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Abstract: Chlorophyll is the dominant pigment in the photosynthetic light-harvesting complexes that
is related to the physiological function of leaves and is responsible for light absorption and energy
transfer. Dust pollution has become an environmental problem in many areas in China, indicating
that accurately estimating chlorophyll content of vegetation using remote sensing for assessing the
vegetation growth status in dusty areas is vital. However, dust deposited on the leaf may affect the
chlorophyll content retrieval accuracy. Thus, quantitatively studying the dustfall effect is essential.
Using selected vegetation indices (VIs), the medium resolution imaging spectrometer terrestrial
chlorophyll index (MTCI), and the double difference index (DD), we studied the retrieval accuracy of
chlorophyll content at the leaf scale under dusty environments based on a laboratory experiment
and spectra simulation. First, the retrieval accuracy under different dustfall amounts was studied
based on a laboratory experiment. Then, the relationship between dustfall amount and fractional
dustfall cover (FDC) was experimentally analyzed for spectra simulation of dusty leaves. Based on
spectral data simulated using a PROSPECT-based mixture model, the sensitivity of VIs to dust under
different chlorophyll contents was analyzed comprehensively, and the MTCI was modified to reduce
its sensitivity to dust. The results showed that (1) according to experimental investigation, the DD
model provides low retrieval accuracy, the MTCI model is highly accurate when the dustfall amount
is less than 80 g/m2, and the retrieval accuracy decreases significantly when the dustfall amount is
more than 80 g/m2; (2) a logarithmic relationship exists between FDC and dustfall amount, and the
PROSPECT-based mixture model can simulate the leaf spectra under different dustfall amounts and
different chlorophyll contents with a root mean square error of 0.015; and (3) according to numerical
investigation, MTCI’s sensitivity to dust in the chlorophyll content range of 25 to 60 µg/cm2 is lower
than in other chlorophyll content ranges; DD’s sensitivity to dust was generally high throughout the
whole chlorophyll content range. These findings may contribute to quantitatively understanding the
dustfall effect on the retrieval of chlorophyll content and would help to accurately retrieve chlorophyll
content in dusty areas using remote sensing.

Keywords: dustfall; chlorophyll content; hyperspectral vegetation index; retrieval accuracy;
PROSPECT-based mixture model

Sensors 2019, 19, 5530; doi:10.3390/s19245530 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/24/5530?type=check_update&version=1
http://dx.doi.org/10.3390/s19245530
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5530 2 of 15

1. Introduction

Dust is largely released by industrial and mining enterprises [1–3], becoming one of the main
pollutants that affect air quality [4,5]. Dust aerosols can affect the climate and biogeochemistry [6,7],
and pose a risk to human health [8]. In China, dust pollution is serious in some mining areas [9]
for two reasons (Figure 1). Firstly, the concentration ration (the number of tons of ore required to
produce one ton of concentrate) is high in some mining areas [10]. Thus, a large amount of ore is
mined and transported to processing plants by truck, and large amounts of tailings are produced.
As a result, massive amounts of dust pollution are produced. Secondly, some industrial and mining
enterprises have not implemented effective dust prevention measures due to poor management.
Therefore, large amounts of dust diffuse into the atmosphere in these areas. Anshan, located in
Liaoning Province, northeastern China, is one of the largest iron and steel bases in China [11]. With
increasing iron ore mining and iron tailings emission, dust pollution is serious in this area. After
spreading a certain distance, part of the dust is deposited on the land surface (e.g., on native vegetation
and crop plants) [12–14].
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Vegetation is one of the best indicators for reflecting the quality of the regional ecosystem [15,16].
Vegetation responds to many environmental factors; thus, vegetation monitoring is important for
understanding ecological construction, environment regulation, and grain yield. Remote sensing
technology can be used to retrieve different physiochemical parameters, such as biomass and yield
estimation [17], water content [18], vegetation type [19], leaf area index [20], and various pigments [21].
Chlorophyll is the dominant pigment in plant photosynthesis, and can reflect plant photosynthetic
ability, physiological stress, carbon fixation capacity, and nitrogen use efficiency [22]. Therefore,
chlorophyll content is an important index for evaluating the growth of vegetation, and it is widely
used for vegetation monitoring [23]. Changes in chlorophyll content affect the spectra of vegetation,
which enables the estimation of chlorophyll content using remote sensing data. In visible wavelengths,
chlorophyll absorbs strongly in red and blue spectral regions, with maximum absorbance between
660 and 680 nm and maximum reflectance around 560 nm [24]. The hyperspectral vegetation index
(VI), which is calculated based on the spectra, can be used to effectively retrieve the chlorophyll content
of vegetation [25]. Various VIs have been developed to estimate chlorophyll content of vegetation
at leaf and canopy scales [26]. Empirical methods are some of the widely used methods to retrieve
chlorophyll content based on the relationship between chlorophyll content and VIs [27].

