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Abstract: Laminaria digitata is a novel feedstuff that can be used in pig diets to replace conventional
feedstuffs. However, its resilient cell wall can prevent the monogastric digestive system from access-
ing intracellular nutrients. Carbohydrate-active enzyme (CAZyme) supplementation is a putative
solution for this problem, degrading the cell wall during digestion. The objective of this work was to
evaluate the effect of 10% L. digitata feed inclusion and CAZyme supplementation on the meat quality
and nutritional value of weaned piglets. Forty weaned piglets were randomly allocated to four exper-
imental groups (n = 10): control, LA (10% L. digitata, replacing the control diet), LAR (LA + CAZyme
(0.005% Rovabio® Excel AP)) and LAL (LA + CAZyme (0.01% alginate lyase)) and the trial lasted for
two weeks. The diets had no effect on any zootechnical parameters measured (p > 0.05) and meat
quality traits, except for the pH measured 24 h post-mortem, which was higher in LAL compared
to LA (p = 0.016). Piglets fed with seaweed had a significantly lower n-6/n-3 PUFA ratio compared
to control, to which the higher accumulation of C20:5n-3 (p = 0.001) and C18:4n-3 (p < 0.0001) con-
tributed. In addition, meat of seaweed-fed piglets was enriched with bromine (Br, p < 0.001) and iodine
(I, p < 0.001) and depicted a higher oxidative stability. This study demonstrates that the nutritional value
of piglets’ meat could be improved by the dietary incorporation of L. digitata, regardless of CAZyme
supplementation, without negatively affecting growth performance in the post-weaning stage.

Keywords: Laminaria digitata; CAZyme; piglets; meat quality

1. Introduction

The human population is estimated to increase above 9 billion people by 2050 [1].
This is expected to increase the demand for animal products, such as pork, thereby increas-
ing the pressure on natural resources such as water and land. It is therefore essential to
increase productivity of production systems while maintaining and/or improving envi-
ronmental sustainability. Feedstuffs commonly used in pig diets, such as soybean meal,
have a major environmental impact in both production and transport [2]. In Europe,
this impact is worsened by dependency on imports from countries such as the USA and
Brazil [3]. Hence, alternative feeds are necessary to reduce Europe’s dependency on these
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feedstuffs whilst maintaining environmental and economical sustainability. In recent
years, researchers have devoted much attention to alternative feedstuffs whose use also
reduces food–feed–fuel competition, such as food industry by-products [4], insects [5],
microalgae [6,7], and macroalgae [8,9].

Macroalgae (or seaweeds) are a diverse group of multicellular algae with three main
categories: Phaeophyceae (brown algae), Rhodophyceae (red algae), and Chlorophyceae (green
algae) [10]. Their nutritional composition is highly variable, depending on factors such
as species, production/harvesting location, post-harvesting treatment, etc. Green and red
algae can have levels of crude protein comparable to those of soybean meal (42–44% on a
dry matter–DM-basis), whereas their crude fat content is generally low, below 7% on a DM
basis [11]. They also have several bioactive components: n-3 polyunsaturated fatty acids
(n-3 PUFA), including eicosapentaenoic acid (EPA), iodine (I), and polysaccharides such
as laminarin [12]. Laminaria digitata is a brown seaweed whose laminarin and fucoidan
extracts have been widely reported to improve growth and gut health of weaned piglets,
as well as meat quality of finishing pigs [13–16]. To our knowledge, the use of the whole
biomass of this seaweed as a feed ingredient (above 3% dietary incorporation) has not
been reported. This is likely due to the high abundance of recalcitrant polysaccharides,
indigestible by monogastric endogenous enzymes. To take advantage of these nutritional
properties, the feed supplementation with carbohydrate-active enzymes (CAZymes) is a
viable approach. CAZymes act upon glyosidic bonds of polysaccharides [17]. The commer-
cially available enzyme mixture Rovabio® Excel AP was designed for use in cereal-based
diets to degrade non-starch polysaccharides and has been used in microalgae-containing
diets [6,7,18]. Alginate lyase, an alginate-degrading enzyme, has been reported to degrade
the cell walls of L. digitata in vitro [19], being a putative candidate for in vivo studies.

Weaning is a critical stage in pig production, where piglets endure social, nutritional,
and environmental-related stress [20]. Antibiotics were intensively used in the past to deal
with post-weaning stress, until their use for such purpose was banned in the European
Union due to public health concerns. The prebiotic properties and components of sea-
weeds could help mitigate this issue. For instance, authors have reported that laminarin
extracted from L. digitata improved the microbiome of weaned piglets, without detrimental
effects on growth performance [13], while another study reports growth improvement by
feeding piglets with a laminarin extract [14]. Other authors have reported that feeding
pigs with laminarin and fucoidan extracts reduced saturated fatty acids and lowered lipid
oxidation in meat [15]. This is particularly interesting in the Southern European context,
given that there is a tradition of spit-roast piglet consumption in countries such as Portugal
(Leitão de Negrais). Following the discussion above, the objective of this work was to evalu-
ate the effect of 10% dietary L. digitata and CAZyme supplementation on the quality and
nutritional value of weaned piglets’ meat.

