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Introduction 

In the recent years, the study of boundary layer flow due to stretching plate has received a good attention among researchers

due to the ever-increasing demand in industrial applications. Some of the applications lie in geo-mechanics, insulation engineering 

and in contemporary technology. The study of laminar flow over a stretching plate in porus media and heat transfer has been of

tremendous interest due to its highly applicable aspect in industrial problems. Sakiadis [1] introduced the study of laminar flow

over a solid surface which is continuously moving. Crane [2] acquired the closed form solution by extending this concept of studying

the steady laminar flow due to stretching sheet. The pursuance of finding the exact solutions of the boundary layer equations is

of great interest since decades. In hydrodynamics, the exact solution is of great importance because of the nonlinear term in the

governing differential equations of the fluid motion. In such cases, to obtain the closed form solution of the governing differential

equations become difficult and in some cases it becomes impossible. Therefore, most of the researchers obtain the similarity solution.

Due to emergence of numerical techniques, many researchers have investigated numerical methods and solved these type of problems

in different variants with or without heat transfer. Moreover, a few studies are available in literature (see [3–28] ). Natural porous

media fluxes include processes such as the movement of oil, gas, or moisture in hydrocarbons, as well as the potential deployment

of methane in gas hydrates,the movement of Waterless Phase Liquids in polluted groundwater, the movement of fluids and soluble

compounds in living organisms materials, and the dissolving metamorphism of ice are all examples of natural porous media and

mechanisms although some illustrations of industrial porous media and the procedures that correspond to them are: drying of paper

pulp, the soaking of liquids in nappies and other items with a same uptake capacity, the treatment of gas and water in fuel cells,

and the drying of foods. In present work, we propose to study the boundary layer flow past a linear stretching plate at an angle with

body force in porous media and heat transfer. The governing equations are nonlinear partial differential equation which cannot be

solved exactly. Hence, we develop the numerical technique based on non polynomial quintic spline. This method is used to find the

approximate numerical solutions in such type of situations.The details of splines can be seen in [29–32] . Recently, there has been

a considerable interest for solving the nonlinear differential equations by using quasilinearisation technique [33,34] . This method 

has been applied by numerous researchers for solving the nonlinear differential equations. Our objective is to find a solution for the

unidirectional movement of a viscous and incompressible fluid over an inclined stretched sheet in porous media while simultaneously

taking into account body force. In addition to this, we conducted an investigation into the heat transfer problem. First, we transform

the partial differential equations governing the motion of the fluid into third order nonlinear ordinary differential equation by applying

a similarity transformations. Our target is to find the approximate solution of this transformed problem with the help of the proposed

non polynomial quintic spline technique. Further, we discuss the convergence of the scheme developed along with its truncation

error. The approximate numerical values of the velocity function obtained are discussed by using tables and graphs. Finally with the

help of data obtained, we find the solution of heat transfer problem using incomplete gamma function. Nusselt number has also been

discussed. 

This paper is organised as follows: Section 2 portrays the mathematical modelling for the flow problem. Quasilinearization tech- 

nique has been described in section 3 and in section 4 we have deduced the non polynomial quintic spline method. The truncation

error is given in section 5 and in Section 6,we give the application of the method. The convergence analysis is carried out in section 7.

In section 8, numerical experiments of the flow problem are given by displaying the numerical values of velocity functions through

tables and figures. In Section 9, we discuss the Nusselt number and heat transfer assessment. Section 10 presents findings, discussion

and conclusion. 

Problem construction 

Referring the Fig. 1 , where we consider flow of viscous incompressible fluid past an infinite length inclined flat stretching plate

which has been put in a porous medium of porosity 𝑘 ′. The body weight has been taken into consideration. The equations governing
Fig. 1. Inclined Stretching Plate. 
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the flow are: 

𝜕𝑢 

𝜕𝑥 
+ 

𝜕𝑣 

𝜕𝑦 
= 0 , (1) 

𝑢 
𝜕𝑢 

𝜕𝑥 
+ 𝑣 

𝜕𝑢 

𝜕𝑦 
= 𝜈

𝜕 2 𝑢 

𝜕𝑦 2 
− 

𝜈

𝑘 ′
𝑢 − |𝑔 |sin 𝜓, (2) 

with boundary conditions: 

𝑦 = 0 , 𝑢 = 𝑚𝑥, 𝑣 = 0 , (3) 

𝑦 → ∞, 𝑢 = 0 . (4) 

Define the dimentionless variable 𝜁 = 

(
𝑚 

𝑣 

) 1 
2 
𝑦 and 𝜓( 𝑥, 𝑦 ) = ( 𝑚𝑣 ) 

1 
2 𝑥𝐻( 𝜁 ) so that 𝑢 = 

𝜕𝜓 

𝜕𝑦 
and 𝑣 = − 

𝜕𝜓 

𝜕𝑥 
satisfying the continuity Eq. (1) .

Thus, we have 𝑢 = 𝑚𝑥𝐻 

′( 𝜁 ) and 𝑣 = −( 𝑚𝑣 ) 
1 
2 𝐻( 𝜁 ) . Substituting the obtained form of 𝑢 and 𝑣 in Eqs. (2) - (4) , we have 

𝐻 

′′′( 𝜁 ) + 𝐻 ( 𝜁 ) 𝐻 

′′( 𝜁 ) − 𝐻 

′2 ( 𝜁 ) − 

𝜈

𝑚𝑘 ′
𝐻 

′( 𝜁 ) = 

|𝑔 |
𝑚 

2 𝑥 
sin 𝜓, (5) 

with relevant boundary conditions 

𝜁 = 0 , 𝐻( 𝜁 ) = 0 , 𝐻 

′( 𝜁 ) = 1 , (6) 

𝜁 → ∞, 𝐻 

′( 𝜁 ) = 0 . (7) 

Here, the problem posed by the Eqs. (5) , (6) and (7) is a non-linear boundary value problem of order three. Hence, we solve this

problem by non polynomial quintic spline method. We develop the method in the following way: 

Quasilinearization technique 

To linearize the non linear differential Eq. (5) , we use quasilinearization technique. Equations (5) - (7) are linearized with the help

of quasilinearization technique, as 

𝐻 

′′′
𝑡 +1 ( 𝜁 ) + 𝑎 𝑡 ( 𝜁 ) 𝐻 

′′
𝑡 +1 ( 𝜁 ) + 𝑏 𝑡 ( 𝜁 ) 𝐻 

′
𝑡 +1 ( 𝜁 ) + 𝑐 𝑡 ( 𝜁 ) 𝐻 𝑡 +1 ( 𝜁 ) 

= 𝐺( 𝜁, 𝐻 𝑡 ( 𝜁 ) , 𝐻 

′
𝑡 ( 𝜁 ) , 𝐻 

′′
𝑡 ( 𝜁 )) + 𝑎 𝑡 ( 𝜁 ) 𝐻 

′′
𝑡 ( 𝜁 ) + 𝑏 𝑡 ( 𝜁 ) 𝐻 

′
𝑡 ( 𝜁 ) + 𝑐 𝑡 ( 𝜁 ) 𝐻 𝑡 ( 𝜁 ) , 𝑎 ≤ 𝜁 ≤ 𝑏 (8) 

which can be written as 

𝐻 

′′′
𝑡 +1 ( 𝜁 ) + 𝑎 𝑡 ( 𝜁 ) 𝐻 

′′
𝑡 +1 ( 𝜁 ) + 𝑏 𝑡 ( 𝜁 ) 𝐻 

′
𝑡 +1 ( 𝜁 ) + 𝑐 𝑡 ( 𝜁 ) 𝐻 𝑡 +1 ( 𝜁 ) = 𝑘 𝑡 ( 𝜁 ) , 𝑎 ≤ 𝜁 ≤ 𝑏 (9) 

subject to boundary conditions 

𝐻 𝑡 +1 ( 𝑎 ) = 𝛼1 , 𝐻 

′
𝑡 +1 ( 𝑎 ) = 𝛼2 and 𝐻 

′
𝑡 +1 ( 𝑏 ) = 𝛼3 . (10) 

