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Abstract Multisite modification is a basic way of conferring functionality to proteins and a key 
component of post-translational modification networks. Additional interest in multisite modification 
stems from its capability of acting as complex information processors. In this paper, we connect two 
seemingly disparate themes: symmetry and multisite modification. We examine different classes of 
random modification networks of substrates involving separate or common enzymes. We demon-
strate that under different instances of symmetry of the modification network (invoked explicitly 
or implicitly and discussed in the literature), the biochemistry of multisite modification can lead to 
the symmetry being broken. This is shown computationally and consolidated analytically, revealing 
parameter regions where this can (and in fact does) happen, and characteristics of the symmetry-
broken state. We discuss the relevance of these results in situations where exact symmetry is not 
present. Overall, through our study we show how symmetry breaking (i) can confer new capabili-
ties to protein networks, including concentration robustness of different combinations of species 
(in conjunction with multiple steady states); (ii) could have been the basis for ordering of multisite 
modification, which is widely observed in cells; (iii) can significantly impact information processing 
in multisite modification and in cell signalling networks/pathways where multisite modification is 
present; and (iv) can be a fruitful new angle for engineering in synthetic biology and chemistry. All 
in all, the emerging conceptual synthesis provides a new vantage point for the elucidation and the 
engineering of molecular systems at the junction of chemical and biological systems.

Introduction
Reversible phosphorylation, and post-translational modification (PTM) of proteins in general, consti-
tutes a basic way of conferring functionality to proteins in cells. This basic unit (covalent modification) 
is built upon in many different ways to result in the complex biochemical pathways encountered in 
cells.

A particular elaboration of this mechanism, which is widely encountered, is the reversible multisite 
modification of proteins by enzymes. Here, a number of basic variations are possible depending on 
whether the enzymes involved in distinct modification steps are different or if a common enzyme 
effects multiple modifications. In the latter case, there are variations depending on whether the 
enzymatic mechanism is distributive (enzyme dissociating from substrate after every modification) or 
processive (enzyme remains attached). Finally, there are variations depending on whether a specific 
ordering of modifications occurs (ordered mechanism) or not (random mechanism).

In addition to being a widely encountered way in which substrates are reversibly modified to confer 
functionality (and consequently of broad interest), interest in multisite modification stems from the 
fact that the basic modification mechanisms are capable of acting as complex molecular information 
processors (Conradi and Shiu, 2018). Various studies have highlighted the possibilities of these mech-
anisms exhibiting switching and threshold behaviour (Markevich et al., 2004), bistability/multista-
bility (Thomson and Gunawardena, 2009; Conradi and Mincheva, 2014), oscillations (Rubinstein 
et al., 2016; Suwanmajo and Krishnan, 2015; Suwanmajo et al., 2020), biphasic dose–response 
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curves (Suwanmajo and Krishnan, 2013), and other complex behaviour (Suwanmajo and Krishnan, 
2018). A range of studies have delineated the ingredients required (from the above possible vari-
ations) to enable or prevent such behaviour (Conradi et al., 2017; Eithun and Shiu, 2017; Tung, 
2018). We emphasize that this rich repertoire of behaviour emerges from the most basic consider-
ations and aspects of enzymatic modification of substrates, and that this behaviour is a feature and a 
consequence of the modification network (rather than a single modification). Information processing 
capabilities are also at the heart of different strands of work in synthetic biology engineering multisite 
modification, and reaction networks more broadly (Valk et al., 2014; Lyons et al., 2013; OShaugh-
nessy et al., 2011; Maguire and Huck, 2019). This paper focuses on a distinct aspect of information 
processing of multisite modification: symmetry and symmetry breaking.

Symmetry and symmetry breaking are themes encountered across different scales and levels 
in biology, ranging from the cell population, to the cellular, to the molecular level. A fundamental 
theme in developmental biology is the breaking of symmetry to generate patterns. The basic ques-
tions here centre around how an apparently homogeneous field of cells can differentiate to exhibit a 
basic pattern which serves as a precursor for subsequent development. Modelling, experiments, and 
concepts from self-organization have been used to probe this generation of form, which breaks spatial 
symmetry. The underlying mechanisms invoked involve many variations on the classical Turing mecha-
nism or the interplay of mechanics and chemistry (Green and Sharpe, 2015; Maini et al., 2012). This 
can be significantly complicated by the presence of many layers of regulation. Strong experimental 
evidence for such mechanisms present at the core of developmental regulation has been demon-
strated in multiple model systems (Onimaru et al., 2016). Symmetry breaking as a basis of generating 
form at the cellular level, for instance, polarization and polarized or other strongly inhomogeneous 
patterns of concentration of species, has been explored in a range of contexts. Examples include 
polarity generation in fungi and plant cells (Khan et al., 2015), and in neutrophil chemotaxis (Wang, 
2009). Symmetry has also been invoked as a key ingredient in the development of the MWC model 
which has been used to explain allostery in biomolecular information processing (Changeux, 2012).