Accurate vegetation reflectance is critical for reliably estimating vegetation parameters based
on empirical methods. However, sometimes an accurate reflectance of the target cannot be obtained
due to the spectral masking caused by dust or weathering residues on the target [28]. This problem
has drawn geologists’ attention [29]. Since rock surfaces are usually covered by weathered coating,
spectral signatures of rocks would not be clean, but would include a spectral mixture of the two
endmembers [30]. Similarly, dust falling on the leaf would change the spectral characteristics of
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vegetation [10,31]. According to the relationship between spectra and dusty leaves, reflectance
spectroscopy could be used as an effective tool for monitoring soot pollution in urban suburbs [32].
Spectra-based VIs change with the dust amount [28]. Based on this, foliar dustfall amount was
estimated by establishing models using multivariate linear regression, principal component regression,
and partial least squares regression [33,34]. Dust falling on the leaf may reduce the retrieval accuracy
of plant parameters when using empirical methods, but this has rarely been the focus of research,
particularly in mining areas. The influence of foliar dust on nitrogen monitoring of crops beside
a road was studied using reflectance spectra [35]. The authors found that foliar dust increases the
nitrogen prediction error. The effect of dust on spectra-based estimation of leaf water content was
also studied in Shanghai, China [36], where the accuracy of water content retrieval varied with dust
amount. These studies were instructive for research on the retrieval of chlorophyll content in dusty
environments. Until now, research mainly focused on the dust problem in urban areas but not mining
areas. However, the dust amount is location-dependent and the amount of dust in urban areas is
relatively low compared to mining areas [37]. The dustfall amount is usually less than 24 g/m2 in urban
areas [38] but can be more than 110 g/m2 in mining areas [39]. Thus, studying the change in retrieval
accuracy under the high dustfall amounts in mining areas is necessary.

In these studies on dusty leaves, the leaf samples were usually classified into two types: clean
or dusty. This does not meet the needs of quantitative analysis under dusty conditions. From the
perspective of chlorophyll content, retrieval accuracy may vary with chlorophyll content due to the
different sensitivities of VIs at different chlorophyll contents [24,40]. Therefore, we considered a
relatively wide leaf chlorophyll content range in our study. To quantitatively study the spectral change
and its effect on retrieval accuracy of chlorophyll content, we first obtained the spectra of dusty leaves
with different dustfall amounts and different chlorophyll contents. The spectra can be obtained by
laboratory measurement [41]. However, obtaining leaf samples with continuous chlorophyll contents
is difficult. Therefore, models were used to simulate the spectra of dusty leaves under different dustfall
amounts and different chlorophyll contents [42]. The PROSPECT model, a simple but effective radiative
transfer model, has been widely used to simulate leaf spectra for various purposes [43]. Thus, the
PROSPECT model was selected to simulate the reflection spectra of leaves in dusty conditions.

The purpose of this study was to analyze the effect of dustfall on chlorophyll content retrieval
using both experimental and numerical methods at the leaf scale. The findings lay the foundation
for improving the chlorophyll content retrieval accuracy using hyperspectral remote sensing in
dusty environments.