Here in Eq. (9) 

𝑘 𝑡 ( 𝜁 ) = 𝐺( 𝜁, 𝐻 𝑡 ( 𝜁 ) , 𝐻 

′
𝑡 ( 𝜁 ) , 𝐻 

′′
𝑡 ( 𝜁 )) + 𝑎 𝑡 ( 𝜁 ) 𝐻 

′′
𝑡 ( 𝜁 ) + 𝑏 𝑡 ( 𝜁 ) 𝐻 

′
𝑡 ( 𝜁 ) + 𝑐 𝑡 ( 𝜁 ) 𝐻 𝑡 ( 𝜁 ) , where, 𝑎 𝑡 ( 𝜁 ) = 

(
𝜕𝐺 

𝜕𝐻 

′′

)
𝐻= 𝐻 𝑡 

, 𝑏 𝑡 ( 𝜁 ) = 

(
𝜕𝐺 

𝜕𝐻 

′

)
𝐻= 𝐻 𝑡 

and 𝑐 𝑡 ( 𝜁 ) =(
𝜕𝐺 

𝜕𝐻 

)
𝐻= 𝐻 𝑡 

. 

For our convenience, we write 𝐻 

𝑚 
𝑡 +1 ( 𝜁 ) = 𝐻 

𝑚 ( 𝜁 ) , 𝑚 = 0 , 1 , 2 , 3 , 𝑘 𝑡 ( 𝜁 ) = 𝑘 ( 𝜁 ) , 
𝑎 𝑡 ( 𝜁 ) = 𝑎 ( 𝜁 ) , 𝑏 𝑡 ( 𝜁 ) = 𝑏 ( 𝜁 ) and 𝑐 𝑡 ( 𝜁 ) = 𝑐( 𝜁 ) , so that Eqs. (9) - (10) become 

𝐻 

′′′( 𝜁 ) + 𝑎 ( 𝜁 ) 𝐻 

′′( 𝜁 ) + 𝑏 ( 𝜁 ) 𝐻 

′( 𝜁 ) + 𝑐( 𝜁 ) 𝐻( 𝜁 ) = 𝑘 ( 𝜁 ) , 𝑎 ≤ 𝜁 ≤ 𝑏 (11) 

subject to boundary conditions 

𝐻( 𝑎 ) = 𝛼1 , 𝐻 

′( 𝑎 ) = 𝛼2 𝑎𝑛𝑑 𝐻 

′( 𝑏 ) = 𝛼3 . (12) 
3 
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Derivation of the method 

For achieving the approximate numerical solution of Eqs. (11) - (12) , the interval [ 𝑎, 𝑏 ] is divided into 𝑁 equal subintervals, i.e.

𝑎 = 𝜁0 < 𝜁1 < 𝜁2 < … < 𝜁𝑁 

= 𝑏 , where the mesh points are defined as: 

𝜁𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0(1) 𝑁 and ℎ = 

𝑏 − 𝑎 

𝑁 

. 

Now, we construct the algorithm using the non polynomial spline 𝐺 Δ which interpolates 𝐻( 𝜁 ) at the mesh points 𝜁𝑖 and has the

following form: 

𝐺 Δ( 𝜁 ) = 𝛼1 𝑖 sin 𝜅( 𝜁 − 𝜁𝑖 ) + 𝛼2 𝑖 cos 𝜅( 𝜁 − 𝜁𝑖 ) + 𝛼3 𝑖 𝑒 
𝜅( 𝜁− 𝜁𝑖 ) + 𝛼4 𝑖 𝑒 

− 𝜅( 𝜁− 𝜁𝑖 ) + 𝛼5 𝑖 ( 𝜁 − 𝜁𝑖 ) + 𝛼6 𝑖 , (13) 

where 𝛼1 𝑖 , 𝛼2 𝑖 , 𝛼3 𝑖 , 𝛼4 𝑖 , 𝛼5 𝑖 and 𝛼6 𝑖 are real finite constants and 𝐺 Δ ∈ 𝐶 

4 (Δ) is interpolated at the mesh points 𝜁𝑖 which depends on

the parameter 𝜅. The coefficients 𝛼1 𝑖 , 𝛼2 𝑖 , 𝛼3 𝑖 , 𝛼4 𝑖 , 𝛼5 𝑖 and 𝛼6 𝑖 are obtained by using the interpolatory conditions. Creating consistency

connections between the spline’s value and its derivatives at mesh points, let 

𝐺 Δ( 𝜁𝑖 ) = 𝐻 𝑖 , 𝐺 Δ( 𝜁𝑖 +1 ) = 𝐻 𝑖 +1 , 

𝐺 

′′
Δ( 𝜁𝑖 ) = 𝐷 𝑖 , 𝐺 

′′
Δ( 𝜁𝑖 +1 ) = 𝐷 𝑖 +1 , 

𝐺 

′′′
Δ ( 𝜁𝑖 ) = 𝑇 𝑖 , 𝐺 

′′′
Δ ( 𝜁𝑖 +1 ) = 𝑇 𝑖 +1 , 

𝐺 

′′′′
Δ ( 𝜁𝑖 ) = 𝐹 𝑖 , 𝐺 

′′′′
Δ ( 𝜁𝑖 +1 ) = 𝐹 𝑖 +1 . 

Putting these values and solving, we get 

𝛼1 𝑖 = 

1 
2 𝜅4 sinkh 

( 𝐹 𝑖 +1 − 𝜅2 𝐷 𝑖 +1 ) − 

coskh 

2 𝜅4 sinkh 
( 𝐹 𝑖 − 𝜅2 𝐷 𝑖 ) , 

𝛼2 𝑖 = 

1 
2 𝜅4 ( 𝐹 𝑖 − 𝜅2 𝐷 𝑖 ) , 

𝛼3 𝑖 = 

1 
𝑒 2 𝑘ℎ − 1 

( 1 
2 𝜅4 ( 𝑒 

𝑘ℎ 𝐹 𝑖 +1 − 𝐹 𝑖 ) + 

1 
2 𝜅2 ( 𝑒 

𝑘ℎ 𝐷 𝑖 +1 − 𝐷 𝑖 )) , 

𝛼4 𝑖 = 

1 
2 𝜅4 ( 𝐹 𝑖 + 𝜅2 𝐷 𝑖 ) − 𝛼3 𝑖 , 

𝛼5 𝑖 = 

1 
ℎ 
( 𝐻 𝑖 +1 − 𝐻 𝑖 ) − 

1 
ℎ𝜅4 ( 𝐹 𝑖 +1 − 𝐹 𝑖 ) , 

𝛼6 𝑖 = 𝑦 𝑖 − 

1 
𝜅4 𝐹 𝑖 . 

