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Abstract 

While data warehousing approaches have been increasingly adopted in the biomedical informatics community for 
individualized data integration, effectively dealing with data integration, access, and application remains a 
challenging issue.  In this report, focusing on ontology data, we describe how to use an established data warehouse 
system, named TRAM, to provide a data mart layer to address this issue. Our effort has resulted in a twofold 
achievement: 1) a model data mart tailored to facilitate oncology data integration and application (ONCOD), and 
2) a flexible system architecture that has potential to be customized to support other data marts for various major 
medical fields. 

1. INTRODUCTION 

Data integration is a constant challenge in translational science1, 2. In the past decade, several data integration 
regimes, including federated database strategies3, workflow approaches4,  semantic web5-7,  and warehousing 
methods 8-11, have been tested in the biomedical informatics community.  The strengths and limitations of these 
approaches have been carefully reviewed 12-14, and a data warehousing approach is considered most suitable because 
of its desired data integrity and its standalone architecture that is less affected by inadequate infrastructure 
environments.  To date, the approach has been widely adopted in the translational informatics community: in a 
recent clinical translational science award (CTSA) annual meeting, 23 out of 67 abstracts  were related to 
warehousing strategies 15.  However, there is no consensus on whether, and how, heterogeneous source data need to 
be processed for integration; how these data should be accessed; and how the data can be shared beyond the local 
setting 8-11, 15. In the database layer, the Entity-attribute-value (EAV) scheme is commonly used to manage evolving 
domain concepts, in conjunction with various modeling concepts 8-10 ; this may further complicate the problem of 
data semantic inconsistency within, and between, warehouses. At the application level, many locally developed data 
warehouses do not have an end-user application interface.  Users have to rely on programmers or informaticians to 
retrieve data on a case-by-case basis.  Another kind of warehousing system, e.g., Informatics for Integrating Biology 
and the Bedside  (I2B2) 9, provides a two-step data retrieval strategy;  users are given a cohort number through some 
query criteria, and then are required to shape and clean the selected dataset to create their own “mini-marts” for their 
special needs.  Whether through programmers or assisted by computation tools, obtaining data of interest on a case-
by-case basis is not a cost-effective solution.  In addition, if end-users cannot directly access data values in a 
database, the quality of this data source could be compromised due to lack of user feedback 18. Therefore, issues 
concerning data integration and application of a warehouse system warrant further investigation.  In this report, we 
introduce an alternative approach to address these issues. 

Strictly speaking, a data warehouse (DW) is not a simple data repository filled with aggregated source data. Rather, 
it is a database that integrates data from disparate sources while delivering data with uniformity, semantic 
consistency, and minimized redundancy12-14, 19.  Without meeting these criteria, the aggregated data will be of little 
use.  Here data usability is defined as “data + meaning,” which can be achieved when data are unified, standardized, 
connected, and validated 20-22. To fully benefit from these data,  the data mart (DM) concept is introduced to 
facilitate users to consume data stored in a DW, 23, 24. oftentimes by providing a user interface for a user group with 
shared specific interest 25, 26.  The Star schema and Entity-Relationship  (ER) schema are the major data organization 
schemes used to organize DW data 27, 28.  Conceptual data modeling is considered a necessary process to build a 
flexible warehouse schema that can satisfy various requirements 26, 29, 30.  The ER approach is frequently used in the 
conceptual design, due to its mathematical foundation 30-32, ability to clarify and annotate data semantics 27, 33, and its 
adequate support from established SQL functions and industrial grade data management tools 29, 34. Although a 
group of pioneer researchers had used such modeling method to successfully manage a centralized clinical data 
source in 1991 35, conceptual modeling is often overlooked in translational and clinical informatics practice.  

Motivated by various translational research projects, which involve both cancer and non-cancer medical research 
fields, we have initiated a data warehousing project called Translational data Marts (TRAM)11. During the four years 

 

 



that TRAM has been in active use, our local cancer translational research community has further specified their 
informatics demands, which can be categorized as follows:  

1. Researchers want to be able to search and retrieve semantically and descriptively consistent data across 
domains and longitudinally, and use these data for quantifiable analysis with little or no additional effort for 
data manipulation and cleansing.  

2. Bio-specimen data need to be annotated with available clinical and translational research data.  

3. Molecular research (e.g., genotyping) and phenotypic (clinical) records should be interlinked at the level 
of individuals if they are derived from the same persons.  

4. Researchers demand to protect their data privacy for ongoing research but also want to be able to share 
these data with collaborators.  

