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Dislocation Majorana zero modes in 
perovskite oxide 2DEG
Suk Bum Chung1,2, Cheung Chan3 & Hong Yao3

Much of the current experimental efforts for detecting Majorana zero modes have been centered on 
probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana 
zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial 
weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-
lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in 
experimental detections such as scanning tunneling microscope (STM) measurements. We will show 
that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological 
superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 
or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to 
existing s-wave superconductors.

Non-Abelian braiding statistics of well-separated Majorana zero modes can provide one simpler means for realiz-
ing topological quantum computations1,2. Partly motivated by this, the search for Majorana zero modes in nature 
has become one of the central and challenging issues in condensed matter physics in last few years3–5. It has been 
recognized in recent years that superconductivity in a system where the spin-orbit coupling and the Zeeman field 
co-exist can be topologically non-trivial even with conventional s-wave pairings, giving rise to Majorana zero 
modes in topological defects6–9. Although much of the experimental investigations into this physics have focused 
on 1D systems, e.g. refs 10 and 11, the results are known to hold in two-dimensional (2D) systems as well. One 
promising arena to realize such 2D systems is the 2DEGs formed at the boundaries of perovskite transition metal 
oxides12. Notable examples of such 2DEGs include the (001) interface between SrTiO3 and LaAlO3

13, the surfaces 
of SrTiO3

14,15, and KaTaO3
16. All of them possess Rashba-type spin-orbit coupling because of the lack of inversion 

symmetry at the boundaries. In addition, ferromagnetism is a frequent feature of these 2DEGs17–20 even though 
spin-orbit coupling usually tends to suppress spin alignment. Given that intrinsic superconductivity has been 
observed in many of these 2DEGs19,20–24, not to mention the possibility of inducing superconductivity on the 
surface 2DEGs through superconducting proximity effect, one naturally asks the question whether topologically 
protected Majorana zero modes can be achieved in the oxide 2DEG.

One major difficulty in investigating the topology of such oxide 2DEG superconductor is the multitude of 
bands at the Fermi level near the Γ  point. While the topologically nontrivial superconductivity in such 2DEGs 
has been studied with relatively simple models25–27, these studies rely on the assumption of only one or two bands 
crossing the Fermi level, which, however, seems to be at variance with the reported experimental data28. This 
is because, unlike in the simplified models, the conduction bands of these 2DEGs near the Γ  point cannot be 
attributed to a single set of the transition metal t2g orbitals. Given that the formation of 2DEG requires a confining 
potential, it is likely that multiple quantum well channels arise from each t2g orbital29. Exactly how many bands 
occur at the Γ  point is often difficult to predict as the 2DEG confining potential is highly non-universal. Since 
the inclusion of more bands can turn topologically non-trivial superconductor into topologically trivial super-
conductor (and vice versa), this is an issue that raises question about the robustness of the simple model analysis.

We show here that it is possible to obtain robust Majorana zero modes in the perovskite oxide 2DEG by using 
its crystalline symmetry and anisotropic dispersions. Once the crystalline translational symmetry is assumed, 
weak topological indices are well-defined topological invariants30,31 that are unaffected by how many bands cross 
the Fermi level near the Γ  point. Physically, in the case of 2D superconductors breaking time-reversal-symmetry, 
weak topological indices can tell us whether there would be a Majorana zero mode on an edge dislocation32,33, 

1Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea. 
2Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea. 3Institute for Advanced 
Study, Tsinghua University, Beijing 100084, China. Correspondence and requests for materials should be addressed 
to S.B.C. (email: sbchung@snu.ac.kr) or C.C. (email: phcchan@mail.tsinghua.edu.cn) or H.Y. (email: yaohong@
tsinghua.edu.cn)

received: 24 August 2015

accepted: 12 April 2016

Published: 03 May 2016

OPEN

mailto:sbchung@snu.ac.kr
mailto:phcchan@mail.tsinghua.edu.cn
mailto:yaohong@tsinghua.edu.cn
mailto:yaohong@tsinghua.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:25184 | DOI: 10.1038/srep25184

which can be detected with the STM tip. Although a Fermi surface crossing the boundary of the first Brillouin 
zone (BZ), a requirement for any non-trivial weak indices, has not been observed yet in the oxide 2DEGs, it is 
possible with currently available experimental techniques to tune the system to satisfy this condition. This is 
thanks to one universal feature of the (001) perovskite oxide 2DEG - the strong anisotropy of the band disper-
sion. This feature, signified by the sharp distinction between the light mass and heavy mass bands in the (001) 
perovskite oxide 2DEG ARPES (angle-resolved photoemission spectrum) data14–16, means that there need not 
be large changes in either the Fermi level or the number of electrons per unit cell in tuning the system from the 
band bottom to the Lifshitz phase transition point. Moreover, this Lifshitz phase transition would involve only a 
single heavy mass band as all the light mass bands would be at much higher energy. Indeed, this tunability makes 
the oxide 2DEG a unique physical system to realize the dislocation Majorana zero mode compared to the ones 
discussed previously34–37 as we shall show below.