Applying the continuity of the first and second derivatives at the mesh point 𝜁 = 𝜁𝑖 , we obtain the following relations: 

𝐷 𝑖 −1 + 4 𝐷 𝑖 + 𝐷 𝑖 +1 = 

6 
ℎ 2 

( 𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 ) − 6 ℎ 2 ( 𝑝 1 𝐹 𝑖 −1 + 2 𝑞 1 𝐹 𝑖 + 𝑝 1 𝐹 𝑖 +1 ) , (14)

𝐷 𝑖 −1 − 2 𝐷 𝑖 + 𝐷 𝑖 +1 = ℎ 2 ( 𝑟 1 𝐹 𝑖 −1 + 2 𝑠 1 𝐹 𝑖 + 𝑟 1 𝐹 𝑖 +1 ) , (15)

where, 𝑝 1 = 

− ℎ 
6 𝑘 2 + 

𝑒 𝑘ℎ − 𝑒 − 𝑘ℎ 
𝑒 𝑘ℎ 𝑘 2 (2 sinkh +1) , 𝑞 1 = 

ℎ 

𝑘 2 
− 

𝑒 𝑘ℎ − 𝑒 − 𝑘ℎ 
𝑘 2 

, 𝑟 1 = 

2 ℎ𝑘 coskh −2 sinkh 

𝑘 4 sinkh 
and 𝑠 1 = 

sinkh − ℎ𝑘 
𝑘 4 sinkh 

. 

Solving the Eqs. (14) and (15) for 𝐷 𝑖 , we get 

𝐷 𝑖 = 

1 
ℎ 2 

(
𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 

)
− ℎ 2 

((
𝑝 1 + 

𝑞 1 
6 

)
𝐹 𝑖 +1 + 2 

(
𝑟 1 + 

𝑠 1 
6 

)
𝐹 𝑖 + 

(
𝑝 1 + 

𝑞 1 
6 

)
𝐹 𝑖 −1 

)
. (16) 

Now, using the continuity of third derivative at the point 𝜁 = 𝜁𝑖 and using Eq. (16) , we get 

𝑇 𝑖 = 

1 
ℎ 3 

(
𝐻 𝑖 +2 − 3 𝐻 𝑖 +1 + 3 𝐻 𝑖 − 𝐻 𝑖 −1 

)
− ℎ 

(
𝑝𝐹 𝑖 +2 + 

(
𝛼 − 𝑝 + 𝑟 1 

)
𝐹 𝑖 +1 + 

(
𝑝 − 𝛼 + 𝑠 1 

)
𝐹 𝑖 − 𝑝𝐹 𝑖 −1 

)
, (17) 

where, 𝑝 = 𝑝 1 + 

𝑞 1 
6 and 𝛼 = 2( 𝑟 1 + 

𝑠 1 
6 ) . 

We define the operator Δ by 

Δ𝑇 = p 𝑇 𝑖 −2 + q 𝑇 𝑖 −1 + s 𝑇 𝑖 + q 𝑇 𝑖 +1 + p 𝑇 𝑖 +2 . (18) 

Using Eqs. (17) and (18) , we get 

Δ𝑇 = 

𝜒
3 

(
𝐻 𝑖 +2 − 2 𝐻 𝑖 +1 + 2 𝐻 𝑖 −1 − 𝐻 𝑖 −2 

)
. (19) 
ℎ 

4 
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Hence, we get 

− 𝜒𝐻 𝑖 −2 + 2 𝜒𝐻 𝑖 −1 − 2 𝜒𝐻 𝑖 +1 + 𝜒𝐻 𝑖 +2 = ℎ 3 
[
p 𝑇 𝑖 −2 + q 𝑇 𝑖 −1 + s 𝑇 𝑖 + q 𝑇 𝑖 +1 + p 𝑇 𝑖 +2 

]
+ 𝑂( ℎ 9 ) , 𝑖 = 2(1) 𝑁 − 2 , (20)

where 

𝜒 = ( 𝑟 1 + 𝑠 1 ) , 𝑝 = 𝑝 1 + 

𝑞 1 
6 , 𝑞 = 2( 2 𝑟 1 + 𝑠 1 6 − ( 𝑝 1 + 𝑞 1 )) and 𝑠 = 2( 𝑟 1 +4 𝑠 1 6 + ( 𝑝 1 − 2 𝑞 1 )) . 

The relation (20) gives ( 𝑁 − 2) linear equations in ( 𝑁 − 2) unknowns 𝐻 𝑖 , 𝑖 = 2 , 3 , … , 𝑁 − 2 . 

Remark. As 𝜅 → 0 , then ( 𝑟 1 , 𝑠 1 , 𝑝 1 , 𝑞 1 ) → ( 1 6 , 
1 
3 , 

−7 
360 , 

−8 
360 ) and ( 𝛼, 𝑝, 𝑞 , 𝑠 ) → ( 1 15 , 

1 
120 , 

13 
60 , 

33 
60 ) , the spline relations defined in (20) is reduced

to the corresponding ordinary quintic spline relations [29,30] . 

Construction of boundary equations 

For unique solution of the system (20) , we need to compute two additional equations, one at each end of the range of integration

to find 𝐻 𝑖 . To discretize the boundary conditions, we define 

3 ∑
𝑗=0 

𝑏 𝑗 𝐻 𝑗 + 𝑐 1 ℎ𝐻 

′
0 + ℎ 3 

3 ∑
𝑗=0 

𝑑 𝑗 𝐻 

′′′
𝑗 = 𝑡 1 , 𝑗 = 1 (21) 

𝑁−1 ∑
𝑗= 𝑁−3 

𝑎 𝑗 𝐻 𝑗 + 𝑐 2 ℎ𝐻 

′
𝑁 

+ ℎ 3 
𝑁 ∑

𝑗= 𝑁−4 
𝑐 𝑗 𝐻 

′′′
𝑗 = 𝑡 𝑁−1 , 𝑗 = 𝑁 − 1 (22) 

where 𝑏 𝑗 , 𝑐 1 , 𝑐 2 , 𝑎 𝑗 , 𝑐 𝑗 and 𝑑 𝑗 are arbitrary parameters to be determined. 

Truncation error 

By expanding Eq. (20) in Taylor’s series about 𝜁𝑖 , we obtain the following truncation error(TE): 

𝑡 𝑖 = [2 𝜒 − 2 𝑝 − 2 𝑞 − 𝑠 ] ℎ 3 𝐻 

′′′
𝑖 + 

[ 1 
2 
𝜒 − 4 𝑝 − 𝑞 

]
ℎ 5 𝐻 

(5) 
𝑖 

+ 

[ 
1 
20 

𝜒 − 

4 𝑝 
3 

− 

𝑞 

12 

] 
ℎ 7 𝐻 

(7) 
𝑖 

+ 

[ 
17 
6048 

𝜒 − 

8 𝑝 
45 

− 

𝑞 

360 

] 
ℎ 9 𝐻 

(9) 
𝑖 

+ 𝑂( ℎ 11 ) , 

𝑖 = 2(1) 𝑁 − 2 . (23) 

With the help of the above equation, we eliminate the components of different powers of ℎ for various selections of 𝜒, p , q and s which

allows us to derive the class of techniques that is described as follows: 

