Bourke, Douglas, & Porter, 2010) and reduced activity in the limbic

network (Lawrence et al., 2004), with antidepressant treatment asso-

ciated with increased amygdala activation to happy faces (Norbury

et al., 2009). In our study, we found that individuals who recruited a

widespread frontotemporal-subcortical network had faster response

recognition for happy stimuli. Specifically, when this network is func-

tionally connected to the rAMY, this is related to faster recognition of

happy emotions congruent or incongruent with cue, and when this

network is functionally connected to the rTPJ, this is related to faster

recognition of happy emotions congruent with cue. A multimodal, net-

work level approach, such as the one used in the current study, pro-

vides greater insight into the neural architecture of healthy emotion

perception, with implications for understanding a range of clinical

pathologies characterised by impaired emotion processing. The find-

ings from the current study, in combination with future research into

impaired emotion processing networks, provide impetus for new

neuromodulation therapies, which rely on isolating abnormal neuroan-

atomic networks (Tye, Frye, & Lee, 2009).

6 | CONCLUSIONS

The results of the present study confirmed that faster detection of

anger congruent with prior expectations is associated with greater

connections within the rAMY limbic network. In threatening environ-

ments, attention is rapidly directed to cues that signal aggression,

inducing connections between limbic structures and rAMY. The pre-

sent study provides novel evidence as to the role of stria terminalis in

emotion processing. We find that increased white matter microstruc-

ture in this tract is important for faster processing of both congruent

and incongruent anger, as well as faster detection of happiness in situ-

ations where anger is cued. In terms of speed of detecting anger

incongruent with prior expectations, we found involvement of the ven-

tral attention network with a primary node of the rTPJ, which is

known to interrupt top-down attention and shift focus to unexpected,

behaviourally relevant stimuli. Our results have implications for under-

standing the neurobiological underpinnings of psychiatric disorders

where there is an impaired processing of emotion and may inform the
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application of neuromodulation therapies for these psychiatric

disorders.
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