5. Researchers hope they can curate and annotate integrated data, and eventually develop an evidence-
based knowledgebase for all cancers.  

When analyzing these requests, one can realize that these specifications are, in fact, not unique to cancer researchers.  
However, there has not been a warehousing system available publicly to satisfy these application demands. Our 
TRAM system, on the other hand, has the architecture framework that can be built upon to meet these requirements. 
Therefore, our objective was to develop an oncology data mart (ONCOD) as a module within the TRAM system to 
satisfy the need of cancer researchers. Through this effort, we should be able to establish a DW/DM system that can 
be easily customized to support other marts for major medical fields.  In this report, we first introduce our system 
design and the methods used to develop ONCOD.  We then assess the end-results by measuring data quality and 
performance of ONCOD against the specifications proposed by cancer researchers.  We also outline the system 
architecture that supports ONCOD and its potential.  Additionally, we discuss lessons learned in this study, highlight 
unsolved problems and possible solutions of our current approach, and describe the potential application of the 
ONCOD/TRAM mechanism beyond our local environment.   

2. METHODS 

2.1 System design  

We use the TRAM DW for individualized biomedical data organization and storage 11. In conjunction, we use a 
semi-automated workflow to unify, standardize, and curate text data for integration. The binary datasets, however, 
will be integrated in an interoperable manner.  We define and develop a data access layer upon the TRAM schema 
that can be customized to support various DMs, with each DM intending to satisfy the needs of translational 
researchers in a specific medical field. Therefore, the difference between marts in the TRAM system is their focused 
data contents, not their software architectures.  Within a DM, multiple project accounts can be created to assure 
project-specific data privacy, while all accounts share identical data structure, domain taxonomy, and one version of 
data.  Under each project account, multiple user roles are defined to grant unique data access privileges.  The system 
abstraction is diagramed in Figure 1.  ONCOD is the first data mart to be fully developed with this system.  
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Fig. 1.  The components and features of the TRAM system 

2.2 System implementation 
 

 



The ONCOD/TRAM system is implemented using Oracle, Sun LDAP, SSH, Java, and Apache Tomcat 
technologies. The system also benefits from collaboration with image data researchers, using their established 
Representational State Transfer (REST) API for interoperable data integration 36. The entire system is located within 
an intranet behind a firewall to meet Health Insurance Portability and Accountability Act (HIPAA) compliance, as 
source data contains an individual’s identifiable information, which is required to connect various source data 
derived from the same person (Fig 1).  However, this identifiable information is unlinked when the system creates 
materialized views, upon which data marts and query programs are developed.  The essential technical components 
to support ONCOD are  a data warehouse and its web-based data application interface, and a data supply workflow.  

2.3 Conceptual data model 

The conceptual model of the TRAM schema is an ER abstraction (Fig 2), which lays the foundation for the entire 
TRAM system 11.  The conceptual modeling process involves the following:  

1.  Normalize domain concept entities and research object entities to allow maximal data development 
flexibility for both;   

2. Use a many-to-many relationship data structure to associate these two types of entities for fact data 
collection, and utilize temporal and spatial stamps to annotate fact data;  

3.  Ensure individualized data integrity and continuity by enforcing an “is a part of” (one-to-many) data 
relationship between a person and biomaterials derived from the person.  

4. Separate data values from data structures to assure that data can be queried across domains within the 
warehouse and retrieved from the warehouse effectively.   

For the domains where expert-managed ontology is available, we adopt these concept terms and leaf class data 
structures of the ontologies to form domain concept entities 37, 38.  In the domains where no standard ontology is 
available, we provide a tree data structure to facilitate community-based and expert-driven domain taxonomy 
development 11.  Controlled vocabularies created in this way will be used to describe fact data. Through a 
relationship data structure, these data are simultaneously connected with other domain data through the ER 
framework (Fig 2).   

 

Fig. 2.  Conceptual model of the TRAM 
schema: The rectangles indicate entities 
and diamond shapes indicate many-to-may 
relationships. The arrows point to the 
parent entities from which data are 
inherited or associated from.  The domain 
concept alignment data structure, indicated 
in a branch-category-leaf hierarchy, is 
provided in the domains where no 
reputable ontology or taxonomy is 
available.  
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It is important to point out that the flexibility of this model does not rely on creating attributes in rows as the EAV 
approach does. Instead, it relies on normalizing domain concept and research object entities and taking advantage of 
relationship data structures 34, 39. In addition, domain concept terms and their annotations in our design are treated as 
master data, not metadata. Therefore, concept definitions and descriptions are always available to end-users together 
with fact data, which further improves data clarity.   