Second-order methods 

Taking 𝜒 = 

1 
2 , ( 𝑏 0 , 𝑏 1 , 𝑏 2 , 𝑏 3 , 𝑐 1 , 𝑑 0 , 𝑑 1 , 𝑑 2 , 𝑑 3 ) = (1 , −4 3 , 

1 
3 , 0 , 

2 
3 , 

−1 
18 , 

−1 
6 , 0 , 0) , and 

( 𝑎 𝑁−3 , 𝑎 𝑁−2 , 𝑎 𝑁−1 , 𝑐 2 , 𝑐 𝑁−4 , 𝑐 𝑁−3 , 𝑐 𝑁−2 , 𝑐 𝑁−1 , 𝑐 𝑁 

) = (−3 , 8 , −5 , 2 , 0 , 0 , 0 , −5 , 4 3 ) , we have the local TE: 

𝑡 1 = − 

1 
180 

ℎ 5 𝐻 

(5) 
𝑖 

+ 𝑂( ℎ 6 ) , 𝑖 = 1 , 

𝑡 𝑁−1 = 

178 
120 

ℎ 5 𝐻 

(5) 
𝑖 

+ 𝑂( ℎ 6 ) , 𝑖 = 𝑁 − 1 . (24) 

Case 1: When ( 𝑝, 𝑞, 𝑠 ) = ( 1 4 , 0 , 
1 
2 ) , the TE is provided by 

𝑡 𝑖 = − 

3 
4 
ℎ 5 𝐻 

(5) 
𝑖 

+ 𝑂( ℎ 7 ) , 𝑖 = 2(1) 𝑁 − 2 . 

Case 2: When ( p , q , s ) = ( 1 4 , 
1 
4 , 0) , the TE is provided by 

𝑡 𝑖 = (−1) ℎ 5 𝐻 

(5) 
𝑖 

+ 𝑂( ℎ 7 ) , 𝑖 = 2(1) 𝑁 − 2 . 

Case 3: When ( p , q , s ) = ( 1 2 , 
1 
2 , −1) , the TE is provided by 

𝑡 𝑖 = − 

9 
4 
ℎ 5 𝐻 

(5) 
𝑖 

+ 𝑂( ℎ 7 ) , 𝑖 = 2(1) 𝑁 − 2 . 
5 
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Fourth-order methods 

Taking 𝜒 = 

1 
2 , ( 𝑏 0 , 𝑏 1 , 𝑏 2 , 𝑏 3 , 𝑐 1 , 𝑑 0 , 𝑑 1 , 𝑑 2 , 𝑑 3 ) = (320 , −360 , 0 , 40 , 240 , −16 , −90 , −12 , −2) , and 

( 𝑎 𝑁−3 , 𝑎 𝑁−2 , 𝑎 𝑁−1 , 𝑐 2 , 𝑐 𝑁−4 , 𝑐 𝑁−3 , 𝑐 𝑁−2 , 𝑐 𝑁−1 , 𝑐 𝑁 

) = (− 

5 
2 , 4 , − 

3 
2 , 1 , 

59 
315 , − 

107 
168 , 

19 
420 , − 

3601 
2520 , 0) , then we have the local TE: 

𝑡 1 = 

2161 
140 

ℎ 7 𝐻 

(7) 
𝑖 

+ 𝑂( ℎ 8 ) , 𝑖 = 1 , 

𝑡 𝑁−1 = 

2465 
420 

ℎ 7 𝐻 

(7) 
𝑖 

+ 𝑂( ℎ 8 ) , 𝑖 = 𝑁 − 1 . (25) 

Case 1: When ( 𝑝, 𝑞, 𝑠 ) = (− 

1 
720 , 

11 
45 , 

183 
360 ) , the TE is provided by 

𝑡 𝑖 = 

1 
369 

ℎ 7 𝐻 

(7) 
𝑖 

+ 𝑂( ℎ 8 ) , 𝑖 = 2(1) 𝑁 − 2 . 

Case 2: When ( p , q , s ) = (− 

1 
720 , 

161 
630 , 

413 
840 ) , the TE is provided by 

𝑡 𝑖 = 

1 
180 

ℎ 7 𝐻 

(7) 
𝑖 

+ 𝑂( ℎ 8 ) , 𝑖 = 2(1) 𝑁 − 2 . 

Case 3: When ( p , q , s ) = (− 

10 
7199 , 

7359 
28796 , 

7079 
14398 ) , the TE is provided by 

𝑡 𝑖 = − 

64791 
287960 

ℎ 7 𝐻 

(7) 
𝑖 

+ 𝑂( ℎ 8 ) , 𝑖 = 2(1) 𝑁 − 2 . 

Application of the method 

Using 𝑇 𝑖 = − 𝑘 ( 𝜁𝑖 ) 𝐻 

′′
𝑖 
− 𝑙( 𝜁𝑖 ) 𝐻 

′
𝑖 
− 𝑚 ( 𝜁𝑖 ) 𝜏𝑖 in Eq. (20) , and with the help of higher order approximations to derivatives given as

follows: 

𝐻 

′
𝑖 −2 = 

−5 𝐻 𝑖 −1 + 8 𝐻 𝑖 − 3 𝐻 𝑖 +1 
2 ℎ 

, 

𝐻 

′
𝑖 −1 = 

−3 𝐻 𝑖 −1 + 4 𝐻 𝑖 − 𝐻 𝑖 +1 
2 ℎ 

, 

𝐻 

′
𝑖 = 

𝐻 𝑖 +1 − 𝐻 𝑖 −1 
2 ℎ 

, 

𝐻 

′
𝑖 +1 = 

𝐻 𝑖 −1 − 4 𝐻 𝑖 + 3 𝐻 𝑖 +1 
2 ℎ 

, 

𝐻 

′′
𝑖 −2 = 

𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 

ℎ 2 
− 2 ℎ𝐻 

(3) 
𝑖 

, 

𝐻 

′′
𝑖 −1 = 

𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 

ℎ 2 
− ℎ𝐻 

(3) 
𝑖 

, 

𝐻 

′′
𝑖 = 

𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 

ℎ 2 
, 

𝐻 

′′
𝑖 +1 = 

𝐻 𝑖 −1 − 2 𝐻 𝑖 + 𝐻 𝑖 +1 

ℎ 2 
+ ℎ𝐻 

(3) 
𝑖 

, 

we obtain the following linear system: 

�̃� 𝑖 𝐻 𝑖 −2 + ̃𝑙 𝑖 𝐻 𝑖 −1 + �̃� 𝑖 𝐻 𝑖 +1 + �̃� 𝑖 𝐻 𝑖 +2 = 

ℎ 3 

12 
[
𝜏𝑖 −2 + 5 𝑘 𝑖 −1 + (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 +1 + 5) 𝜏𝑖 + 𝜏𝑖 +1 

]
+ 𝑂( ℎ 5 ) , 𝑖 = 2(1) 𝑁 − 2 , (26)

where 𝑘 ( 𝜁𝑖 ) = 𝑘 𝑖 , 𝑙( 𝜁𝑖 ) = 𝑙 𝑖 , 𝑚 ( 𝜁𝑖 ) = 𝑚 𝑖 , 𝜏( 𝜁𝑖 ) = 𝜏𝑖 and 

�̃� 𝑖 = −1 + 

ℎ 3 

12 
𝑚 𝑖 −2 , 

𝑙 𝑖 = 3 + 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
𝑘 𝑖 −2 + 5 𝑘 𝑖 −1 + 𝑘 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 +1 + 5) + 𝑘 𝑖 +1 