Results
Band structure of the (001) perovskite oxide 2DEG.  It has been known that electrons close to the 
Fermi level in typical (001) perovskite 2DEGs are mainly from t2g bands; the bands formed by dxz and dyz orbitals 
are quasi-1D while the one by dxy orbital is quasi-2D. As we are mainly interested in weak topological super-
conductivity in such systems, we shall focus on the electrons at the Brillouin zone boundaries, namely kx =  π or 
ky =  π. One important feature of the (001) perovskite 2DEG band structure is that the electrons close to the Fermi 
level with kx =  π (ky =  π) originate mostly from the quasi-1D dyz (dxz) orbitals. This is because the low-energy 
physics at the BZ boundary arises out of the heavy-mass bands, and the quasi-1D nature of the dxz(dyz) orbital 
implies the heavy-mass dispersion in the y(x)-direction as well as the light-mass dispersion in the x(y)-direction. 
This anisotropic dispersion can be captured by the tight-binding model,

∑

∑

= − 


+ + . .


− ′


+ + . .


σ
σ σ σ σ

σ
σ σ σ σ

+ +

+ +

ˆ
ˆ ˆ

ˆ ˆ

† †

† †

K t c c c c

t c c c c

h c

h c ,
(1)

x x y y

x x y y

r
r e r r e r

r
r e r r e r

0
,

, , , , , , , ,

,
, , , , , , , ,

x y

y x

where σ
†c ar, ,  creates an electrons at site r with spin polarization σ =  ↑ , ↓  and orbital a =  x, y (representing dxz and 

dyz orbitals respectively). Because of the quasi-1D natures of dxz and dyz orbitals, |t| ≫  |t′ |. This simple model is 
sufficient to explain why we can reach the Lifshitz transition by lifting the Fermi level only in the order of the 
heavy-mass dispersion bandwidth 4t′  and the electron filling fraction only by ′~ t t/ ; this would involve raising 
the Fermi level by ~0.1 eV and adding 0.3 electrons per unit cell when compared to the KTaO3 surface ARPES 
data16 (we also note that superconductivity has been observed around this 2D electron density for the ionic liquid 
gated KTaO3

24). Such shift in the Fermi level can be achieved by both the electrical gating and optically induced 
oxygen vacancies15,16,38,39; more recently, a first-principle calculation showed how a large shift in chemical poten-
tial can occur a surface 2DEG from a cubic perovskite oxide heterostructure40. Meanwhile, the contribution from 
the dxy orbital is suppressed as it has the light-mass dispersion in both the x- and the y-direction.

We further need to consider the hybridization between the dxz and dyz orbitals in order to obtain from  
them two bands, one giving rise to the outer Fermi surface closer to the van Hove singularity at crystalline 
momentum points X =  (π, 0) and Y =  (0, π) and the other giving rise to the inner Fermi surface closer to  
the Γ  point. Microscopically, the hybridization between dxz and dyz orbitals is mainly due to the on-site  
atomic spin-orbit coupling λ τ= − ∑ˆ †K c s caSO z yr r r  and the next-nearest neighbor hopping =K̂nnn  

τ τ− ′′∑ − + . .+ + − +ˆ ˆ ˆ ˆ
† †t c s c c s c[( ) h c ]x xr r e e r r e e r0 0x y x y

, where sα are Pauli matrices with spin indices and τα with 
orbital indices. From these hybridization terms, we obtain the outer Fermi surface dispersion of
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It is clear that, for (t −  t′ ) ≫  λ, t′ ′ , the orbital hybridization would have little effect near the X/Y points except 
for shifting the Lifshitz transition to µ λ= − − ′ +t t4( )2 2. Even with a large λ, as shown in Fig. 1(a) where we 
used t =  10t′  =  0.5 eV and λ =  0.26 eV, the former approximating the first principle calculation for KTaO3

16,41,42 
while the latter larger by roughly a factor of 2, the distinction between the heavy-mass and the light-mass bands 
remains sharp. Hence the physics near the (π, 0) point would be dominated by the dyz and near (0, π) by the dxz 
orbital.