2. Materials and Methods
2.1. Animals and Experimental Diets

The animal trial was conducted at the Animal Production Section of ISA (University
of Lisbon, Portugal). It was approved by ISA’s Ethics Commission and accepted by the
National Veterinary Authority (ref. 0421/000/000/2020) following current legislation of
the European Union (2010/63/EU Directive). Forty male piglets (Large White × Duroc),
35-day old, with 10.49 ± 0.62 kg (mean ± SD) body weight were bought from a commercial
farm, where they had been weaned at 28 days of age. They were housed individually in
metabolic crates, equipped with individual heating lamps and nipple drinkers. The piglets
were then randomly allocated to each of the four experimental groups (n = 10): control
(maize, wheat, and soybean meal-based diet), LA (10% L. digitata, replacing the control
diet), LAR (LA + CAZyme-0.005% Rovabio® Excel AP from Adisseo (Antony, France)) and
LAL (LA + CAZyme-0.01% pre-selected alginate lyase as described by Costa et al. [19]).
Experimental diet composition is presented in Table S1. The seaweed was wild caught,
bought from Aleor (Lézardrieux, France), and used as supplied (dried powder, <250 µm).
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The seaweed had 4.85% and 1.31% (on a dry matter basis) of crude protein and crude fat,
respectively. Diets were formulated to be isocaloric and isonitrogenous.

2.2. Diet Composition Analysis
2.2.1. Proximal Analysis

Procedures for proximate analysis of diets were previously described [6]. Briefly,
dry matter (DM) was assessed by drying diets at 103 ◦C overnight. Ash was determined
by calcinating the dried sample at 500 ◦C in a muffle furnace overnight. Crude protein
was measured using the Kjeldahl method, using 6.25 as conversion factor. Crude fat was
determined by hydrolysis followed by automatic Soxhlet extraction with petroleum ether
(Gerhardt Analytical Systems, Königswinter, Germany). Crude energy was analysed by
adiabatic calorimeter (Parr 1261; Parr Instrument Company, Moline, IL, USA). The AOAC
guidelines were followed [21].

2.2.2. Fatty Acid Composition

Fatty acid composition of diets was assessed by one-step extraction and acid transes-
terification [22]. Afterwards, fatty acid methyl esters (FAME) derivatives were separated,
identified, and quantified through gas chromatography (GC), following previously reported
conditions [22]. The identification of fatty acids was done using the reference standard
(FAME mixture of 37 compounds, Supelco Inc., Bellefonte, PA, USA). The internal standard
was nonadecanoic acid (C19:0) methyl ester. Fatty acids were quantified as percentage of
total fatty acids.

2.2.3. Pigment Profiling

Diterpene profile and β-carotene content of diets were evaluated based on direct
saponification and single extraction with n-hexane and then analysed by HPLC as carried
out by Prates et al. [23]. Pigments in diets were determined according to Teimouri et al. [24].
Approximately 0.5 g of diets were incubated with acetone in the dark at room temperature
during 12 h under agitation. After extraction, samples were centrifuged and analysed by
UV-VIS spectrophotometry (Ultrospec 3100; Amersham Biosciences, Little Chalfont, UK).
The amount of pigments was calculated using the Hynstova et al. [25] equations as follows:
clorophyll-a (Ca) = 11.24 A662 − 2.04 A645; clorophyll-b (Cb) = 20.13 A645 − 4.19 A662;
total chlorophylls (Ca + Cb) = 7.05 A662 + 18.09 A645; total carotenoids (Cx + c) = (1000 A470
− 1.90 Ca − 63.14 Cb)/214; and total chlorophylls and total carotenoids (Ca + Cb) + (Cx + c).

2.2.4. Mineral Profiling

The mineral profile of experimental diets was analysed as described by Ribeiro
et al. [26]. Diets were incubated in a ventilated chamber with concentrated nitric acid
plus hydrochloric acid, during 16 h, followed by the addition of hydrogen peroxide and
heated using a digestion plate (DigiPREP MS, SCP Science, Baie-D’Urfe, QC, Canada).
Then, diets were diluted with distilled water, filtered, and analysed by Inductively Cou-
pled Plasma–Optical Emission Spectrometry (ICP-OES, iCAP 7200 duo Thermo Scientific,
Waltham, MA, USA). The analysis of I and bromine (Br) was performed by Inductively
Coupled Plasma Mass Spectrometer (ICP-MS) (Thermo X series II, Thermo Fisher Scientific,
Waltham, MA, USA), according to Delgado et al. [27]. Briefly, tetramethylammonium
hydroxide (TMAH) solution (25%, v/v) and ultra-pure water (Milli-Q Element system,
Millipore Corporation, Saint-Quentin, France) were added to samples followed by extrac-
tion, in triplicate, using a Heating Graphite Block System (DigiPREP MS, SCP Science,
Baie-D’Urfe, QC, Canada) at 90 ◦C during 3 h.