)
− 

1 
2 ℎ 

(
8 𝑙 𝑖 −2 + 20 𝑙 𝑖 −1 + 𝑙 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 −1 + 5) + 𝑙 𝑖 +1 

)
− 5 𝑚 𝑖 −1 

]
, 

�̃� 𝑖 = −3 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
2 𝑘 𝑖 −2 − 10 𝑘 𝑖 −1 + 2 𝑘 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 +1 + 5) + 2 𝑘 𝑖 +1 

)
− 

1 (3 𝑙 𝑖 −2 + 5 𝑙 𝑖 −1 − 𝑙 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 −1 + 5) − 3 𝑙 𝑖 +1 
)
− 𝑚 𝑖 +1 

]
, 
2 ℎ 

6 
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�̃� 𝑖 = 1 + 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
𝑘 𝑖 −2 + 5 𝑘 𝑖 −1 + 𝑘 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 +1 + 5) + 𝑘 𝑖 +1 

)
− 

1 
2 ℎ 

(
8 𝑙 𝑖 −2 + 20 𝑙 𝑖 −1 + 𝑙 𝑖 (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 −1 + 5) + 𝑙 𝑖 +1 

)
− 5 𝑚 𝑖 −1 

]
, 

where 𝑖 = 2(1) 𝑁 − 2 . 
The boundary equations for the second-order algorithm have been determined as: 

ℎ̃ 0 𝐻 0 + ̃ℎ 1 𝐻 2 + ̃ℎ 2 𝐻 3 = 

ℎ 3 

12 
[
3 𝜏0 + (3 ℎ𝑘 0 − ℎ𝑘 2 + 4) 𝜏1 + 𝜏2 

]
− 2 ℎ𝛼2 + 𝑂( ℎ 5 ) , 𝑖 = 1 (27) 

and 

ℎ̃ 3 𝐻 𝑁−3 + ̃ℎ 4 𝐻 𝑁−2 + ̃ℎ 5 𝐻 𝑁−1 = 

ℎ 3 

12 
[
3 𝜏𝑁−2 + 10 𝜏𝑁−1 + (10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31) 𝜏𝑁 

]
− 2 ℎ𝛼3 + 𝑂( ℎ 5 ) , 𝑖 = 𝑁 − 1 , (28)

ℎ̃ 0 = 3 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
−3 𝑘 0 − 𝑘 1 

(
3 ℎ𝑘 0 − ℎ𝑘 2 + 4 

)
− 𝑘 2 

)
+ 

1 
2 ℎ 

(
9 𝑙 0 + 𝑙 1 (3 ℎ𝑘 0 − ℎ𝑘 2 + 4) − 𝑙 2 

)
+ 3 𝑚 0 , 

ℎ̃ 1 = −4 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
6 𝑘 0 + 2 𝑘 1 (3 ℎ𝑘 0 − ℎ𝑘 2 + 4) + 2 𝑘 2 

)
+ 

1 
2 ℎ 

(
−12 𝑙 0 + 4 𝑙 2 

)
− 𝑚 1 

(
3 ℎ𝑘 0 − ℎ𝑘 2 + 4 

)] 
, 

ℎ̃ 2 = 1 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
−3 𝑘 0 − 𝑘 1 

(
3 ℎ𝑘 0 − ℎ𝑘 2 + 4 

)
− 𝑘 2 

)
+ 

1 
2 ℎ 

(
3 𝑙 0 − 𝑙 1 (3 ℎ𝑘 0 − ℎ𝑘 2 + 4) − 3 𝑙 2 

)
− 𝑚 2 

] 
, 

ℎ̃ 3 = −3 + 

ℎ 3 

4 
𝑚 𝑁−2 , 

ℎ̃ 4 = 8 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
−6 𝑘 𝑁−2 − 20 𝑘 𝑁−1 − 2 𝑘 𝑁 

(
10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31 

))
+ 

1 
2 ℎ 

(
24 𝑙 𝑁−2 + 40 𝑙 𝑁−1 + 2 𝑙 𝑁 

(
10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31 

))
− 3 𝑚 𝑁−1 

]
, 

ℎ̃ 5 = −5 − 

ℎ 3 

12 

[ 
1 
ℎ 2 

(
6 𝑘 𝑁−2 + 20 𝑘 𝑁−1 + 2 𝑘 𝑁 

(
10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31 

))
+ 

1 
2 ℎ 

(
−24 𝑙 𝑁−2 − 40 𝑙 𝑁−1 

)
− 𝑚 𝑁 

(
10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31 

)]
. 

The system (26), (27) and (28) has been solved by Newton Raphson method to calculate the approximate solution of Eqs. (11) - (12) .

Convergence analysis 

For studying the convergence of the scheme formulated so far, we assume �̂� = [ 𝐻 1 , 𝐻 2 , 𝐻 3 , … , 𝐻 𝑁−1 , 𝐻 𝑁 

] 𝑇 , 𝑅 =
[ 𝑟 1 , 𝑟 2 , 𝑟 3 , … , 𝑟 𝑁−1 , 𝑟 𝑁 

] 𝑇 be known vectors and , 𝜔 1 = −[ 𝑡 1 , 𝑡 2 , 𝑡 3 , … , 𝑡 𝑁−1 , 𝑡 𝑁 

] 𝑇 and 𝜔 2 = [ 𝑒 1 , 𝑒 2 , 𝑒 3 , … , 𝑒 𝑁−1 , 𝑒 𝑁 

] 𝑇 be the local TE

and discretization error, respectively. Now, let �̂� = [ 𝐻 1 , 𝐻 2 , 𝐻 3 , … , 𝐻 𝑁−1 , 𝐻 𝑁 

] 𝑇 be the approximate solution vector and �̃� =
[ 𝐻 ( 𝜁1 ) , 𝐻 ( 𝜁2 ) , … , 𝐻( 𝜁𝑁 

)] 𝑇 of Eq. (11) be the exact solution vector subject to conditions (12) . We represent the system of 𝑁 Eqs. (26) ,

(27) and (28) with 𝑁 unknowns as: 

𝐴 �̂� + 

1 
12 

ℎ 3 𝐵𝜏 = 𝑅, (29) 

where 𝜏 = ( 𝜏𝑖 ) , 𝑖 = 1(1) 𝑁 and 

𝐴 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ℎ̃ 0 ℎ̃ 1 ℎ̃ 2 

𝑏 2 𝑐 2 𝑑 2 𝑒 2 

𝑎 3 𝑏 3 𝑐 3 𝑑 3 𝑒 3 

⋱ 

⋱ 

̃𝑎 𝑁−1 ̃𝑏 𝑁−1 ̃𝑐 𝑁−1 ̃𝑑 𝑁−1 

ℎ̃ 3 ℎ̃ 4 ℎ̃ 5 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

𝐵 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜉1 − 𝑑 2 − 𝑑 3 

𝑞 𝜉2 𝑞 𝑝 

𝑝 𝑞 𝜉3 𝑞 𝑝 

⋱ 

⋱ 

𝑝 𝑞 𝜉𝑁−1 𝑞 

−5 4 𝜉𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
3 

7 
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𝜏 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜏1 