We did not use the popular Star schema to structure our data warehouse or data mart for a variety of reasons 25, 26, 30.  
Using advanced relational database management technology, we can assemble various materialized views as the 
data layer for specific marts, and index them according to query statistics for excellent query performance.   

To tailor the TRAM model for ONCOD, we paid close attention to attribute polymorphism – attribute variations 
existing in various medical disciplines 40.  Examples include cancer staging attributes for solid tumor and early onset 
mental disorder signs for neurodegenerative diseases.   

2.4 Data supply workflow 

The TRAM data supply workflow supports two kinds of data integration: binary and ASCII data (Fig 1).  Binary 
data is composed of digital image files, such as MRI datasets. Such data do not require further manipulation except 

 

 



de-identification of heading records within the image. Therefore, we do not physically store these data in the TRAM 
schema.  Instead, we only store the metadata about the images –such as image annotations and URI required to 
locate the precise image set stored in a picture archiving and communication system (PACS) in the hospital.   

The other data supply mechanism is routed through an exhaustive data manipulation pipeline, focusing on text data 
integration from disparate sources. This workflow is designed to carry out three essential tasks: 1) unify data 
structure through data semantic alignment; 2) standardize data descriptors through data semantic mapping; 3) 
validate data on semantically aligned and mapped records. The algorithms for data semantic alignment in the 
workflow are domain and source data independent, so that they can be reused for data processing of the other marts. 
During this process, Minimum Information Required for Personalized Data Integration (MIR-PDI), carried by 
source-specific identifiers (e.g., medical record number, donor ID) or common data elements (birth date, gender, 
race, etc), needs to be recovered to assure data derived from the same person but stored in different sources can be 
connected. The roadmap and essential data manipulating components of the workflow is generic to all source data, 
while taxonomy references for the workflow may be mart specific.  For example,  ICDO 41, 42, Cancer Collaborative 
Stage Data Collection System 43, AJCC 44, and UMLS (which contains oncology terms) 45 are used throughout the 
workflow to support the ONCOD data processing.   

2.5 Data application layer 

The application layer of ONCOD is decoupled from the data layer. The display of text data is organized in a format 
that is easy to understand for end-users and can be conveniently applied to various statistics tools.  Java Session 
control techniques, in particular, are implemented to facilitate versatile data accessibility by creating project 
accounts and assigning user roles.  Ajax techniques are used to enable interactive web application, which allows 
users to query effectively even with minimal knowledge about query terms.  Theoretically, there is no limit to the 
number of project accounts within a data mart.  

3. RESULTS 

We have implemented the entire system design sketched in Figure 1. ONCOD has been in daily use in our cancer 
translational research community for four years, with dynamic software improvements and regular data updates.  

3.1 Data content of ONCOD and performance of the TRAM system  

ONCOD currently recruits data only from consented patients and Institutional Research Board (IRB) approved 
subjects. ONCOD data are granularly formatted and contain records from 12 translational practice and research 
domains. These domains include epidemiology (medical questionnaire and surveys), clinical genetics (family 
histories and pedigree records), pathology, clinics, radiology (images and text annotations), radiation, surgery, 
medication, clinical laboratory testing, specimen banking, tumor signature studies, and clinical and population 
genotyping research.  Data in these domains were collected from more than 120 sources over the past four years. To 
date, more than 250 million data entries from 70,000 individuals have been processed to feed ONCOD. Note that we 
do not physically copy DNA micro-array, genotyping, and exome data (usually 3~5 gigabytes per individual) in the 
TRAM schema. Instead, we only integrate annotations about these data in the system.  Examples include research 
object identifiers (e.g., sample barcodes), experiment identifiers, experimental names and descriptions, summaries of 
the experimental results (e.g., confirmed genotypes or P-values), and other characteristics of high-throughput 
molecular biology data. Therefore, analytical results of molecular data are linked to the phenotypic data through our 
system.  Additionally, we do not save digital image data (2~4 megabytes per dataset) for ONCOD. These data are 
also stored at the source, de-identified and maintained by image data experts, accessible through REST technology. 