2. Materials and Methods

We investigated the dustfall effect on the retrieval of chlorophyll content using an experiment and
a simulation. Firstly, the dustfall effect was studied using the measured spectra of dusty leaves in an
experiment. Since the experiment only provided a finite number of levels of chlorophyll content, a
simulation method based on the dustfall amount–coverage relationship and spectra mixture was used
to obtain the spectra under continuous chlorophyll contents. The flowchart of the method is shown in
Figure 2.
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Figure 2. Flowchart of the study of dustfall effect on remote sensing chlorophyll content retrieval 
accuracy on the leaf scale. The experiment was conducted in the laboratory using manual dust 
spraying. The simulation method was based on the relationship between dustfall amount and 
coverage and spectra mixture to obtain the spectra under continuous chlorophyll contents. 
Abbreviations: VI: vegetation index. 

2.1. Samples Collection and Spectra Measurement 

Boston ivy leaf in the Anshan area was selected as the leaf sample for the experiment. The sample 
was fixed on the horizontal experimental platform immediately after being picked. Chlorophyll 
content was measured using SPAD-502 (Minolta Camera, Osaka, Japan). Five to seven points were 
measured evenly on each dust-free leaf, and the mean value SPAD was set as the chlorophyll content 
of the leaf.  

The dustfall sample was collected from the Qidashan tailings pond, which is located in the east 
of Anshan, China (Figure 3). Its main elements include 82.28% SiO2, 9.90% TFe, 1.62% FeO, 0.85% 
MgO, 0.73% Al2O3, and 0.66% CaO. The particle size in the dustfall sample was less than 100 μm.  

In this experiment, SVC HR-1024 spectrometer (Spectra Vista Corporation, Poughkeepsie, NY, 
USA) was used to collect the spectra data of the leaves (Figure 4). The spectral resolution of the SVC 
HR-1024 spectrometer was 3.5 nm in the range of 350 to 1000 nm, 9.5 nm in the range of 1000 to 1850 
nm, and 6.5 nm in the range of 1850 to 2500 nm. The experimental light source was a halogen lamp 
with 60° elevation angle and 50 cm distance from the target. Firstly, the spectral curves of 32 dust-
free leave samples were measured to establish an empirical model for chlorophyll retrieval under 
dust-free conditions. Then, 2 of the 32 leaves (No. 1 with SPAD 50.9, and No. 2 with SPAD 65.2) were 
selected for the manual deposition of dust. Then, dust was sprayed on the two leaves with a 
difference. In the experiment, the dust was applied by air-blowing from eight different directions 
above the leaf sample with a constant height. We applied 20 different dustfall amounts from 8 to 160 
g/m2 in 8 g/m2 increments. After the application was completed, a total of 21 sets of spectral curves 
were obtained for each leaf using an SVC HR-1024 spectrometer. Then the curves were merged and 
smoothed using the SVC HR-1024 PC Data Acquisition Software (Spectra Vista Corporation, 
Poughkeepsie, NY, USA). 

Figure 2. Flowchart of the study of dustfall effect on remote sensing chlorophyll content retrieval
accuracy on the leaf scale. The experiment was conducted in the laboratory using manual dust spraying.
The simulation method was based on the relationship between dustfall amount and coverage and
spectra mixture to obtain the spectra under continuous chlorophyll contents. Abbreviations: VI:
vegetation index.

2.1. Samples Collection and Spectra Measurement

Boston ivy leaf in the Anshan area was selected as the leaf sample for the experiment. The sample
was fixed on the horizontal experimental platform immediately after being picked. Chlorophyll content
was measured using SPAD-502 (Minolta Camera, Osaka, Japan). Five to seven points were measured
evenly on each dust-free leaf, and the mean value SPAD was set as the chlorophyll content of the leaf.