Since the inversion symmetry is obviously broken in the surface 2DEG, the spin degeneracy at the Fermi sur-
face should be generically split by the non-zero Rashba spin-orbit coupling. For our analysis, it will be sufficient 
to consider only the most generic Rashba term, which is orbital independent,
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(see Supplementary Information for further discussions).
After taking into account the hybridization as well as spin-orbital couplings, the band dispersions are 

described by = + + +ˆ ˆ ˆ ˆ ˆK K K K KaSO nnn RSO0
(0)

. As the chemical potential μ moves, there is a Lifshitz transition at 
which the outer Fermi surface crosses the van Hove points at X and Y. As we approach the Lifshitz transition, the 
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low-energy band structure near the (π, 0) point, which would mainly originate from the dyz orbital, can be given 
by the first-quantized Hamiltonian

µ

α

= − ′ − −
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Likewise the band structure in the vicinity of (0, π), which would originate mainly from the dxz orbital can be 
obtained by the π/2 rotation of the momentum and the spin in Eq. (4). It is also analogous to the Rashba wire that 
the spin degeneracy at (0, π) remains unbroken, which means that the Fermi surface splitting does not lead to two 
separated Lifshitz transitions.

To realize isolated Majorana zero modes, the final necessary component of the band structure is the Zeeman 
field. Near the Lifshitz transition, there will be both higher density of oxygen vacancies near the surface as well as 
enhancement of the quasi-1D characteristics of the dxz,yz orbitals. Both can give rise to ferromagnetism: the  
former39,43 because of the oxygen vacancy acting as the magnetic impurity44 while the latter through the 
inter-orbital Hund’s rule coupling45. Both of these effects should be amplified by the enhanced density of states 
near the van Hove singularity that occurs at the Lifshitz transition. We will consider the ferromagnetic ordering 
in the perpendicular direction as was observed in the experiment with the density of oxygen vacancy induced by 
circularly polarized light39; we also note that, in case our 2DEG that arises from the heterostructure as described 
in40, we can also obtain the Zeeman field by either inserting a ferromagnetic layer between the 2DEG and the 
insulating substrate or using an appropriate ferromagnetic insulator as the substrate. Then, the 
ferromagnetism-induced Zeeman coupling τ= ∑ˆ †K h c s cZ Z zr r r0  shall split the Lifshitz transition into two sepa-
rated ones, as shown in Fig. 1(b), giving rise to a finite range of μ for which there is a single hole pocket without 
spin degeneracy around the M =  (π, π) point; for this plot we used t′ ′  =  t′  =  0.05 eV with α0 =  0.05 eV and 
hZ =  0.05 eV.

Dislocation Majorana zero mode in proximity induced superconductivity.  For the superconduct-
ing state, we will first consider the case where the pairing is induced through proximity to the conventional s-wave 
superconductor. This will ensure the s-wave pairing in the oxide surface 2DEG. We also point out that inducing 
superconductivity through proximity effect can have the advantage of achieving superconductivity at higher tem-
perature. To enhance the pairing gap magnitude, we would need strong tunneling between the superconductor 
and the oxide surface 2DEG. This can be achieved through using the higher-Tc two-band superconductors such 
as FeSe46–48; note that by symmetry, the single orbital superconductor is unlikely to have a strong tunneling to the 
both the dxz and dyz orbitals. Hence our heterostructure will consist of the capping two-band s-wave superconduc-
tor on the (001) surface of SrTiO3 or KTaO3 as shown in Fig. 2(a).

The combination of the Zeeman field hZ and the s-wave pairing gap |Δ s| in the oxide 2DEG near the Lifshitz 
transition can give rise to the non-trivial weak index, ν =  (1, 1), i.e. non-trivial 1D topological invariants along 
kx,y =  π. For instance, the following low-energy effective BdG Hamiltonian with kx =  π is exactly equivalent to the 
Rashba-Zeeman wire superconducting state9,49.

 π µ δµ α µ= = 
 − − + 

 − + ∆k k t k s k s h( , ) 2 (1 cos ) 2 sin , (5)sBdG x y z y x y z Z x s0

where μα’s are Pauli matrices acting on the particle-hole Nambu space, δμ is the deviation of the chemical poten-
tial from the value at the Lifshitz transition for hZ =  0, and we use the basis −↑ ↓ − ↓ − ↑

† †c c c c( , , , )k k k k, , . It is well 
known that this 1D BdG Hamiltonian is topologically equivalent to the Kitaev chain50 (class D51) when 