The detailed chemical composition of the experimental diets is presented in Table 1.
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Table 1. Chemical composition of experimental diets.

Dietary Treatments

Control LA LAR LAL

Proximate composition (% dry matter)

Dry matter 89.4 89.6 89.7 89.5

Crude protein 18.5 17.0 17.0 17.4

Crude fat 3.9 4.0 4.6 4.1

Ash 5.9 6.4 6.5 6.3

Crude energy (cal/g DM) 4390.23 4306.12 4287.53 4339.46

Fatty acid composition (% total FA)

Myristic acid (C14:0) 0.435 0.612 0.502 0.476

Palmitic acid (C16:0) 10.6 11.3 11.0 10.9

Palmitoleic acid (C16:1c9) 0.163 0.258 0.254 0.236

Margaric acid (C17:0) 0.074 0.075 0.073 0.071

cis-9 Margaric acid (C17:1c9) 0.037 0.044 0.044 0.040

Stearic acid (C18:0) 3.32 3.23 3.26 3.31

Oleic acid (C18:1c9) 25.6 25.2 25.3 25.3

Linoleic acid (C18:2n-6) 55.8 54.1 54.6 54.8

Linolenic acid C18:3n-3 1.33 1.45 1.44 1.48

Stearidonic acid (C18:4n-3) 0.009 0.193 0.193 0.193

Arachidic acid (C20:0) 0.311 0.328 0.331 0.334

Arachidonic acid (C20:4n-6) 0.007 0.308 0.314 0.278

Eicosapentaenoic acid (C20:5n-3) n.d. 0.382 0.396 0.351

Diterpene profile (µg/g DM)

α-Tocopherol 59.5 51.8 45.7 45.4

β-Tocopherol 0.978 0.733 0.708 0.830

γ-Tocopherol 2.35 1.59 1.51 1.94

δ-Tocopherol 0.525 0.447 0.448 0.475

γ-Tocotrienol 1.62 1.41 1.31 1.50

Pigments 1 (µg/g DM)

β-Carotene 0.418 1.46 1.44 1.31

Chlorophyll-a 0.324 36.2 36.8 36.0

Chlorophyll-b 3.791 1.21 0.727 0.714

Total chlorophylls 4.02 35.4 36.6 34.7

Total carotenoids 0.461 12.5 12.0 10.5

Total chlorophylls + carotenoids 4.49 48.0 48.6 45.3

Mineral profile (mg/kg DM)

Bromine 15.1 83.1 80.8 87.7

Calcium 17,445 16,022 16,675 15,931

Copper 274 244 269 236

Iodine 9.56 652 647 713

Iron 304 226 253 246

Magnesium 1751 2615 2605 2569

Manganese 149 123 123 113

Phosphorous 11,131 6381 6445 6167

Potassium 12,789 15,694 15,651 15,680

Sodium 4542 6647 6462 6321

Sulphur 3094 4787 4726 4550

Zinc 229 254 269 233

Control, LA, LAR, and LAL diets represent corn-soybean meal-based diets containing 0% L. digitata (Control),
10% L. digitata (LA), 10% L. digitata + 0.005% of Rovabio® Excel AP (LAR); and 10% L. digitata + 0.01% of algi-
nate lyase recombinant CAZyme (LAL). DM, dry matter; FA, fatty acids; n.d., not detected. 1 Chlorophyll-a,
chlorophyll-b, total chlorophylls, and total carotenoids were calculated as described by Hynstova et al. [25].
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2.3. Growth Performance and Slaughter of Piglets

After 5 days of adaptation to diets and environmental conditions, the trial lasted for
two weeks, and piglets had free access to water. Feed refusals were recorded daily. Piglets
were weighed at the beginning and end of each week to calculate growth performance
parameters. At the end of trial, all piglets were slaughtered by electrical stunning and
exsanguination, following commercial practices. The longissimus lumborum (LL) muscle was
removed from each carcass between the third and fifth lumbar vertebrae. Meanwhile, LL
muscle from the right carcass was used for meat quality traits and sensory analyses, and LL
muscle from the left carcass side was minced, vacuum packed, and stored at −20 ◦C for
biochemical analysis.