The dustfall sample was collected from the Qidashan tailings pond, which is located in the east of
Anshan, China (Figure 3). Its main elements include 82.28% SiO2, 9.90% TFe, 1.62% FeO, 0.85% MgO,
0.73% Al2O3, and 0.66% CaO. The particle size in the dustfall sample was less than 100 µm.Sensors 2020, 20, x FOR PEER REVIEW 5 of 15 
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(R2) was calculated using Excel (Microsoft Corporation, Redmond, WA, USA). The medium 
resolution imaging spectrometer terrestrial chlorophyll index (MTCI) [44] logarithmic model, and the 
double difference index (DD) [26] exponential model were selected for the next step due to their high 
correlation with chlorophyll content (Tables 1 and 2).  

Table 1. Summary of vegetation indices (VIs). 

 Formula Reference 
MTCI (R749 – R709)/(R709 – R680) [44] 

DD (R749 – R720) – (R700 – R671) [26] 
Abbreviations: MTCI: medium resolution imaging spectrometer terrestrial chlorophyll index; DD: 
double difference index. 

Table 2. Retrieval model of leaf chlorophyll content (n = 32). 

VI Regression Equation R2 
MTCI y = 23.932lnx + 28.285 0.919 (p < 0.01) 

Figure 3. Location of the Qidashan tailings pond in Landsat 5 Thematic Mapper (TM) image (yellow
point is the dust sample collection location).

In this experiment, SVC HR-1024 spectrometer (Spectra Vista Corporation, Poughkeepsie, NY,
USA) was used to collect the spectra data of the leaves (Figure 4). The spectral resolution of the SVC
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HR-1024 spectrometer was 3.5 nm in the range of 350 to 1000 nm, 9.5 nm in the range of 1000 to
1850 nm, and 6.5 nm in the range of 1850 to 2500 nm. The experimental light source was a halogen lamp
with 60◦ elevation angle and 50 cm distance from the target. Firstly, the spectral curves of 32 dust-free
leave samples were measured to establish an empirical model for chlorophyll retrieval under dust-free
conditions. Then, 2 of the 32 leaves (No. 1 with SPAD 50.9, and No. 2 with SPAD 65.2) were selected
for the manual deposition of dust. Then, dust was sprayed on the two leaves with a difference. In
the experiment, the dust was applied by air-blowing from eight different directions above the leaf
sample with a constant height. We applied 20 different dustfall amounts from 8 to 160 g/m2 in 8 g/m2

increments. After the application was completed, a total of 21 sets of spectral curves were obtained for
each leaf using an SVC HR-1024 spectrometer. Then the curves were merged and smoothed using the
SVC HR-1024 PC Data Acquisition Software (Spectra Vista Corporation, Poughkeepsie, NY, USA).
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scene using SVC HR-1024 spectrometer, (b) dust-free leaf sample, and (c) dusty leaf sample.

2.2. Determining Dustfall Effect on Chlorophyll Content Retrieval Accuracy Based on Experiment

In this study, we established an empirical model to retrieve leaf chlorophyll content in a dust-free
environment. The correlation between chlorophyll content and VIs of 32 leaves was analyzed to select
the best retrieval model. The regression model was established and its determination coefficient (R2)
was calculated using Excel (Microsoft Corporation, Redmond, WA, USA). The medium resolution
imaging spectrometer terrestrial chlorophyll index (MTCI) [44] logarithmic model, and the double
difference index (DD) [26] exponential model were selected for the next step due to their high correlation
with chlorophyll content (Tables 1 and 2).

Table 1. Summary of vegetation indices (VIs).

Formula Reference

MTCI (R749 – R709)/(R709 – R680) [44]
DD (R749 – R720) – (R700 – R671) [26]

Abbreviations: MTCI: medium resolution imaging spectrometer terrestrial chlorophyll index; DD: double
difference index.

Table 2. Retrieval model of leaf chlorophyll content (n = 32).