Figure 1.  The band structure of the (001) perovskite oxide 2DEG near the Lifshitz transition. (a) shows 
the light- and heavy-mass band dispersion (in blue and red, respectively), along ky =  π with (solid line) and 
without (dotted line) the orbital hybridization. (b) shows the lower band from the dxz/dyz orbitals after the 
orbital hybridization, with the spin degeneracy removed by the Rashba spin orbit coupling α0 =  0.05eV and the 
perpendicular Zeeman field hZ =  0.05 eV. Note that the Lifshitz transition point is split, allowing a single hole 
pocket without spin degeneracy around (π, π).
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δµ> ∆ +h ( )Z s
2 2 2. The C4v point group symmetry of the perovskite surface 2DEG dictates that 

π=k k( , )sBdG x y  should be topologically identical to  π=k k( , )sBdG x y .
The orbital hybridization will not affect the topological nature of the superconductivity as long as the s-wave 

pairing is intra-orbital. Given that the s-wave pairing has no spin dependence, we see that even if we take into 
account the band hybridization and write π=k k( , )x y  in the band basis, the Zeeman coupling and the s-wave 
pairing terms will remain unchanged, and hence so remain the condition for the topologically non-trivial super-
conductivity (see Supplementary Information for details).

Because of the nontrivial weak topological indices ν =  (1, 1), unpaired Majorana zero modes occur at disloca-
tions whose Burger’s vector B in units of lattice spacings satisfies B ⋅  ν =  1 (mod 2), where mod 2 is from the Z2 
nature of weak topological indices in class D52. To confirm this, we have performed BdG calculations of the lattice 
models describing the 2DEG in proximity to a two-orbital s-wave superconductor (sSC). As shown in Fig. 2(b,c), 
we have obtained the Majorana zero mode at each dislocation from the numerical exact diagonalization of the 
real-space BdG Hamiltonian. Our calculation was done on a 240 ×  240 unit cell with periodic boundary condi-
tions. Two edge dislocations with the Burger’s vector = ± ˆB ex  are placed by one half system size in the 
x-direction, with the links between the dislocations shifted as shown in Fig. 2(a) (see Methods for details on 
implementation). This oxide surface with the pair of dislocations is coupled by tunneling amplitude of ti =  0.05 eV 
to the s-wave superconductor. The sSC has the band structure well-matched with that of the oxide surface (see 
Methods for the band structure details) and the pairing gap of |Δ s| =  0.05 eV. Figure 2(b,c) shows the probability 
distribution of the dislocation zero energy states, showing sharp peak for both the oxide surface and the sSC, even 
though the latter does not have any dislocation.

This wave function profile suggests that the STM would be a good experimental probe on our dislocation 
Majorana zero mode53. When the STM tip is brought to the sSC as shown in Fig.  2(a), the local  
differential conductance ωr( , )dI

dV
 is proportional to the local density of state (LDOS) of the sSC, ρ ω =r( , )

δ ω δ ω∑ | | − + | | +u E v Er r[ ( ) ( ) ( ) ( )]i i i i i
2 2  where the ui, vi are the electron and hole components of the i-th 

energy eigenstates, up to replacing the delta function by a Lorentzian with the width given by the STM energy 
resolution, which is chosen to be 0.1 meV for Fig. 2(d). We therefore predict that the STM will see a sharp zero 
bias anomaly when it is brought to the point on the sSC that is right over the dislocation, the point a of Fig. 2(d). 
This anomaly is unambiguously separated from the signal of other low lying states, which has a minimum energy 
of the induced oxide bulk pairing gap ~1.2 meV. This is because the Majorana zero mode is the only midgap state 
localized at the dislocation, unlike at the Abrikosov vortex where other low energy ( ∆

~
EF

2
, where Δ  is the pairing 

gap and EF the Fermi energy) bound states are present. Hence the zero bias anomaly in the crystalline dislocation 
can be regarded as more unambiguous signature of the Majorana zero mode than that of the Abrikosov vortex54.

Dislocation Majorana zero mode in intrinsic superconductivity.  We now consider the case of intrin-
sic superconductivity in the oxide 2DEG without proximity to conventional superconductors. When the oxide 
2DEG becomes superconducting at this electron density, there arises possibility of a protected Kramer’s doublet of 
Majorana zero modes at each dislocation when no Zeeman field is applied. Due to the Rashba spin-orbit coupling, 
the intrinsic superconductivity should generically have on the Fermi surface a mixture of the s-wave pairing and 
the p-wave pairing, the latter with momentum-dependent Cooper pair spin state (this feature is independent of 
the debate on whether the pairing symmetry of the intrinsic superconductivity will follow25 that of the doped bulk 