2.4. Measurement of Meat Quality Traits and Sensory Analysis

Meat pH was measured, in triplicate, at different positions, on LL muscle at 24 h
post-mortem using a pH meter (Hanna Instruments, Woonsocket, RI, USA) equipped
with an insertion glass electrode. At 24 h post-mortem, meat colour parameters lightness
(L*), redness (a*), and yellowness (b*) were measured three times on the exposed (after
blooming for 60 min at 4 ◦C) cut surface of the LL muscle by using a CR-300 Minolta
colorimeter (Tokyo, Japan). Chroma (C*, colour intensity also known as saturation index)
was calculated as (a*2 + b*2)1/2. Hue angle (H*) was calculated as tan−1 (b*/a*) × 57.29,
expressed in degrees. To determine shear force and cooking loss, meat samples were thawed
at 4 ◦C for 24 h and cooked in a water bath programmed at 80 ◦C with a meat internal
temperature of 78 ◦C monitored by a thermocouple (Lufft C120; Lufft, München, Germany).
Shear force was determined in meat samples, along the direction of the muscle fibres with
a 1 cm2 cross-section, using a Warner-Bratzler blade coupled to a texture analyser (TA-XT
Plus texture analyser; Stable Micro Systems, Surrey, UK). Cooking loss was calculated as a
percentage of weight before and after cooking.

Twelve panellists, specifically trained in five panel sessions with 8 random meat sam-
ples per session, were selected in accordance with Cross et al. [28]. The sensory descriptors
were tenderness, juiciness, flavour, off-flavour, and overall acceptability. A graduated scale
from 1 to 8 was used to quantify these descriptors, where 1 represents the lowest score and
8 the highest score. For off-flavour, the scale used was from 0 (absence) to 8 (maximum).

2.5. Intramuscular Fat Content and Fatty Acid Composition Determination

Lipid fraction from lyophilized LL muscle samples was extracted by combining the
traditional Folch method [29] with that applied by Carlson [30], in which dichloromethane-
methanol (2:1, v/v) was used as binary solvent mixture. After solvent evaporation,
intramuscular fat was measured gravimetrically by weighing the residue. To profile meat
fatty acids, lipid extracts were transmethylated in combined alkaline and acid conditions,
according to Raes et al. [31]. FAME were identified and quantified by gas chromatogra-
phy (HP6890A; Hewlett-Packard, Avondale, PA, USA), as reported by Coelho et al. [18].
As mentioned above for diets, nonadecanoic acid (C19:0) methyl ester was the internal
standard and fatty acids are expressed as percentage of total fatty acids.

2.6. Total Cholesterol, Diterpene Profile, and Lipid Oxidation Determination

The quantitative analysis of total cholesterol, β-carotene, and vitamin E homologues
(tocopherols and tocotrienols) in LL muscle, in duplicate, was performed as described by
Prates et al. [23].

The lipid oxidation status of meat was evaluated in terms of thiobarbituric acid reactive sub-
stances (TBARS) at days 0 and 8, maintained at 4 ◦C, according to Grau et al. [32]. TBARS values,
in duplicate, were obtained and expressed as mg of malondialdehyde (MDA) per kg of meat.

2.7. Mineral Profile Determination

The determination of mineral profile in LL muscle was done following the same
procedure as diet samples (for further information see details above, Section 2.2.4).
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2.8. Statistics

All data were analysed with the GLM procedure of the SAS software (version 9.4; SAS
Institute Inc., Cary, NC, USA), except TBARS that were analysed with MIXED procedure
of SAS. The dietary treatment was considered as the single effect, and the piglet was the
experimental unit. Upon detection of significant effects (p < 0.05), least-square means were
compared using the PDIFF option, adjusted for the Tukey post hoc test. The statistical
models used were Yi = µ + τi + εi, (Proc GLM) and Yi = µ + τi +ω(piglet)i + εi (Proc Mixed).
Yi is the response of piglet in treatment i, µ is the global average of the effect, τi is the effect
of treatment i,ω(piglet) is the effect of time within piglet and εi is the residual error.

A principal component analysis (PCA) was carried out for the fatty acid profile of LL
muscle using the PCA and fviz_pca_biplot functions of the FactoMineR [33] and factoex-
tra packages (respectively) of the R software (version 3.6.2; R Foundation for Statistical
Computing, Vienna, Austria [34]).

3. Results
3.1. Effect of the Experimental Diets on Zootechnical Parameters

Diets had no statistically significant effect on live weight (p > 0.05). Piglets had, on average,
11.6 kg and 16.8 kg of initial and final weight, respectively. The average daily gain, average
daily feed intake, and feed conversion ratio were also unaffected, with average 371 g, 645 g,
and 1.8, respectively.

3.2. Effect of the Experimental Diets on Meat Quality Traits and Sensory Panel Analysis

Table 2 summarizes the effect of experimental diets on meat quality traits and sensory
panel analysis in weaned piglet meat. The pH 24 h post-mortem was higher in the LAL
compared with the LA treatment (p = 0.016). However, experimental diets had no significant
effect on colour parameters, cooking loss and shear force (p > 0.05). Regarding the sensory
panel analysis, there were no significant differences for tenderness, juiciness, flavour,
off-flavour, and overall acceptability (p > 0.05).