Currently, 393 query parameters, all Ajax enabled, are available through the ONCOD interface.  Cancer researchers 
can assemble their own query commands dynamically through "query by example" mechanisms 46.  Since query 
commands are executed upon indexed materialized views, the performance of cross-domain or longitudinal query is 
excellent. For example, reporting 12,820 individuals’ data from 12 domains in a query took less than 2 seconds (not 
all 70,000 individuals have data from multiple domains or sources). This query result not only provides a cohort 
number but also displays de-identified granular data in all domains on the screen. Retrieving this dataset (25.2 MB) 
and loading it into MS Excel took less than 5 seconds (This dataset does not include the genotyping dataset, as 
genotyping datasets are often too large (over 50,000 rows) to retrieve into Excel). 

3.2 Allow data privacy but enforce data integrity  

Access to ONCOD data is regulated by IRB protocols.  The relationship between users and project accounts is 
shown in Figure 3, in which a “project group” refers to a project account.  The account and its underlying IRB 
 

 



protocols control project-specific data access, while all account users share identical domain taxonomies and use one 
copy of data, albeit they may only access to certain individuals’ data of this copy.  Under each account, four kinds of 
user roles can be assigned to have different data access privileges: 1) assigning roles to other users (account 
administrator), 2) modifying data and seeing private health information (PHI) (curator), 3) viewing PHI (power user, 
e.g., authorized clinical researchers), and 4) viewing de-identified data (regular user).  

 

Fig. 3. Screenshot of the TRAM 
system administrator web-
interface: in the project group list, 
breast cancer SPORE (Special 
Program of Research Excellence), 
CIHDR (Center for 
Interdisciplinary Health Disparity 
Research), Center for Clinical 
Cancer Genetics, Gastric Cancer, 
Head and Neck Cancer, INRG 
(International Neuroblastoma 
Research Group), and Lung 
Cancer are the project accounts 
within the ONCOD mart.  

3.3 Access of Binary data and ASCII data 

After integration, binary and text data can be accessed through a single platform.  Digital images can be located on-
demand by querying their text annotation which has been previously stored within the system.  Users can analyze 
the image using software viewer in PACS.  Because of the ER framework, each image dataset is instantly integrated 
with the other domain text data (e.g., pathology or clinical diagnosis data) once shown on the screen (Fig 4).   

 
Fig. 4. On-demand image data integration through REST protocol: the image was taken in the axial place, the patient 
identifiable information has been removed from the digital picture, and the lesion at the left breast is indicated on the 
image, which can be compared with the clinical and pathology records on the screen.  

3.4 Longitudinal and cross-domain data continuity 

Individualized ONCOD/TRAM data are measured through the integrity and continuity of cross-domain and 
longitudinal data.  Quality of data in these two dimensions is shown in Figure 5.  The face value of data scope, 
consistency, and granularity in various domains is shown in Figure 5A. The longitudinal continuity of individuals’ 
data is presented in Figure 5B.  
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Fig. 5.  Screenshots of the ONCOD/TRAM user interface: Panel A indicates cross-domain data continuity, 
displaying the project account name in the header: “Center for Clinical Cancer Genetics,” showing a cohort number 
in this query return (circled in red), and exhibiting data contents on the screen; Panel B shows longitudinal data 
integrity of a person’s data. 

3.5 Iterative data curation 

One unique feature of ONCOD is that it allows users to curate data, which is necessary to building a knowledgebase.  
Two kinds of curation activities are supported through the ONCOD user interface.  One is driven by domain experts 
(e.g., MD or PhD researchers), who are allowed to edit domain taxonomies by working with an informatician who 
understands data property abstraction and semantic alignment.  Another is operated by a data manager, who can only 
edit fact data by using taxonomies either adopted or predefined by local experts.  This feature greatly boosts 
flexibility of adding new domain concepts in a domain where no standard ontology is available, and at the same time 
assures that only one set of taxonomy will be created in this particular domain and the taxonomy is maintained with 

 

 



controlled vocabulary.  The curator interface for creating a new domain concept and using the concept to recruit new 
data or change data is shown in Figure 6.  By doing so, we have successfully aligned seven heterogeneous medical 
survey datasets collected over the past 19 years,  and integrated data from disparate sources for tens of thousands of 
individuals.  

 
A 

 
B 

Fig. 6. Screenshots of the curator interface: Panel A is for domain experts to define questionnaire hierarchy and 
answers to question; Panel B is for data managers to use pre-defined questions and answer options to collect survey 
data. Data for both questionnaire and survey data are generally integrated using computational methods. The 
curators mainly use this interface for ad hoc (small batch) data integration or for error correction.  Each data entry 
person is limited to edit data in the account s/he is granted access to.  When a person’s data is shared by multiple 
accounts, a warning message will appear to block the editing attempt until all account managers agree upon the 
modification on the records. 