Figure 2.  (a) shows the schematic setup of our system, with the oxide 2DEG superconductivity induced 
through the proximity effect and a pair of edge dislocations is on the oxide (STO or KTO, viewed from the 
interface) but not on the s-wave superconductor (sSC); an STM tip probes sSC. (b,c) shows the wave function 
profile for the Majorana zero modes on both the oxide surface and the s-wave superconductor. (d) plots the 
local density of states on the s-wave superconductor for various different points of the system, with the dark blue 
curve (point a) being taken right at the oxide dislocation position; note that both the sharp peak right above the 
oxide dislocation and the Majorana zero mode being the only subgap mode below the induced oxide pairing 
gap of ~1.2 meV.
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SrTiO3
55, or not27). For simplicity, we assume the following intra-orbital on-site and the nearest-neighbor pairing 

preserve the time-reversal symmetry56:
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With this pairing, the BdG Hamiltonian along the kx =  π cut,

 π µ δµ α

µ
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will be that of a time-reversal invariant 1D topological superconductor in class DIII52,57 when δμ >  0 and 
|Δ s| <  |Δ t||sinky| is satisfied at the Fermi surfaces so that the gaps at the two Fermi surfaces have the opposite 
signs. In that case, there exists of a branch of helical Majorana edge state around kx,y =  π. This means that, when 
we use the argument of the previous section with the additional constraint of the time-reversal symmetry, there 
should be a Kramer’s doublet of Majorana zero modes at a dislocation with the Burger’s vector of = ˆB x or ŷ. Such 
a Majorana zero mode doublet has been shown to be topologically protected as long as the time-reversal symme-
try is preserved52,57,58, i.e. the Zeeman field is zero.

When the Zeeman field is non-zero, there can be a “re-entrant” unpaired Majorana zero modes at the disloca-
tion. This is because Eq. (7) with the addition of the Zeeman field

 π µ δµ α

µ
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in the δµ> + ∆h ( )Z s
2 2 2 regime is topologically equivalent to the topological phase of Eq. (6). Hence, for δμ >  0 

at hZ =  0, if the triplet pairing dominates, i.e. |Δ s| <  |Δ t||sinky| at the Fermi surfaces, there is a Kramer’s doublet of 
Majorana zero modes at each dislocation for hZ =  0 and a single Majorana zero mode for hZ >  (δμ)2 +  |Δ s|2.

Given that gap closing cannot be avoided at the topological quantum phase transition, Fig. 3(a) gives us the 
complete topological phase diagram for the intrinsic superconductivity at a fixed δμ =  0.02 eV. In this plot, the 
tuning parameter η is introduced to determine the relative strength of the p-wave and s-wave pairings, i.e. 

η τ η∆ = ∆ + − |∆ | −ˆ ˆ s k s k(1 ) ( sin sin )s t y x x y1 0  where τ τ π η∆ = |∆ | + −ˆ h h[ (2/ )(1 )arctan( / )]s s Z Z0 1 2 0  
(we have set |Δ s0| =  0.04 eV, |Δ t0| =  0.08 eV and hZ0 =  0.01 eV; a phase difference between the s-wave and the 
p-wave pairings was introduced, in order to have the pairing terms break the time-reversal symmetry when 
hZ ≠  0). For hZ ≠  0, as shown in Fig. 3(a), it is always possible to adiabatically tune η from 0 to 1 without gap clos-
ing, while for any value of η, one cannot increase hZ without closing the bulk gap at some point. We therefore 

Figure 3.  (a) shows the energy gap Δ  when we have mixture of the time-reversal invariant p-wave and the 
s-wave pairing, with η =  0 giving us the purely p-wave pairing and η =  1 giving us the purely s-wave pairing. 
Note that for hZ ≠  0, there need not be any gap closing in going from the pure p-wave to the pure s-wave pairing, 
suggesting that the two topological phases for the p-wave pairing - one at high hZ (in pink) and the other at low 
hZ (in blue) - are identical to those of the s-wave pairing. By contrast, for the case hZ =  0, where the time-reversal 
symmetry is preserved, the gap closing around η =  0.7 shows that the p-wave pairing (in orange) and the s-wave 
pairing are topologically distinct. (b) shows the probability distributions for the two dislocation zero energy 
states obtained for hZ =  0 and η =  0.4, which have exactly identical profile. (c) shows the energy level spacing 
for the eigenmodes with non-negative energies, again for hZ =  0 and η =  0.4. For all positive energy eigenstates, 
separated from the zero energy by a gap of ~12 meV, there is double degeneracy due to the time-reversal 
symmetry. At the zero energy, we used the full and dotted lines to indicate the quadruple degeneracy at the zero 
energy from the occupancies and vacancies of the two zero energy states originating from the Kramer’s double 
of Majorana zero modes at each dislocation.
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conclude that the non-trivial high (trivial low) hZ phase at η =  1 is topologically equivalent to that of η =  0, the 
purely s-wave pairing case we considered in the previous subsection. However, if we restrict ourselves to the case 
with time-reversal symmetry, i.e. hZ =  0, Fig. 3(a) shows there is a gap closing around η =  0.7, consistent with the 
fact that the time-reversal invariant p-wave pairing (η =  0) is topologically distinct from the pure s-wave pairing 
(η =  1). At η =  0.4 and hZ =  0, the two zero energy states localized at the two edge dislocations with exactly iden-
tical probability distribution, as shown in Fig. 3(b), indicates the existence of the Kramer’s doublet of Majorana 
zero modes at each dislocation. This confirms that the existence of the Kramer’s doublet of Majorana zero modes 
at each dislocation characterizes this time-reversal invariant topologically non-trivial phase. This means that with 
an STM with an s-wave superconducting tip over this dislocation, we should be able to observe time-reversal 
anomaly58. As in the case of the proximity induced superconductivity, these dislocation Majorana zero modes, as 
shown by Fig. 3(c), are the only subgap modes of the system.