Table 2. pH, colour, cooking loss, shear force and sensory panel analysis in longissimus lumborum of
piglets fed the experimental diets.

Dietary Treatments

Control LA LAR LAL SEM p-Value

pH 24 h 5.57 ab 5.53 a 5.63 ab 5.66 b 0.029 0.016

Colour

L* 48.0 48.9 47.9 46.6 0.670 0.129

a* 7.43 7.32 6.99 7.22 0.279 0.721

b* 0.256 0.587 0.216 0.324 0.280 0.785

C* 7.40 7.38 7.30 7.48 0.287 0.981

H* 2.05 4.24 1.26 1.55 2.229 0.777

Cooking loss (%) 34.7 35.0 34.1 33.2 0.589 0.166

Shear force (kg) 4.02 3.75 4.94 5.05 0.463 0.132

Sensory panel scores

Tenderness 5.52 5.92 5.72 5.86 0.120 0.084

Juiciness 5.61 5.89 5.76 5.70 0.109 0.324

Flavour 5.60 5.53 5.63 5.57 0.093 0.908

Off-flavour 0.192 0.367 0.242 0.227 0.068 0.285

Overall acceptability 5.62 5.74 5.76 5.79 0.106 0.678
Control, LA, LAR, and LAL diets represent corn-soybean meal-based diets containing 0% L. digitata (Control),
10% L. digitata (LA), 10% L. digitata + 0.005% of Rovabio® Excel AP (LAR); and 10% L. digitata + 0.01% of alginate
lyase recombinant CAZyme (LAL). SEM, standard error of the mean. a,b Different superscript letters within a row
are significantly different (p < 0.05).
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3.3. Effect of the Experimental Diets on Intramuscular Fat, Total Cholesterol and Vitamin E
Content, and Fatty Acid Composition

The effect of experimental diets on intramuscular fat (IMF), total cholesterol, and fatty
acid profile of LL muscle is shown in Table 3. The IMF of LAR piglets tended to be
higher than its counterparts (p = 0.063), whereas for total cholesterol and α-tocopherol,
no statistically significant effect due to experimental diets (p > 0.05) was recorded. Among
the diterpenes, only α-tocopherol, the major homologue of vitamin E, was detected in
LL muscle. Furthermore, chlorophylls and carotenoids (including β-carotene) were not
detected in LL muscle, even though they were present in the diets in low amounts.

Table 3. Intramuscular fat, total cholesterol and α-tocopherol contents, and fatty acid (FA) composi-
tion (% of total FA) in longissimus lumborum muscle of piglets fed the experimental diets.

Dietary Treatments

Control LA LAR LAL SEM p-Value

Intramuscular fat
(g/100 g of muscle) 1.43 1.60 1.88 1.58 0.117 0.063

Total cholesterol
(mg/100 g muscle) 35.6 36.8 30.8 33.3 0.038 0.621

α-Tocopherol
(µg/100 g) 73.0 86.3 70.2 64.9 6.1 0.103

Fatty acid profile
(% of total FA)