𝜏2 

⋱ 

⋱ 

𝜏𝑁−1 

𝜏𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
and 𝑅 = [ 𝑟 1 , 𝑟 2 , ⋯ , 𝑟 𝑁 

] 𝑇 with 

𝑟 𝑖 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

−2 ℎ𝛼2 − ℎ̃ 0 𝛼1 , 𝑖 = 1 , 
𝑘 2 𝛼1 , 𝑖 = 2 , 
0 , 𝑖 = 3(1) 𝑁 − 1 , 

−2 ℎ𝛼𝑁 

, 𝑖 = 𝑁, 

where 𝛼1 = (3 ℎ𝑘 0 − ℎ𝑘 2 + 4) , 𝛼𝑖 = (2 ℎ𝑘 𝑖 −2 + 5 ℎ𝑘 𝑖 −1 − ℎ𝑘 𝑖 +1 + 5) , 𝑖 = 2(1) 𝑁 − 1 and 

𝛼𝑁 

= (10 ℎ𝑘 𝑁−1 + 6 ℎ𝑘 𝑁−2 + 31) . 
Since �̃� = ( 𝐻 ( 𝜁1 ) , 𝐻 ( 𝜁2 ) , … , 𝐻( 𝜁𝑁 

)) 𝑇 is the exact solution vector of Eqs. (11) and (12) , we represented the system as: 

𝐴 �̃� + 

1 
12 

ℎ 3 𝐵𝜏 = 𝜔 1 ( ℎ ) + 𝑅, (30) 

where 𝜔 1 ( ℎ ) = [ 𝑡 1 ( ℎ ) , 𝑡 2 ( ℎ ) , ⋯ , 𝑡 𝑁 

( ℎ )] 𝑇 is defined as follows: 

𝑡 𝑖 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
− 

1 
10 ℎ 

5 𝐻 

5 
0 + 𝑂( ℎ 6 ) , 𝑖 = 1 

− 

1 
6 ℎ 

5 𝐻 

5 
𝑖 
+ 𝑂( ℎ 6 ) , 𝑖 = 2(1) 𝑁 − 1 

− 

1 
10 ℎ 

5 𝐻 

5 
𝑁 

+ 𝑂( ℎ 6 ) , 𝑖 = 𝑁. 

(31) 

From Eqs. (29) and (30) , the error equation is found to be 

𝐴 ( �̃� − �̂� ) = 𝜔 1 ( ℎ ) , 

or 

𝐴𝜔 2 = 𝜔 1 ( ℎ ) , (32) 

where 𝜔 2 = �̃� − �̂� = [ 𝑒 1 , 𝑒 2 , ⋯ , 𝑒 𝑁 

] 𝑇 . 
The row sums 𝑆 1 , 𝑆 2 , ⋯ , 𝑆 𝑁 

of 𝐴 are 

𝑆 𝑖 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ℎ̃ 1 + ℎ̃ 2 , 𝑖 = 1 , 

𝑙 2 + 𝑚 2 + 𝑛 2 , 𝑖 = 2 , 

𝑘 𝑖 + 𝑙 𝑖 + �̃� 𝑖 + 𝑛 𝑖 , 𝑖 = 3(1) 𝑁 − 1 , 

ℎ̃ 3 + ℎ̃ 4 + ℎ̃ 5 , 𝑖 = 𝑁. 

(33) 

Because the matrix 𝐴 is irreducible and monotone when ℎ is taken to a suitably small [35] , therefore 𝐴 

−1 exists and 

𝜔 2 = 𝐴 

−1 𝜔 1 ( ℎ ) , 

or, 

‖𝜔 2 ‖∞ ≤ ‖𝐴 

−1 ‖∞ ⋅ ‖𝜔 1 ( ℎ ) ‖∞. (34) 

Hence, we obtain ‖𝜔 2 ‖ = 𝑂( ℎ 2 ) , i.e. second order convergence. 

Similarly we can prove the fourth order convergence. 

Numerical experiments 

We consider a finite domain [0,1] so that it becomes easy to study the velocity components. We have used the derived scheme to

compute the approximate numerical values of the function. These values will give an approximate idea of how the function varies in

the domain. We compute the values using MATLAB by developing a significant code which satisfies our scientific need. When Froude

number 𝐹 𝑟 𝑥 is fixed, the values of 𝐻( 𝜁 ) and 𝐻 

′( 𝜁 ) are obtained and given in tables 1 − 5 from where we read the effect of 𝐻( 𝜁 ) and

𝐻 

′( 𝜁 ) on changing the angle of inclination 𝜓 . Also, graphs are represented to show how 𝐻( 𝜁 ) and 𝐻 

′( 𝜁 ) varies for different values of

𝐹 𝑟 𝑥 and 𝜓 . 
8 
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Table 1 

𝐻 

′( 𝜁 ) at various inclination angles with 𝐹 𝑟 𝑥 = 1 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0.1 0.833881771 0.8356603464 0.8461455576 0.8555678902 

0.2 0.677774937 0.694343333 0.7155785651 0.7259677887 

0.3 0.546552409 0.568321009 0.580984556 0.5946787722 

0.4 0.434446761 0.4522445853 0.47580266525 0.4966727414 

0.5 0.327443486 0.3523444579 0.3727056548 0.3996665036 

0.6 0.235547614 0.2648655994 0.2822345677 0.3157663459 

0.7 0.173217578 0.1826677532 0.206724419 0.2329766984 

0.8 0.1122325322 0.1266676347 0.1421466213 0.166673498 

0.9 0.0635623877 0.0738766632 0.0855555081 0.1056653217 

1.0 0.0217845974 0.025179800 0.0298455238 0.0355562907 

Table 2 

The values of 𝐻 

′( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 1 . 5 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0.1 0.857568900 0.85902734567 0.8699941123 0.8666920721 

0.2 0.7279334567 0.7344442677 0.7374567899 0.7442328765 

0.3 0.6108342567 0.6126532134 0.62322451552 0.6324985432 

0.4 0.5037444456 0.5104357907 0.5186247689 0.5289045433 

0.5 0.4034456788 0.4137216778 0.4222423778 0.4341678400 

0.6 0.3154711234 0.32602349801 0.3311476543 0.346399719 

0.7 0.2316623455 0.2466742345 0.254182213 0.2652355657 

0.8 0.1685042234 0.1747112567 0.1833456687 0.1902547892 

0.9 0.101842345 0.10983534509 0.1138777623 0.12967655431 

1.0 0.0378344567 0.0391143321 0.04122533308 0.0438711296 

Table 3 

Values of 𝐻 

′( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 2 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0.1 0.8670368432 0.8677888256 0.8655571467 0.8707728967 

0.2 0.74240554311 0.7453875432 0.7490545555 0.75263888801 

0.3 0.63084567544 0.6334528456 0.6361001111 0.6433569402 

0.4 0.5262333467 0.53270904287 0.5373889023 0.5415670921 

0.5 0.4301278911 0.4395067654 0.4437844448 0.4457833547 

0.6 0.3437343899 0.3439978905 0.3594305557 0.3578944865 

0.7 0.2628522678 0.2642653321 0.2713502234 0.2735345998 

0.8 0.1894356221 0.1930857890 0.1960263245 0.1996931124 

0.9 0.1103634590 0.1293245677 0.1261445678 0.1278763487 

1.0 0.0437132458 0.0449015678 0.0459623345 0.0460020122 

Table 4 

Observed 𝐻( 𝜁 ) for 𝐹 𝑟 𝑥 = 1 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0 0 0 0 0 