Discussion
We have shown in this paper how isolated dislocation Majorana zero mode can arise from both the proximity 
induced and intrinsic superconductivity in the oxide 2DEG. Its existence can be considered the most pertinent 
criterion for the topologically non-trivial superconductivity in the oxide 2DEG, and it can be experimentally 
detected through STM. The crucial requirement for achieving such superconductivity is that the oxide 2DEG 
needs to be close to the Lifshitz transition.

The key difference between the proximity-induced and the intrinsic oxide 2DEG superconductivity is that the 
Zeeman field is a necessary condition for the non-trivial topology in the former but not for the latter. The physical 
consequence is that for the intrinsic superconductivity in the absence of the Zeeman field, the dislocation can host 
a Kramer’s doublet of Majorana zero modes; this is not possible if the superconductivity is induced through prox-
imity to an s-wave superconductor. By contrast, in the presence of nonzero Zeeman field, the only possible pro-
tected midgap state on a dislocation is a single Majorana zero mode regardless of the origin of superconductivity.

While our intrinsic superconductivity with the non-trivial weak index at the zero Zeeman field has the essen-
tially same pairing symmetry as the topological superconductivity investigated by Scheurer and Schmalian27, 
these states are topologically distinct. From Eq.(7), our non-trivial phase requires δμ >  0 while that of Scheurer 
and Schmalian requires δμ <  0 with the Fermi surfaces enclosing the Γ  point, and with this pairing symmetry the 
gap closing around δμ =  0 cannot be avoided. This reflects the fact that, with the reflection symmetry, the topo-
logical invariant of the DIII class in 2D can be  rather than 2

59,60. The existence (absence) of the dislocation 
Majorana doublet for δμ >  0 (δμ <  0) can be regarded as a physical manifestation of this topological distinction. 
We leave to future work what type of interaction would favor this pairing symmetry near the Lifshitz transition.

Lastly, we want to point out that it is generically easy to change the topology of the superconducting state of 
the (001) perovskite oxide 2DEGs. This is because the universal anisotropic band structure makes it easy to access 
the van Hove singularity through gating and optically inducing oxygen vacancies. While there have been previous 
works on the physical realization of the the dislocation Majorana zero mode34–37, they have not provided easy 
means to alter the weak indices of the superconducting states. Therefore we conclude that not only is the disloca-
tion Majorana zero mode the most robust topological feature of the oxide 2DEG superconductor but also that the 
oxide 2DEG superconductor is the particularly suitable system for realizing the dislocation Majorana zero mode.

Methods
Weak indices and dislocation Majorana zero modes.  It is possible in a 2D superconductor on a square 
lattice to consider the 1D topological invariants defined along kx,y =  π, which are known as the weak indices61–63. 
In general, the weak index νi can be defined for each time-reversal invariant momentum Gi/2 (which makes Gi 
a reciprocal lattice vector) as a topological invariant of the manifold perpendicular to Gi but contains Gi/2, and 
hence the weak indices can be written as a single vector ν =  ∑ iνiGi, where Gi is the unit vector parallel to Gi. The 
C4v symmetry of of our 2DEG means that its ν will have only a single independent component ν and therefore can 
be written as ν =  ν(1, 1). The weak indices is clearly topologically protected when the system has crystalline sym-
metry, the topological crystalline insulators64 being one class of examples. In this paper, we will focus on its mani-
festation through the Majorana zero mode localized at its crystalline topological defect - the edge dislocation32–35.