Lauric acid (C12:0) 0.035 0.022 0.038 0.032 0.008 0.503

Myristic acid (C14:0) 0.879 0.803 0.864 0.891 0.069 0.814

Pentadecanoic acid (C15:0) 0.160 0.180 0.181 0.193 0.016 0.546

Palmitic acid (C16:0) 23.3 22.5 23.1 23.7 0.491 0.419

Margaric acid (C17:0) 0.607 0.774 0.721 0.786 0.060 0.151

Stearic acid (C18:0) 13.7 13.8 13.5 14.0 0.443 0.831

Arachidic acid (C20:0) 0.139 0.149 0.156 0.150 0.009 0.589

Behenic acid (C22:0) 0.050 0.106 0.077 0.046 0.023 0.233

Total SFA 38.9 38.4 38.6 39.8 0.669 0.458

Myristoleic acid (C14:1c9) 0.006 0.004 0.005 0.010 0.004 0.724

c7-Hexadecenoic acid (C16:1c7) 0.373 0.376 0.375 0.367 0.014 0.964

Palmitoleic acid (C16:1c9) 2.48 2.04 2.44 2.42 0.236 0.528

cis-9 Margaric acid (C17:1c9) 0.284 0.299 0.365 0.331 0.035 0.369

Oleic acid (C18:1c9) 24.2 21.5 23.4 23.2 1.39 0.463

Vaccenic acid (C18:1c11) 3.83 3.68 3.80 3.68 0.173 0.903

Eicosenoic acid (C20:1n-9) 0.375 0.346 0.370 0.371 0.023 0.813

Erucic acid (C22:1n-9) 0.062 0.117 0.084 0.056 0.025 0.303

Total cis-MUFA 31.6 28.0 30.8 30.4 1.59 0.426

Linoleic acid (C18:2n-6) 20.6 22.1 20.7 20.5 0.976 0.600

γ-linolenic acid (C18:3n-6) 0.060 0.060 0.06 0.054 0.004 0.601

Linolenic acid (C18:3n-3) 0.334 0.403 0.399 0.339 0.042 0.505

Stearidonic acid (C18:4n-3) 0.028 a 0.115 b 0.120 b 0.096 b 0.012 <0.0001

Eicosadienoic acid (C20:2n-6) 0.576 0.611 0.578 0.538 0.030 0.422

γ-homolinolenic acid (C20:3n-6) 0.471 0.537 0.494 0.491 0.048 0.794
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Table 3. Cont.

Dietary Treatments

Control LA LAR LAL SEM p-Value

Arachidonic acid (C20:4n-6) 4.41 5.12 4.51 4.55 0.602 0.834

Eicosatrienoic acid (C20:3n-3) 0.067 0.099 0.093 0.066 0.011 0.068

Eicosapentaenoic acid (C20:5n-3) 0.070 a 0.163 b 0.114 ab 0.118 ab 0.014 0.001

Docosadienoic acid (C22:2n-6) 0.036 0.012 0.014 0.012 0.007 0.068

Docosapentaenoic acid (C22:5n-3) 0.368 0.606 0.511 0.505 0.061 0.066

Docosahexaenoic acid (C22:6n-3) 0.253 0.366 0.315 0.293 0.033 0.127

Total PUFA 27.2 30.2 27.9 27.6 1.67 0.583

Total n-3 PUFA 1.12 a 1.75 b 1.55 b 1.42 ab 0.111 0.003

Total n-6 PUFA 26.1 28.5 26.4 26.2 1.58 0.673

Other 2.25 3.38 2.65 2.21 0.329 0.059

Ratios of fatty acids

PUFA/SFA 0.710 0.803 0.730 0.697 0.052 0.478

n-6/n-3 24.2 a 16.5 b 17.4 b 18.9 b 1.04 <0.0001

Control, LA, LAR, and LAL diets represent corn-soybean meal-based diets containing 0% L. digitata (Control),
10% L. digitata (LA), 10% L. digitata + 0.005% of Rovabio® Excel AP (LAR); and 10% L. digitata + 0.01% of
alginate lyase recombinant CAZyme (LAL). SEM, standard error of the mean; SFA, saturated fatty acids; MUFA,
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. a,b Different superscript letters within a row are
significantly different (p < 0.05).

A PCA analysis for the lipid profile of the LL muscle is depicted in Figure S1. There
is not a clear clustering of experimental groups, which is explained by the low number of
differences found for individual FA, as indicated by the biplot vectors. The concentration
of stearidonic acid (C18:4n-3) was significantly higher in L. digitata fed groups compared
to control (p < 0.0001), and eicosapentaenoic acid (EPA, C20:5n-3) was 43% higher in
LA compared to control (p = 0.001). Docosadienoic acid (C22:2n-6) tended to be higher
in control (p = 0.068), whereas docosapentaenoic acid (C22:5n-3) and eicosatrienoic acid
(C20:3n-3) tended to be higher in seaweed diets (p = 0.066 and p = 0.068, respectively).
Experimental diets had no effect on any SFA and monounsaturated fatty acids (MUFA)
(p > 0.05).

There was no significant effect detected in the PUFA/SFA ratio (p > 0.05). However,
there was a significant effect (p < 0.0001) in the n-6/n-3 ratio, where control had increased
by 68%, 72%, and 78% compared to LA, LAR, and LAL, respectively.

3.4. Effect of the Experimental Diets on Meat Oxidative Stability

Figure 1 displays the influence of diets on the oxidative stability of piglets’ LL muscle.
Data showed no significant effects of lipid oxidation between groups within each time
among the experimental diets (p > 0.05). However, there was a significant increase of
TBARS concentration in the control group between 0 and 8 days (p < 0.05), which did not
occur in the remaining groups.

3.5. Effect of the Experimental Diets on Mineral Profile

The mineral concentration of LL muscle is presented in Table 4. Concerning macromin-
erals, no significant differences were detected between treatments, albeit having a strong
tendency for calcium (Ca, p = 0.05) to be higher in LA compared to the remaining groups.
On the other hand, Br (p < 0.001) and I (p < 0.001) were higher in the muscle of piglets
fed seaweed diets, which led to a significant increase of total microminerals content when
compared with control (p < 0.001). Moreover, the heavy metals arsenic, barium, cadmium,
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chromium, cobalt, nickel, lead, and vanadium were not detected in the muscle as observed
in the experimental diets.
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Figure 1. TBARS levels (mg malondialdehyde/kg muscle) after 0 and 8 days under refrigeration
in longissimus lumborum muscle of piglets fed the experimental diets. Control, LA, LAR, and LAL
diets represent corn-soybean meal-based diets containing 0% L. digitata (Control), 10% L. digitata (LA),
10% L. digitata + 0.005% of Rovabio® Excel AP (LAR); and 10% L. digitata + 0.01% of alginate lyase
recombinant CAZyme (LAL). a,b Values with different letters are significantly different (p < 0.05).

