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When COVID-19 was first announced back in 2019, there were vast number of attempts
to halt the progression of the SARS-CoV-2 virus once and for all. Efforts to develop fast
detection assays for this virus were under development even before we understood the
structure of this virus. Several papers have revealed that SARS-CoV-2 shares the same
genome sequence to those of the previously occurring coronaviruses by up to 90–99% [1–4].
Several studies have confirmed the structure of SARS-CoV-2, in which it has a relatively
large positive single-stranded RNA genome, comprising highly conserved basic genes
within its sequence, as follows: 5′ ORF1-HE-S-E-M-N 3′ [5–10], Upon entry of the virus, it
binds to the host’s receptor.

Sialic acid (SA) is the glycoprotein that is densely projected on the surface of different
mammalian cells including lung epithelial cells. It is used to mediate the binding with viral
surface proteins like hemagglutinin in influenza B virus [11,12]; hemagglutinin esterase
in OC43, HKU-1, and influenza C viruses [13,14]; and spike glycoprotein domain of spike
protein in MERS-CoV [15,16]. Evidently, sia–virus conjugation is used to mediate the entry
of different invading viruses. For example, sia–hemagglutinin in influenza B virus [11,12].
The structure of influenza B virus has two surface glycoproteins, the hemagglutinin and
the neuraminidase. The hemagglutinin and NA proteins have been found to bind to SA
in the host cell molecule. The hemagglutinin is known as the main envelop glycoprotein
of influenza B virus, inducing receptor binding, while neuraminidase works as a separate
glycoprotein. Recently, Patel et al. have investigated the effect of hemagglutinin esterase
(HE) as a potential inhibitor of the emerging coronavirus utilizing a molecular docking and
dynamic simulation approach. The results showed a preliminary level of HE targeting to
develop effective inhibitors [5]. Some of the coronaviruses have sia–hemagglutinin esterase
conjugation that mediates their entry, such as OC43 and HKU-1 viruses [13,14].
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However, the role of SA in SARS-CoV-2 needs more elaboration, as the efforts of
researchers to understand the full aspects of its role are still at their peak [17]. It is worth
mentioning that, when SA binds to its glycoprotein counterpart, it causes red blood cells
to agglutinate (hemagglutination) [18]. Hemagglutination is a reaction between the gly-
coprotein (i.e., hemagglutinin) presented on the surface of some enveloped viruses, such
as the influenza virus, and red blood cells, causing their clumping and the formation of
lattice. It could be used to quantify viruses and to detect antibodies developed against
a virus through hemagglutinin inhibition (HI) assay. Hemagglutinin protein can also be
used to facilitate and specify the binding with viruses, and thus can be vital in developing
antiviral therapies in the future, especially using nanoparticulate systems [19,20]. However,
the complexity of the hemagglutinin structure may hinder the structural characterization
of this protein after binding with a specific ligand.

Nevertheless, the use of SA in this study was an attempt to bind specifically to SARS-
CoV-2 virus in order to develop a fast detection tool. Having the ability to bind to other
respiratory virus through the above-mentioned proteins was an additional advantage to
our system that allowed us to investigate further and attempt to develop the binding of
these NPs specific for each virus.

Leonardo Bò and his team illustrated the ability of SARS-CoV-2 spike protein to bind
to sialic acid molecules [21]. Another study claimed that N-acetyl neuraminic acid has
affinity binding to the SARS-CoV-2 spike protein via its receptor-binding domain (RBD)
and the S1 N-terminal domain, demonstrating the glycan binding [22]. Therefore, sialic
acid binding by the S1 spike protein engages the host cell, while S2 enhances the viral
fusion [22]. Many reported that this binding is enhanced by the spread of the infection of
coronaviruses because of the structure of 9-O-acetylated sialic acid binding to strain OC43
by cryo-EM [14,23]. A recent study reported that SARS-CoV-2 shares similar sequences
of the spike protein with MERS-CoV, which can enter the host cells by binding to DPP4
or sialic acids. This study shows that sialic acid can interact with the spike protein of
SARS-CoV-2 by binding between the two RBDs of the spike protein [21]. Furthermore, the
presence of spike glycoprotein at the surface of MERS-CoV enhances the entry into the host
cells. It is found that MERS-CoV mainly infects human lung epithelial cells by interacting
with DPP4 and binding with α2,3-linked sialosides [15,16].

We would like to thank the referees for their thoughtful and helpful comments [24]
that have undoubtedly improved the paper, for which we are very grateful. We are also
ready to correct the information in the published paper. The comment has corrected highly
debatable information, in which we claimed that the SA binds only to the hemagglutinin
proteins rather than the S protein, especially for SARS-CoV-2 and MERS-CoV. In order to
fully understand this binding, a further investigation is required. However, dealing with
highly infectious viruses limits the amount of experiments that we can perform.
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