We first note that the non-trivial weak indices in a superconductor imply the existence of a branch of 
Majorana edge modes around kedge =  π. Since restricting ourselves to the kx =  π manifold means converting the 
2D mean-field Hamiltonian HBdG(kx, ky) into the 1D Hamiltonian HBdG(kx =  π, ky), the non-trivial weak index 
means that, for the simplest case of the class D, where the time-reversal symmetry is broken, a single protected 
Majorana zero mode exists at kx =  π for the edge running in the x-direction. This is possible only if there is a 
branch of chiral Majorana edge state centered around kx =  π. Note that the existence of this branch of the edge 
state is determined by the projection of ν to the time-reversal invariant momentum (π, 0).

A single Majorana zero mode exists at the edge dislocation when there is a chiral Majorana edge state centered 
around kedge =  π. To see how this arises, note that the dislocation can be created by severing all links, both through 
hopping and interaction, between two halves (y <  0 and y >  0) and then non-trivially re-connect the two halves 
to introduce the edge dislocation, with the x <  0 part glued back according to the original links but the x >  0 part 
has all the links altered by translating the sites of the y >  0 half by a lattice constant along the x-direction, which 
sets the Burger’s vector of this dislocation to be = ˆB x30,32. Now when this system was cut, there would have been 
Majorana edge states along the x-direction for both y <  0 and y >  0 with the opposite chirality. Hence when the 
system is glued back along the original links, the tunneling between the two edges would lead to the backscatter-
ing that gaps out these edge modes, with the mass gap being proportional to the tunneling amplitude. However, 
when the dislocation described above is introduced, there will be a qualitative effect on the tunneling between the 
kx =  π edge state. This is because the kx =  π edge mode wave function reverses its sign when we translate by one 
lattice site along the x-direction, the relative sign of the kx =  π edge modes for y <  0 and y >  0 edges will change its 
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sign at the dislocation. That means that if a dislocation is introduced when we glue back with only infinitesimally 
weak coupling across y =  0, the effective low energy action along y =  0 for the kx =  π edge modes would be

∫= Ψ





∂ + ∂
− ∂ − ∂





ΨS dx

i i im x
im x i i

sgn( )
sgn( ) (9)

eff
T t x

t x

0

0

where the upper and the lower component correspond to the upper and the lower edge and m0 is proportional to 
the tunneling amplitude for the kx =  π modes; this action is well-known for having a single Majorana zero mode 
at our dislocation x =  0:

Γ = − | | 




.

m
m x

2
exp( ) 1

1 (10)0
0

0

By contrast, the existence of the kx =  0 branch is irrelevant as its tunneling amplitude does not change sign at 
the dislocation. Since the Majorana zero mode is protected as long as it remains separated from other Majorana 
zero mode, the Majorana zero mode that arose at the infinitesimal coupling across the y =  0 cut will persist when 
the coupling across y =  0 is increased to the bulk values. In general, the condition for the existence of the pro-
tected Majorana zero mode is ν ⋅  B =  1 (mod 2).

We can similarly show the existence of a Kramer’s doublet of Majorana zero modes at the edge dislocation 
when there is a helical Majorana edge state centered around kedge =  π. The key point here is that dislocation 
involves no time-reversal symmetry breaking and therefore, in the `cut and paste’ picture, the Kramer’s doublet 
needs to be maintained even with the inter-edge backscattering. Therefore, when ˜is y is the intra-edge time-reversal 
operation, the effective low energy action for the kx =  π helical edge mode would be

∫= Ψ






∂ + ∂ + ′
− + ′ ∂ − ∂





Ψ.

˜ ˜ ˜
˜ ˜ ˜

S dx
i is i s m s m x

i s m s m x i is
( )sgn( )

( )sgn( ) (11)
eff

T t z x z x

z x t z x

This action gives us two Majorana zero modes,

Γ = −
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′
′
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0
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− ′
′
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
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−
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m x
2

exp( )

sin
cos
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,

(13)

0

which form a Kramer’s doublet, i.e. Γ = ±Γ± 

˜is( )y .