Table 4. Mineral content in longissimus lumborum muscle of piglets fed the experimental diets.

Dietary Treatments

Control LA LAR LAL SEM p-Value

Macrominerals (mg/100 g)

Calcium 22.8 25.9 22.6 21.8 1.07 0.050

Magnesium 511 508 505 496 7.8 0.533

Potassium 34.4 33.5 33.9 33.5 0.54 0.595

Phosphorous 56.6 57.1 59.8 57.8 1.31 0.367

Sodium 297 293 295 293 8.9 0.986

Sulphur 194 191 190 182 3.7 0.128

Total 1116 1109 1106 1083 15.9 0.503

Microminerals (mg/100 g)

Bromine 0.108 b 0.430 a 0.473 a 0.491 a 0.0163 <0.001

Copper 0.14 0.12 0.13 0.14 0.006 0.281

Iodine 0.002 b 0.183 a 0.178 a 0.194 a 0.0112 <0.001

Iron 1.00 1.06 0.98 0.96 0.052 0.593

Manganese 0.045 0.039 0.045 0.043 0.0023 0.218

Zinc 1.24 1.42 1.41 1.28 0.066 0.131

Total 2.52 b 3.26 a 3.22 a 3.11 a 0.079 <0.001

Total macro- and microminerals 1118 1112 1109 1086 15.9 0.513
Control, LA, LAR, and LAL diets represent corn-soybean meal-based diets containing 0% L. digitata (Control),
10% L. digitata (LA), 10% L. digitata + 0.005% of Rovabio® Excel AP (LAR); and 10% L. digitata + 0.01% of alginate
lyase recombinant CAZyme (LAL). SEM, standard error of the mean. a,b Different superscript letters within a row
are significantly different (p < 0.05).
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4. Discussion

This study is, to our knowledge, the first to report inclusion levels of L. digitata reaching
10%, as well as the effects of CAZyme supplementation on growth performance and meat
quality traits of weaned piglets. We found that diets with the inclusion of the seaweed used
in this study had no effect on piglet growth or feed intake. This is coherent with previous
studies using lower inclusion levels of seaweeds. Brugger et al. [8] have reported that diets
containing up to 5% whole Laminaria japonica have no detrimental effect on piglet growth
but did improve feed conversion ratio compared to the control diet. Other authors have
reported similar results obtained by supplementing piglet diets with fucoidan (250 ppm)
extracted from Ascophyllum nodosum. Indeed, the authors found no effect on piglet growth,
but an improvement of feed conversion ratio in supplemented piglets compared to the
control group [13]. The reason why we did not find such an effect in the present study
could be related to the different seaweed species. Nevertheless, our study demonstrates
that there is no detrimental effect in growth performance by feeding piglets with up to 10%
whole biomass L. digitata, regardless of enzymatic supplementation.

Regarding meat quality traits, there were no differences in traits including meat
colour, cooking loss, or any score from the sensory panel evaluation. However, there
was a significant increase in 24 h post-mortem pH of LAL meat compared to LA. Meat
pH is a determinant factor in the development of pork quality attributes [35], such as
tenderness, juiciness, and flavour [36]. The pH of meat is lowered post-mortem, during
the transition muscle to meat where, under anaerobic conditions, glycogen metabolization
and ATP hydrolysis accumulate lactate and H+, respectively [37]. The normal range of
ultimate pH is between 5.5 and 5.7, where desirable meat traits are developed. The values
reported in this study are within this range, pointing towards absence of undesirable meat
development such as pale-soft and exudative meat (PSE, pH < 5.4). Authors have reported
no effects of feeding pigs with Macrocystis pyrifera (up to 4%), a brown seaweed, on meat
pH of finishing pigs [38]. Another study has also reported no effect of feeding pigs with
a L. digitata polysaccharide extract on pork patties pH [39]. Therefore, the reason why
we found a higher pH in LAL compared to LA could be the higher dietary inclusion of
L. digitata and enzyme supplementation. This influenced the muscle glycogen content and,
ultimately, the rate of pH decline, without detrimental effects on meat sensory properties.