VI Regression Equation R2

MTCI y = 23.932lnx + 28.285 0.919 (p < 0.01)
DD y = 31.095e0.040x 0.951 (p < 0.01)
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In this study, we used the relative error (RE) as the indicator of the retrieval accuracy of chlorophyll
content:

RE =

∣∣∣yi − y0
∣∣∣

y0
(1)

where yi is the predictive value of chlorophyll content according to the above retrieval model, and y0 is
the measured value of chlorophyll content. The smaller the RE value, the higher the retrieval accuracy.
According to the measured dusty leaf spectra, the RE of retrieval was calculated for each selected VI to
determine the dustfall effect on chlorophyll content retrieval accuracy.

2.3. Relationship between Dustfall Coverage and Dustfall Amount for Dusty Leaf Spectral Simulation

The spectra of dusty leaves are a mixture of dust and leaf spectra. Thus, the fractional dustfall
cover (FDC) of the dusty leaf, which describes the fractional abundance of a dusty leaf, is the key
parameter used to determine mixed spectra. However, dustfall is usually measured as dustfall amount
(weight per unit area) in the environmental field. Therefore, we needed to determine the relationship
between FDC and dustfall amount prior to spectra simulation by directly using dustfall amount.

The relationship was determined by designing an experiment. Dust was sprayed on the white
background in intervals of 10 g/m2. An image was captured using a camera after each step (Figure 5).
MATLAB (MathWorks, Natick, MA, USA) was used to process these images and calculate the FDC
using the grayscale difference. The relationship of grayscale amongst the dust-free background, pure
dust, and dusty area was determined based on a linear mixing model [45]:

G1 fD + G2(1− fD) = G3 (2)

where G1 is the gray value of pure dust, G2 is the gray value of the dust-free background, G3 is the
gray value of the dusty area, and fD is the FDC. The gray values of G1, G2, and G3 were obtained by
processing the image acquired in the experiment. Thus, fD was calculated as:

fD =
G3 −G2

G1 −G2
(3)
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(a) dust-free background, (b) pure dust, and (c) dusty area.

According to the calculated FDC and the known dustfall amount, the relationship between FDC
and dustfall amount was determined.

2.4. Quantitative Change Analysis of VIs for Different Dustfall and Chlorophyll Levels Based on Spectral
Simulation

Manual collection of spectra is not only time-consuming and laborious, but also susceptible to
experimental conditions. Numerical simulations can overcome these shortcomings and provide more
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eligible spectra. In this study, we considered the reflectance of dusty leaves as a linear superposition of
the reflectance of pure dust and pure leaf. The reflectance of dusty leaves can be expressed as:

R = RD × fD + RL × (1− fD) (4)

where R is the reflectance of the dusty leaf, RD is the reflectance of dust, and RL is the reflectance of the
leaf. RD was a constant because the dust sample is provided, RL was simulated by the PROSPECT
model, and fD was calculated according to the relationship between FDC and dustfall amount when
the dustfall amount is known. In other words, the spectra of dusty leaves with different dustfall
amounts were simulated based on the PROSPECT model. As such, the above formula was called the
PROSPECT-based mixture model. Given the ability to simulate spectra with different chlorophyll
contents in PROSPECT, the model can simulate the spectra of dusty leaves with different chlorophyll
contents and different dustfall amounts.

The chlorophyll content of the leaf samples in the dust-deposition experiment was within the
range of 40 to 65 SPAD. According to the relationship between the SPAD value and actual chlorophyll
content (µg/cm2), the 40–65 SPAD chlorophyll content on common vegetation leaves is equivalent to
40–90 µg/cm2 [46,47]. The PROSPECT-based mixture model was used to simulate the spectra of dusty
leaves with chlorophyll content of 10–100 µg/cm2 in intervals of 5 µg/cm2. The spectra of dust leaves
corresponding to each chlorophyll content value were set as one group, and the dustfall amount of
each group was set to 0–160 g/m2 with an interval of 10 g/m2. A total of 19 groups of simulated leaf
spectra were obtained with different chlorophyll contents, in which each group had 17 spectral curves
with different levels of dustfall amounts. Root mean square error (RMSE) is the most widely used
accuracy evaluation index as it reflects the average difference between the simulated and the measured
values. Its calculation formula is as follows:

RMSE =

√∑n
j=1(y′ − y)2

n
(5)

where y′ is the simulated reflectance of the dusty leaf, y is the measured reflectance of the dusty leaf,
and n represents the total number of actual bands in the spectra.