0.1 0.0912458234 0.09189603285 0.09199295906 0.09222319091 

0.2 0.1663547890 0.16778909914 0.16985525181 0.1714339809 

0.3 0.2209647152 0.23068692670 0.2334332327 0.2379001043 

0.4 0.2783781508 0.2812561466 0.2857540875 0.2913100069 

0.5 0.3153719717 0.3219152293 0.3272822661 0.3361875437 

0.6 0.3440188078 0.3518055172 0.3604745269 0.3711412618 

0.7 0.3644169429 0.3748597062 0.3847363114 0.39807161381 

0.8 0.3787911477 0.3895030872 0.4029790695 0.41867213381 

0.9 0.3878918811 0.3999754537 0.4139980352 0.43104277711 

1.0 0.3918437983 0.4042272992 0.4194523027 0.43828999823 

 
Now to check the efficiency of this method when porosity is absent, we compare the results obtained so far for 𝐻 

′( 𝜁 ) with the

results of T. Begum et al.[25] for fixed 𝐹 𝑟 𝑥 = 1 . 5 and 𝜓 = 

𝜋

2 , given in Table 6 . 

Now we study the heat transfer by fitting the data for ℎ ( 𝜁 ) in a suitable function, so that 

ℎ ( 𝜁 ) = 

𝑃 

𝑄 

(
1 − 𝑒 − 𝑄𝜁

)
, (35) 
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Table 5 

Observed 𝐻( 𝜁 ) for 𝐹 𝑟 𝑥 = 1 . 5 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0 0 0 0 0 

0.1 0.09254593518 0.0926009315 0.09210099089 0.0930656041 

0.2 0.1714245346 0.17155986296 0.1721882013 0.1731828582 

0.3 0.2386473725 0.23952979580 0.2402578599 0.2425135761 

0.4 0.2936086584 0.2951142226 0.2973392144 0.2966501740 

0.5 0.3384926651 0.34142230336 0.3441271609 0.347699349 

0.6 0.37447278668 0.3771204825 0.3817369367 0.3869948411 

0.7 0.4027748064 0.4063599141 0.4113383030 0.41745819773 

0.8 0.4228440777 0.4272419187 0.4321275597 0.4390241625 

0.9 0.4368635067 0.4410266956 0.4410748112 0.4552870121 

1.0 0.4434109867 0.4493264387 0.4561736341 0.46409287285 

Table 6 

Comparing the values of the velocity function 𝐻 

′( 𝜁 ) taking 𝐹 𝑟 𝑥 = 1 . 5 and 

𝜓 = 𝜋
2 

with [25]. 

𝜁 T. Begum et al. [25] Present Method 

0.1 0.8573686273 0.88859368228 

0.2 0.7278102499 0.73960883852 

0.3 0.6100947008 0.61769998720 

0.4 0.5032064107 0.47905840100 

0.5 0.4062769943 0.38188982974 

0.6 0.3185645547 0.28570266819 

0.7 0.2394350166 0.19014187690 

0.8 0.1683454504 0.09495756214 

0.9 0.1048293184 0.04745601762 

 

 

 

where the values of P and Q have been computed by using data fitting technique and stated in Table 7 . 

We compare 𝐻( 𝜁 ) and ℎ ( 𝜁 ) in order to validate the function computed in Eq. (35) and given in Table 8 . 

We observe that the function 𝐻( 𝜁 ) and ℎ ( 𝜁 ) agree with each other with third order accuracy. Now, we use the values of ℎ ( 𝜁 ) to
analyze the heat transfer. 

Heat transfer flow 

Now we study the heat transfer within the boundary layer. We consider the following heat flow problem, 

𝜌𝑆 𝑝 

( 

𝑢 
𝜕𝑉 

𝜕𝑥 
+ 𝑣 

𝜕𝑉 

𝜕𝑦 

) 

= 𝐾 

′ 𝜕 
2 𝑉 

𝜕𝑦 2 
, (36) 

with boundary conditions 

𝑦 = 0 , 𝑉 = 𝑉 𝑝 , (37) 

𝑦 → ∞, 𝑉 = 𝑉 ∞, (38) 

where the density of the fluid is defined as 𝜌, the temperature of the plate is defined as 𝑉 𝑝 , the temperature of the fluid that surrounds

the plate is written as 𝑉 ∞, the surface temperature at relentless pressure is represented as 𝑆 𝑝 , and the thermal efficiency is written as

𝐾 

′. 

The boundary conditions imply that the heat transfer depends only on 𝑦 , so the Eq. (36) becomes 

𝜌𝑆 𝑝 

( 

𝑣 
𝜕𝑉 

𝜕𝑦 

) 

= 𝐾 

′ 𝜕 
2 𝑉 

𝜕𝑦 2 
. (39) 

Defining dimensionless temperature by 

𝜃( 𝜁 ) = 

𝑉 − 𝑉 ∞
𝑉 𝑝 − 𝑉 ∞

. (40) 

Using the expression 𝑣 = −( 𝑚𝑣 ) 
1 
2 𝐻( 𝜁 ) and Eq. (40) in Eq. (39) , we get 

𝜃′′ + 𝑃 𝐻( 𝜁 ) 𝜃′ + 𝜃 = 0 , (41) 
𝑟 
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Table 8 

Observed 𝐻( 𝜁 ) and ℎ ( 𝜁 ) for 𝜓 = 𝜋
6 
, 𝜓 = 𝜋

4 
and 𝐹 𝑟 𝑥 = 1 . 5 . 

𝜁 H ( 𝜁) h ( 𝜁) 𝐸𝑟𝑟𝑜𝑟 H ( 𝜁 ) h ( 𝜁 ) 𝐄𝐫 𝐫 𝐨𝐫 

𝜓 = 𝜋
6 

𝜓 = 𝜋
4 

0 0 0 0 0 0 0 

0.1 0.09363894 0.095667289 2 . 513445 𝑒 − 03 0.09282013 0.09494420 2 . 124071 𝑒 − 03 
0.2 0.17328581 0.174553328 1 . 423222 𝑒 − 03 0.17257859 0.17330304 7 . 244438 𝑒 − 04 
0.3 0.24357610 0.240869756 1 . 512345 𝑒 − 03 0.24039214 0.23797373 2 . 418400 𝑒 − 03 
0.4 0.29620740 0.295324607 4 . 926788 𝑒 − 03 0.29727160 0.29134742 5 . 924188 𝑒 − 03 
0.5 0.34199349 0.34070250 7 . 7402345 𝑒 − 03 0.34413693 0.33539749 8 . 739439 𝑒 − 03 
0.6 0.38669484 0.377082000 9 . 124322 𝑒 − 03 0.38183030 0.37175267 1 . 007763 𝑒 − 03 
0.7 0.41197771 0.40895452 8 . 4615456 𝑒 − 03 0.41112755 0.40175713 9 . 370429 𝑒 − 03 
0.8 0.43246256 0.43785236 5 . 3077776 𝑒 − 03 0.43274811 0.42652024 6 . 227862 𝑒 − 03 
0.9 0.45587027 0.45156930 6 . 658448 𝑒 − 04 0.44736341 0.44695761 4 . 057967 𝑒 − 04 
1.0 0.46487289 0.47353134 9 . 632914 𝑒 − 03 0.45560417 0.46382487 8 . 220695 𝑒 − 03 

Table 9 

Variation in 𝜃( 𝜁 ) taking 𝐹 𝑟 𝑥 = 1 . 5 . 