The fatty acid profile has been significantly changed in the meat of seaweed-fed piglets
compared to control. Regarding individual fatty acids, control piglets had significantly
lower levels of C18:4n-3 compared to the remaining groups, whereas LA accumulated
significantly more C20:5n-3 when compared to controls. C18:4n-3 was 21 times more
concentrated in L. digitata diets whereas C20:5n-3 was not detected in the control diet,
which explains these differences as being due to their dietary availability. In fact, seaweeds
have been reported as having low amounts of fat compared to other feedstuffs, but the
fatty acid profile is generally rich in n-3 PUFA [11,12], which have a beneficial effect on
health. Enrichment of pig meat with n-3 PUFA through dietary manipulation has been
achieved with other nutrient sources, including microalgae [6] or linseed [40]. Regarding
seaweeds, there are few studies that report the fatty acid profile of meat from animals
fed with these novel feedstuffs. Moroney et al. [15] have reported that dietary laminarin
extracted from L. digitata reduced SFA in the longissimus dorsi (LD) muscle of pigs, without
an effect in n-3 PUFA. This suggests that the enrichment reported in the present study
is independent of the seaweed’s bioactive polysaccharides. Indeed, the higher dietary
availability of n-3 PUFA in L. digitata diets ultimately contributed to a significantly lower
n-6/n-3 ratio, which favours the nutritional value of the meat. Researchers have advised
that this ratio should be kept to a maximum of 4 in human diets [41], in order to reduce
the incidence of cardiovascular diseases (CVD). Importantly, the long-chain n-3 PUFA,
EPA, contributed to these results. This FA has been reported as a contributor for reduced
incidence of cancer, obesity, and diabetes, in addition to CVD [42]. Finally, this was achieved
without compromising the oxidative stability of meat, which has been reported in n-3 PUFA
enriched pork [6], due to the propensity of these long chain PUFA to be oxidised.
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We found that control piglets had significantly higher TBARS in meat after 8 days of
refrigeration, compared to the remaining groups. This has happened despite an increase of
n-3 PUFA accumulation in seaweed-fed piglets. It could be explained by an increased accu-
mulation of pigments with antioxidant activity, but it was not the case because these were
not detected in the meat (data not shown). Therefore, this reduced oxidation in L. digitata
treatments could occur due to the prebiotic activity of antioxidative polysaccharides such
as laminarin and fucoidan. Authors have found that feeding pigs with L. digitata extracts
containing them reduces meat oxidation [15]. To our knowledge, the precise action of this
mechanism remains to be elucidated [12].

Finally, seaweed diets promoted an accumulation of Br and I in the LL of piglets
leading to an increase of total sum of microminerals in relation to control. These results
are explained by the high amount of both minerals in L. digitata, which is within the range
of values already reported [11], and thus in the respective experimental diets. Accord-
ingly, previous studies described a significant accumulation of I in the muscle of pigs fed
brown seaweeds. For instance, feeding piglets with 2% Ascophylum nodosum led to an
increase of 36% of I concentration in the LD muscle in comparison with the control [43].
In addition, supplementing pig diets with up to 0.186% L. digitata was shown to enrich
gluteus maximus muscle in I by 45% when compared with the control [44]. The organic
I from L. digitata is readily metabolised and deposited in piglet muscle [45,46]. To our
knowledge, there is no available data concerning the accumulation of Br in the meat of
seaweed-fed pigs. The Br:I ratio reached 2.66 in LAR. This ratio should be kept low to
prevent goitrogenic effects derived from excess bromine [47]. However, it is known that Br
is also an essential nutrient due to its requirements for collagen IV formation [48]. Thus,
we demonstrated that feeding piglets with L. digitata provides an important source of
microminerals, which are of paramount importance to maintain physiological functions at
the critical post-weaning stage [49].

5. Conclusions

The dietary incorporation of L. digitata in piglet diets had no detrimental effect on
either growth performance or meat quality. CAZyme supplementation was not necessary
to improve several meat nutritional variables, including fatty acid composition, mineral
profile, and oxidative stability. This contributes to the production of healthier meat without
the need for feed supplementation, promoting the intake of n-3 PUFA, particularly EPA,
without recurring to unsustainable sources such as fish oil. Ultimately, this study supports
the feasibility of reducing the incorporation of conventional feedstuffs in piglet diets using
seaweeds. However, further research is necessary, namely, to evaluate the digestibility of
L. digitata at these incorporation levels and its impact in piglet metabolism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods11071024/s1, Table S1: Dietary composition of control (maize, wheat and soybean meal-
based diet), LA (10% Laminaria digitata, replacing the control diet), LAR (LA + CAZyme − 0.005%
Rovabio® Excel AP from Adisseo (Antony, France)) and LAL (LA + CAZyme − 0.01% pre-selected
alginate lyase). Figure S1: PCA and biplot obtained for the fatty acid profile of longissimus lumborum
muscle piglets fed with control (ctrl–maize, wheat and soybean meal-based diet), LA (10% Laminaria
digitata), LAR (10% L. digitata + 0.005% of Rovabio® Excel AP) and LAL (10% L. digitata + 0.01% of
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