After obtaining the simulated spectra, these VIs were calculated, and their variation characteristics
were analyzed under different chlorophyll contents and dustfall amounts. We comprehensively
analyzed the dustfall effect on chlorophyll retrieval.

3. Results

According to the experiment and simulation, spectra were obtained to study the effect of dustfall
on the retrieval accuracy of chlorophyll content. The simulation-induced result provides a guideline
for the retrieval of chlorophyll content.

3.1. Dustfall Effect on Chlorophyll Content Retrieval Accuracy Based on Experiment

According to the experiment results, as dustfall amount increased, the spectral curves of dusty
leaves became similar to that of dust. One of the two experimental leaves was taken as an example
(Figure 6). The reflectance of the dusty leaf was greater than the dust-free leaf in 380–710 nm and
1420–1570 nm. As dustfall amount increased, the reflectance of dusty leaf also increased. The wave
peak at 559 nm gradually flattened. In 710–1420 nm and 1570–1900 nm, reflectance of the dust-free leaf
was greater than that of the dusty leaf, and the reflectance decreased with increasing dustfall amount.
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In general, the MTCI value was relatively stable when the dustfall amount was less than 80 g/m2,
and the change rate increased when the dustfall amount was more than 80 g/m2 (Figure 7a). However,
the change rate was different for the two leaves. The MTCI change rate of leaf No. 2 was greater
than that of leaf No. 1. When dustfall amount was less than 100 g/m2, the DD value changed with
increasing dustfall amount (Figure 7b). When the dustfall amount was greater than 100 g/m2, the DD
value tended to stabilize.

The chlorophyll content of dusty leaves was retrieved using MTCI and DD empirical retrieval
models. The results showed that the MTCI model provided high retrieval accuracy when dustfall
amount was less than 80 g/m2, but the retrieval accuracy decreased obviously when the dustfall amount
was 80–160 g/m2 (Figure 8a). Conversely, with increasing dustfall amount, the retrieval accuracy of
DD model decreased dramatically and then gently (Figure 8b).
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3.2. Accuracy Analysis of Simulated Spectra by PROSPECT-Based Mixture Model

3.2.1. Relationship between Dustfall Coverage and Dustfall Amount

After the FDC was calculated by processing images acquired during the experiment, relationship
between dustfall amount and FDC was described, as shown in Figure 9. We found a logarithmic
relationship, and the determination coefficient (R2) was more than 0.97. FDC increased with increasing
dustfall amount. However, the growth rate of FDC decreased gradually with the increasing dustfall
amount when the dustfall amount was more than 80 g/m2.
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3.2.2. Accuracy Analysis of Simulated Spectra

The spectra of dusty leaves were simulated using the PROSPECT-based mixture model. The
maximum RMSE value was 0.015 when the dustfall was 32 g/m2 (Figure 10). RMSE declined overall
when the dustfall amount was greater than 120 g/m2. According to the relationship between FDC and
dust amount, FDC almost reached saturation when the dustfall amount was greater than 120 g/m2.
Therefore, FDC deviation would not lead to large simulation errors in this range.
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Figure 10. Root mean square error (RMSE) distribution of simulated spectra of dusty leaves under
different dustfall amounts.

3.3. VIs Change Under Different Levels of Dustfall Amount and Chlorophyll Content Based on Simulation

The PROSPECT-based mixture model was used to simulate the spectral curves of dusty leaves
for dustfall amounts of 0–160 g/m2 and chlorophyll contents of 10–100 µg/cm2. MTCI and DD were
calculated for different chlorophyll contents and different dustfall amounts. In this study, change rate
(K) of the VI under different dustfall amounts relative to the dust-free VI was defined to represent the
sensitivity of the VI:

K =

∣∣∣∣∣VIx −VI0

VI0

∣∣∣∣∣ (6)
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where VIx is the VI value when the dustfall amount is x, VI0 is the VI value of the dust-free leaf, and K
is the change rate.