𝜁 𝜓 = 𝜋
2 

𝜓 = 𝜋
3 

𝜓 = 𝜋
4 

𝜓 = 𝜋
6 

0 1 1 1 1 

0.4 0.8767484944 0.8726768876 0.8786766566 0.8677777799 

0.8 0.7523455566 0.7546767888 0.7503566566 0.7445789913 

1.2 0.6544556665 0.6497879978 0.6467676777 0.6355657755 

1.6 0.5634565777 0.5534343434 0.5567766666 0.5434467667 

2.0 0.4856287647 0.4793344333 0.4743455677 0.4656565645 

2.4 0.4123345767 0.4224324445 0.4335677786 0.39564577453 

2.8 0.3567985545 0.3535466777 0.3466896444 0.3456777545 

3.2 0.3093446776 0.3032457677 0.2567886443 0.2856767776 

3.6 0.2663444565 0.2645566677 0.2534567788 0.2454467776 

4.0 0.2293565767 0.2235667877 0.2163345677 0.2344676777 
subject to the conditions 

𝜃(0) = 1 , (42) 

𝜃(∞) = 0 . (43) 

The solution of the Eq. (41) , using Eqs. (42) and (43) is 

𝜃( 𝜁 ) = 

∫ ∞
𝜁 𝑒 − 𝑃 𝑟 ∫ 𝜁𝐻( 𝜁) 𝑑𝜁𝑑𝜁

∫ ∞
0 𝑒 − 𝑃 𝑟 ∫ 𝜁𝐻( 𝜁) 𝑑𝜁𝑑𝜁

, (44) 

or, 

𝜃( 𝜁 ) = 

𝛾
(

𝑃 𝑟 𝑃 

𝑄 2 
, 
𝑃 𝑟 𝐴 

𝑄 2 
𝑒 − 𝑄𝜁

)
𝛾
(

𝑃 𝑟 𝑃 

𝑄 2 
, 
𝑃 𝑟 𝑃 

𝑄 2 

) , (45) 

where 𝑃 and 𝑄 are taken from the Table 7 , and 𝛾( ̃𝑤 , 𝑧 ) = ∫ 𝑧 
0 𝑒 

− 𝑡 𝑡 �̃� −1 𝑑𝑡 is the incomplete gamma function. 

Theorem. For �̃� > 0 and 𝑧 > 0 , 

𝛾( ̃𝑤 , 𝑧 ) = 

∞∑
𝑛 =0 

(−1) 𝑛 𝑧 𝑛 + ̃𝑤 

𝑛 !( ̃𝑤 + 𝑛 ) 
. (46) 

When we fix 𝑧 > 0 , the series (46) converges for all �̃� > 0 . 

Now, we apply the above theorem in Eq. (45) so that 𝜃( 𝜁 ) becomes 

𝜃( 𝜁 ) = 

∑∞
𝑛 =0 

( −1 ) 𝑛 
( 

𝑃 𝑟 𝑃 

𝑄 2 

) 𝑛 
𝑒 
− 𝐵𝜁

( 
𝑃 𝑟 𝑃 

𝑄 2 
− 𝑛 

) 

𝑛 ! 
( 

𝑃 𝑟 𝑃 

𝑄 2 
+ 𝑛 

) 

∑∞
𝑛 =0 

( −1 ) 𝑛 
( 

𝑃 𝑟 𝑃 

𝑄 2 

) 𝑛 
𝑛 ! 
( 

𝑃 𝑟 𝑃 

𝑄 2 
+ 𝑛 

) 
. 

The numerical values of 𝜃 are determined for 𝐹 𝑟 𝑥 = 1 . 5 , which have been presented in Table 9 . 
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Fig. 2. Variation in 𝐻 

′( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 1 . 

Fig. 3. Fluctuation in 𝐻 

′( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 1 . 5 . 
Nusselt number 

The coefficient of Heat Transfer is defined as 

𝑞 𝑤 = − 𝐾 

′
(

𝜕𝑉 

𝜕𝑦 

)
𝑦 =0 

(47) 

or, 

𝑞 𝑤 = − 𝐾 

′( 𝑉 𝑝 − 𝑉 ∞) 
(

𝑚 

𝜈

) 1 
2 
. (48) 

Now, we calculate the Nusselt number as 

ϝ = 

𝑞 𝑤 
𝐾 

′( 𝑉 𝑝 − 𝑉 ∞) 
, (49) 

which gives 

ϝ = − 

(
𝑚 

𝜈

) 1 
2 
. (50) 
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Fig. 4. Fluctuation in 𝐻 

′( 𝜁 ) for various inclination angles when 𝐹 𝑟 𝑥 = 2 . 

Fig. 5. Fluctuation in 𝐻( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 1 . 

Fig. 6. Fluctuation in 𝐻( 𝜁 ) at various inclination angles when 𝐹 𝑟 𝑥 = 1 . 5 . 
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Table 7 

ℎ ( 𝜁 ) for different 𝜓 and 𝐹 𝑟 𝑥 = 1 . 5 . 

𝜓 P Q h ( 𝜁) 

𝜋

2 
1.0456753643 2.00724178 0 . 52095137(1 − 𝑒 −2 . 00724178 𝜁 ) 

𝜋

3 
1.044612625 1.96658697 0 . 53118049(1 − 𝑒 −1 . 96658697 𝜁 ) 

𝜋

4 
1.04349858 1.91990566 0 . 54351555(1 − 𝑒 −1 . 91990566 𝜁 ) 

𝜋

6 
1.04764382 1.87122063 0 . 55987188(1 − 𝑒 −1 . 87122063 𝜁 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussions, results and conclusion 

We studied a physical situation where the flow of viscous incompressible fluid occurs over an inclined plate in porus media

and heat transfer. Several authors solved this problem in various variants but here we developed a numerical technique called non

polynomial quintic spline. On the basis of our solution, we summarise the findings as follows: 

We solved the obtained non linear ordinary differential equation which has been further linearised by the quasilinearisation

technique. With the application of our method, finally we get a solution in discrete form. 

Tables 1, 2 , 3 and Figs. 2 , 3 , 4 show that the variation in velocity component 𝑢 

𝑚𝑥 
depending upon 𝐻 

′( 𝜁 ) linearly when angle

of inclination changes. Moreover we observe that as angle of inclination increases the velocity component decreases. At greater 

inclination the downward force 𝑚𝑔ℎ is more because of height ℎ is more. 

When we observe the Tables 4 –5 and Fig. 5 –6 , we note that the magnitude of vertical component of velocity decreases as angle

of inclination increases because the gravity is having more influence here. Table 6 shows the comparative result of 𝐻 

′( 𝜁 ) with [25]

when 𝐹 𝑟 𝑥 is fixed at 1.5 and angle of inclination is fixed at 90 ◦. Reading the Table 9 for temperature distribution 𝜃( 𝜁 ) , we notice

that flow of heat occurs in the form of wave. As we go away the inclined plate, the intensity of heat is in reducing pattern for some

particular value of 𝐹 𝑟 𝑥 . 

Finally, we derive the formula for Nusselt number ϝ which comes out to be − 

√ 

𝑚 

𝜈
. 
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