Real space Hamiltonian with dislocation.  We need to have the real-space BdG Hamiltonian in order 
to obtain the dislocation Majorana zero mode through exact diagonalization. We first note that the terms in our 
real-space Hamiltonian could be divided into three groups, the first being the onsite term,

∑

∑

µ σ τ

λ τ

= − +

− + . . +

σ σ

−

ˆ

ˆ

†

†

H h c s c

c s c H

( )

( h c ) ,
(14)

onsite Z a a

z y onsite pair

r
r r

r
r r

, , 0 0 , ,

consisting of the chemical potential, the Zeeman energy, the atomic spin-orbit coupling and the onsite pairing, 
the second being the nearest neighbor terms

∑∑
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, , 0 ,

, ,

i
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i

i

which includes the spin-conserving intra-orbital nearest neighbor hopping, the Rashba spin-orbit coupling, and 
the nearest-neighbor time-reversal invariant pairing. Lastly, we have the next-nearest neighbor hopping,
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∑∑

∑∑ τ
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which gives us the spin-independent component of the orbital hybridization. For the proximity-induced super-
conductivity, we set the nearest neighbor pairing to be zero, i.e. =− ˆĤ r e( , ) 0nn pair i , and set the onsite pairing to 
be originated entirely from a two-band s-wave superconductor:

∑ τ= − + . . +−
ˆ ˆ†H t c s f H( h c ) ,

(17)onsite pair i
r

r r s0 0

where Ĥs is given by
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(in Fig. 2, we have set ts =  t, t′ s =  t′  and μs =  − 0.7 eV for the maximal proximity effect), while for the intrinsic 
superconductivity calculation shown in Fig. 3, we set the pairing terms to be

∑η π η τ

η τ

= ∆ − − + . .

= − − ∆ 
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r
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where we have set |Δ s0| =  0.04 eV, |Δ t0| =  0.08 eV, hZ0 =  0.01 eV with 0 <  η <  1 determining the relative contri-
bution of the p- and s-wave pairings. For the intrinsic superconductivity under a finite hZ, the phase difference 
between the s-wave and the p-wave pairing were added so that the pairing terms would break time-reversal 
symmetry.

In the real space, the dislocation point serves as a starting point for a branch cut along which the 
nearest-neighbor Hamiltonian ˆ

ˆH r( )ei
 is applied on a next-nearest neighbor link. Our square lattice Nx =  240 by 

Ny =  240 latitce has a periodic boundary condition to both direction. In order to have a dislocations at (Nx/4, 
Ny/2 +  1) with the Burger’s vector = + ˆB ex and another dislocation at (3Nx/4, Ny/2) with = − ˆB ex, we apply ˆ

ˆHe y
 

on the links connecting (n, Ny/2) and (n +  1, Ny/2 +  1) for Nx/4 ≤  n <  3Nx/4, +
ˆ

ˆ ˆKe ex y
 on the link connecting (n, 

Ny/2) and (n +  2, Ny/2 +  1) for Nx/4 ≤  n <  3Nx/4 −  1, and −
ˆ

ˆ ˆKe ex y
 on the link connecting (n, Ny/2) and (n, 

Ny/2 +  1); meanwhile between the two nearest neighbor pairs (Nx/4, Ny/2) and (Nx/4, Ny/2 +  1), (3Nx/4, Ny/2) and 
(3Nx/4, Ny/2 +  1) and also between the two next-nearest neighbor pairs (Nx/4, Ny/2 +  1) and (Nx/4 +  1, Ny/2), 
(3Nx/4 −  1, Ny/2 +  1) and (3Nx/4, Ny/2), all hoppings and pairings are set to zero. Note that for the case of 
proximity-induced superconductivity, the s-wave superconductor remains completely free of crystalline defects.

While we set some of the parameters to be rather large for the sake of convenience in the numerical calcula-
tion, such choice does not affect the topological properties of the system. For instance, λ =  0.26 eV is about factor 
of 2 larger than the estimated value for the tantalum atom, while α0 =  0.05 eV is several times larger than the 
estimated value from the magnetoconductivity measurement65. These choices are intended to increase the bulk 
energy gap so that our lattice size is sufficient to see a localized dislocation zero mode. This increase in the bulk 
energy gap occurs away from the BZ boundary kx,y =  π, e.g. the larger α0 increases the energy gap along kx =  ± ky, 
while the larger λ lifts the higher dxz/yz band away from the Fermi level. Such changes do not affect weak indices, 
which are the 1D topological invariant along kx,y =  π. Concerning real materials and experiments, as long as 
the system is in the topological regime and the induced bulk gap is large enough, i.e. much larger than the STM 
resolution, the dislocation Majorana zero mode and the zero energy anomaly can be detected clearly as shown 
in Fig. 2(c).

Lastly, we point out that with our p-wave pairing in Fig. 3(a) for hZ =  0 allows for a finite range of η for which 
there are nodal quasiparticles. While it is possible in principle to come up with a p-wave pairing for which the 
energy gap closes for only a single value of η, such p-wave pairing should have constant magnitude over the entire 
Fermi surface, which in general is not possible with our nearest-neighbor pairing.
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