Figure 11 shows that the sensitivity of MTCI and DD to dustfall varied significantly for different
chlorophyll contents. For MTCI, K increased with increasing dustfall amount. When the dustfall
amount was lower than 80 g/m2, K was relatively low. When the dustfall amount was greater than
80 g/m2, K increased significantly. For chlorophyll contents of 25–60 µg/cm2, K value was lower than
0.35. Outside this range, the K value changed considerably, with a maximum of 2.2. Therefore, MTCI
showed good resistance to dust for chlorophyll contents of 25–60 µg/cm2 for the whole dustfall amount.
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For DD, K also increased with increasing dustfall amount. However, the K value was relatively
stable for different chlorophyll contents when dustfall amount was constant. The K value reached 0.4
when the dustfall amount was 40 g/m2 and was close to 1 when the dustfall amount was 160 g/m2.
Therefore, DD is sensitive to dustfall amount for all chlorophyll content values, so it is not suitable for
retrieving chlorophyll content under these conditions.

4. Discussion

4.1. Leaf Chlorophyll Content Retrieval Accuracy

In this study, we considered the spectra of dusty leaves as a linear mixture of dusty and dust-free
leaves. However, the dust retained on the leaf may affect the spectra mixture nonlinearly [45]. For
example, dust changes the roughness of the leaf surface. A shadow on the rough surface would affect
the scattering of the electromagnetic wave when the incident angle is large [48]. In our laboratory
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experiment or spectra simulation, the incident angle was nearly vertical. Thus, the shadowing effect
was ignored, although this was not possible in reality due to the off-vertical incident angle of the
radiation source. We did not consider multiple reflection in the linear superposition. As a result,
these factors may lead to errors during spectra simulation. In future studies, these factors should be
considered to improve the accuracy of the PROSPECT-based mixture model.

The effect of dust deposition of leaf water content on estimation was studied in urban areas [36].
The results showed that the effect of dust cannot be ignored for remote sensing estimation of leaf
water content. This is in agreement with the result of our study. However, the change in retrieval
accuracy differs with increasing dust amount. The chlorophyll content retrieval accuracy decreased
with increasing dust amount, but water content retrieval accuracy increased with increasing dust
amount. This discrepancy may be related to the maximum dust amount and the retrieved parameter.
The maximum dust amount considered was 5.53 g/m2 in the urban study and the maximum value
considered was 160 g/m2 in our study. The large amount of dustfall in the study area occurs due to
dust from the local mining, road surface conditions, and vehicle types. Due to the high dust amount,
the difference between studied dust deposition amounts was 8 g/m2 in our experiment. At this level, a
similar variation in retrieval accuracy was not detected. From the VI perspective, the differences in dust
amount would also lead to differences in retrieval accuracy. For water content, the shortwave infrared
water stress index (SIWSI) and water index (WI) have different retrieval accuracies [36], similar to
MTCI and DD performing differently for chlorophyll content. Thus, we needed to test the performance
of different VIs. From the perspective of plant parameters, the retrieval accuracy variation with the
parameter should also be studied because the parameter usually varies widely in reality. However, this
factor was not considered in previous studies on the dust effect [35,36]. In this study, MTCI provided a
higher retrieval accuracy for chlorophyll contents of 25–60 µg/cm2 due to its low sensitivity in this
range for the whole dustfall amount. This information could be useful for improving the applicability
and practicability of the result.

The chlorophyll content retrieval accuracy was only studied on leaf scale in this research. Leaf
scale is the basis of canopy scale. However, some factors should be considered when applying results
from leaf scale to canopy scale. For example, leaf angle, leaf area, and height of canopy may affect the
distribution of dust. Thus, these canopy factors should be considered for remote sensing applications
in the future.