3.6 Usability of ONCOD data 

We have shown data uniformity and consistency, and their individualized cross-domain and longitudinal integrity in 
Section 3.4. Without these criteria, it is impossible to use even a modest dataset collected from two or more sources.  
Here we use data from a breast cancer project account shared by 18 principal investigators to further describe the 
impact of the ONCOD effort on data usability.  

In this account, each domain dataset is collected from at least two sources.  In the past four years, data of 12 
domains (detailed in Section 3.1) from 13379 individuals between 1992 to present have been collected.  All bio-
specimens (28641 specimens and sample records from 7383 individuals) are fully annotated with available 
demographic, clinical, and basic research information.  Furthermore, genotyping results, clinical records, family 
history, medical surveys, and pedigree annotations for 1767 persons from more than 16 sources collected over the 

 

 



past 20 years have also been integrated at the level of individuals. Since users of this account are also the data 
contributors, they themselves participate in data curation. The curated data stay in the TRAM system to benefit all 
users within the account, and some of these data are also shared with other accounts or external users through 
researchers’ collaborations.  Currently, ONCOD data are mainly used for hypothesis generation, grant applications, 
research planning, bio-specimen searching and sharing, and multidisciplinary and cross-institutional collaborations.   

4. DISCUSSION  

In order to find a more effective way to manage and use warehouse data, we have developed a model data mart, 
ONCOD, within our previously developed data warehouse system, TRAM.  The capability of ONCOD and the 
quality of ONCOD data has met all user specified requirements described in Section 1 (Section 1). Although the 
ONCOD data is still modest in size, the ONCOD/TRAM system has been tested to successfully integrate very 
complex data contents. We believe that ONCOD will further reveal its strength when more data are consented and 
large quantities of data become available.  Through the ONCOD effort, we have also enhanced the warehouse 
system architecture with a data access layer that can be customized to support other marts with cost-effective effort.  
In addition, ONCOD is built upon a set of materialized views created from the TRAM schema, so both share 
identical attribute semantics and one version of truth about data. Therefore, no additional workload is required to 
deal with potential data inconsistency between marts and a data warehouse, which allows the system to gain long-
term benefits from this costly endeavor.  

From the ONCOD project, we have learned two major lessons. 1) Conceptual data modeling is critical for a 
sustainable warehouse and we have benefitted enormously from this design investment.  However, the overhead of 
delivering a stabilized ER-based conceptual model is larger than that of the EAV approach. Because the ER 
approach demands predefinition of data elements, one should expect iterative data model improvement, especially in 
the early stage of system development.  2) To build a translational-scale DW instead of a clinical data dump, it is 
necessary to analyze a wide spectrum of biomedical domain data in large quantities from multiple sources. The 
representative data properties can only be identified when the data complexity and quantity is sufficient enough to 
reveal their common characteristic profiles.  

One of the challenges of using TRAM is to feed quality data to the system.  Persistent heterogeneity of source data, 
dynamically evolving data sources, fragility of data access channels, and lack of eligible standards for integrated 
data presents a daunting challenge to data processing professionals on a daily basis.  The ER-based TRAM schema 
requires column (attribute) semantic homogeneity, which adds another layer of difficulty for data integration, as 
heterogeneous source data need to be aligned to the predefined semantics of the TRAM model.  Although our data 
transformation workflow has shown consistent throughput capacity and quality of output data, it lacks robustness in 
error-handling and reasoning ability in semantic alignment.  In addition, specific manpower (with domain 
knowledge and data modeling skills) is required to operate the workflow, limiting the portability of ONCOD/TRAM 
to those who can provide it. However, if the TRAM system is implemented in a private (secured) Cloud and 
maintained by professionals, more informaticians and end-users will benefit from this service. Technically, cloud-
enabled data warehousing is a better way to improve data semantic interoperability than the current silo setting and 
autonomous operation in warehousing practice.     

From database to dataspace, the TRAM (or TRAM-like) system could function as a data conduit to bridge the wide 
gap between operational data sources and the semantic web. The ER-based TRAM schema can be easily converted 
into a resource description framework (RDF) scheme. Together with its controlled vocabulary or ontology-driven 
data description, this kind of warehouse can be an ideal resource for effective data exchange or web-scale data 
integration, if all regulatory requirements are met.   
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