4.2. Attempt to Improve Retrieval Accuracy by Correcting MTCI

According to the results of the leaf dust deposition experiments, the retrieval accuracy of the DD
model is low. The logarithmic MTCI model had a high retrieval accuracy when the dustfall amount
was lower than 80 g/m2, which could be directly used to estimate chlorophyll content. When the
dustfall amount was more than 80 g/m2, the MTCI retrieval accuracy was low with a certain regularity.
MTCI was highly sensitive to chlorophyll content and could inhibit the influence of background and
atmospheric changes [44]. Therefore, MTCI could be used for dust-effect modification to improve the
accuracy of chlorophyll content retrieval under dustfall conditions. A multiplicative factor could be
used to correct the MTCI value under dustfall conditions. The modified MTCI (mMTCI) is the product
of MTCI and the multiplicative factor. The multiplicative factor was set as follows:

fx = MTCI0
MTCIx

(7)

where fx is the multiplicative factor, MTCI0 is the MTCI value of a dust-free leaf, and MTCIx is the
MTCI value when dustfall amount is x. Therefore, fx was obtained for different chlorophyll contents
using the simulated spectra (Table 3).
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Table 3. The results of multiplicative factor (fx) for MTCI correction for different chlorophyll contents.

Chlorophyll Content Fitting Equation R2

60 µg/cm2 fx = 0.00006x2 – 0.0036x + 1.0421 0.981 (p < 0.01)
90 µg/cm2 fx = 0.0002x2 – 0.0112x+ 1.1798 0.982 (p < 0.01)

Note: fx , the fitting equation for the multiplicative factor; x represents dustfall amount (g/m2).

We used the experimentally measured spectral data of dusty leaves to verify the correction result.
The result showed that compared with the MTCI retrieval model, the dust sensitivity of the mMTCI
retrieval model decreased and the retrieval accuracy improved significantly for dustfall amounts of
80–160 g/m2 (Figure 12). However, the multiplicative factor fx is dependent on chlorophyll content and
dustfall amount, although the accuracy requirement for the chlorophyll content is not very high. The
application of remote sensing in these scenarios would be hindered due to the difficulty of obtaining
these prior parameters. Therefore, a more practical factor for modifying VIs for retrieval under dusty
conditions should be studied in future research.
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5. Conclusions

In this study, we examined the effect of dustfall on chlorophyll content retrieval. We first conducted
a laboratory experiment to obtain the spectra of dusty leaves. The chlorophyll content retrieval accuracy
for dusty leaves was preliminarily analyzed. Then, the spectra of dusty leaves were simulated under
different chlorophyll contents and different dustfall amounts, and we analyzed the sensitivity of
different VIs. The conclusions are summarized as follows:

(1) According to our experimental investigation, the DD model has low chlorophyll content
retrieval accuracy for dusty leaves. The MTCI model produced high retrieval accuracy when the
dustfall amount was lower than 80 g/m2, and its retrieval accuracy decreased significantly when the
dustfall amount was greater than 80 g/m2.

(2) We found a logarithmic relationship between fractional dustfall coverage (FDC) and dustfall
amount. With increasing dustfall amount, dustfall coverage tended to be saturated when the dustfall
amount was above 80 g/m2. On the basis of this relationship, the spectra of dusty leaves could be
simulated using the PROSPECT-based mixture model, with an RMSE within 0.015.

(3) According to our numerical investigation, DD was highly sensitive to dust throughout the
whole chlorophyll content range, and MTCI was less sensitive to dust for chlorophyll contents of 25–60
µg/cm2 than in other chlorophyll content ranges. MTCI could be used to retrieve the chlorophyll
content of dusty leaves with modification.

Based on the laboratory experiment and simulation, we preliminarily explored the dustfall effect
of iron tailings dust with hyperspectral retrieval of chlorophyll content, which could provide a reference
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for further research on the effect of dustfall on the retrieval of vegetation parameters. In practice, the
relationship between FDC and dustfall amount and VIs’ sensitivity to dust may be related to dust
characteristics. Therefore, a spectral database should be built containing typical dust in various mining
areas. The related characteristics of dusty vegetation on leaf scale should be extended to canopy scale
for remote sensing applications in future study.
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