While the theme of symmetry in chemistry is well recognized especially at the molecular struc-
ture level (Hargittai and Hargittai, 1994), there are relatively few studies of symmetry breaking at 
the molecular reaction level. In chemical reaction systems, symmetry is encountered in the context 
of chirality in racemic mixtures. Racemic mixtures comprise equal amounts of the two enantiomeric 
forms of a chiral molecule with opposite chiralities, and a central question is how a dominant orienta-
tion (chirality) of the molecular mixture can emerge from this. Some studies explain this as an emer-
gent behaviour of the reaction network system governing the two forms of the molecules: even if the 
network/reaction system is symmetric allowing for equal amounts of the two forms, this symmetry can 
break, giving rise to a dominant form. A recent study (Hochberg et al., 2017; Ribó et al., 2017) eval-
uated and demonstrated the feasibility of such symmetry breaking in a number of potential reaction 
systems. Chiral symmetry breaking has been experimentally observed in crystallization of nanopar-
ticles (Hananel et al., 2019), fibril formation from racemic mixtures (Kushida et al., 2017), and in 
the Soai reaction (Soai et al., 1995). Such symmetry breaking is of particular importance in prebiotic 
evolution and biology, where biopolymers and biomolecules are characterized by a specific chirality 
and orientation, even though the original non-life chemical world was chirally symmetric (Chen and 
Ma, 2020). The establishment of such chirality has been postulated to be important in understanding 
the origins of life (Blackmond, 2020).

This paper focuses on a specific aspect of symmetry breaking at the junction of the biological and 
the chemical: the breaking of symmetry in basic multisite phosphorylation (MSP) systems.

The motivation for studying symmetry and symmetry breaking in the context of multisite modifi-
cation stems from different sources: conceptual insights, relevance to systems biology, and potential 
application in synthetic biology. In this regard, we note that (i) many of the basic modification networks 
accommodate different types of symmetries, as we discuss below. (ii) Certain symmetries, for example, 
resulting in equal concentrations of different partial phosphoforms of a given level (Case 2 symmetry, 
discussed below) are not only plausible in vivo, but have also been assumed in multiple contexts 
sometimes implicitly. (iii) An asymmetric state currently observed may have its genesis traced back to a 
symmetric state in evolution, which broke symmetry. (iv) Other symmetries (Case 3 symmetry, discussed 
below) have been found to be particularly desirable in enabling oscillatory behaviour: in fact, a thor-
ough parametric analysis of oscillatory behaviour in certain random double-site modification networks 
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reveals clusters in parameter space centred around parameter sets representing networks with this 
symmetry (Jolley et al., 2012). Case 3 symmetry involves a combination of two symmetries (Case 1 
and Case 2) which we individually study as well. (v) Symmetry breaking can confer new functionality 
and information processing characteristics enriching the repertoire of MSP. (vi) Our study of symmetric 
systems allows us to draw important insights about multisite modification even when exact symmetry 
does not hold good. Thus it is also relevant to networks which are approximately symmetric. (vii) In this 
sense, the symmetric scenarios also serve as valuable (and sometimes non-obvious) vantage points 
from which to investigate important aspects of multisite modification. Furthermore, while studying 
modification networks of larger numbers of modifications, the symmetric networks may represent one 
of the few tractable vantage points from which to study and elucidate the behaviour of such networks. 
(viii) These serve as interesting candidates for engineering multisite modification in synthetic biology 
with desirable features.

We examine basic models of MSP and evaluate the possibility of spontaneous symmetry breaking in 
basic and canonical reaction pathways/circuits/networks of MSP. We discuss the consequences of the 
results which emerge for multisite modification networks which may not possess an exact symmetry. 
We then discuss the various consequences of such behaviour for biological systems, and cellular 
signalling pathways and networks which contain multisite modification. The ordering of multisite 
modification is a fundamental aspect of substrate modification and its regulation, and the deployment 
of modified substrates in various processes. It has been the focus of different studies (Kocieniewski 
et al., 2012; Lyons et al., 2013; Lössl et al., 2016; Valk et al., 2014) spanning canonical pathways, 
important cellular processes, basic principles, and engineering for synthetic biology. We show how 
symmetry breaking could provide a natural mechanism for the creation of ordered multisite modifica-
tion systems from random multisite modification, which could in turn explain the various degrees of 
ordering encountered in cells.

Results
We begin by discussing the basic aspects of the models we employ and the way they are analysed 
before proceeding to the results. We discuss the multisite modification networks we study and the 
possible symmetries they may exhibit (with further details in Appendix 1).

Models of multisite modification
Our primary focus is on random mechanisms of multisite modification, and we study the case of 
double-site modification as a tractable, representative case. Figure 1A represents random mecha-
nisms of modification (i.e. modifications can proceed in either order) and depicts cases where the 
kinases and phosphatases effecting individual modifications could either be the same or different. 
Taken together, these networks span a range of basic cases of multisite modification, including the 
possibility of an enzyme performing multiple modifications (seen in many biological contexts) and 
the possibility that this may be associated with one modification direction, but not the other (due to 
the fact that kinases significantly outnumber phosphatases, as seen in genome-wide studies (Ghae-
mmaghami et al., 2003)). When a common enzyme is involved in effecting multiple modifications, 
the modification mechanism is assumed to be distributive, unless otherwise stated. We note here 
that such modification circuits are encountered in multiple cellular contexts and can be viewed as 
building blocks of more complex multisite modification networks. Such networks have been the focus 
of detailed studies in contexts such as circadian oscillations (Ode and Ueda, 2018) (involving the 
common kinase common phosphatase network depicted: the substrate represents the Per proteins), 
with additional studies on temperature compensation in this context (Shinohara et  al., 2017; 
Hatakeyama and Kaneko, 2012). They have also been used to evaluate design principles for both 
oscillatory and pattern forming behaviour more broadly (Jolley et  al., 2012; Sugai et  al., 2017). 
For purposes of contrast and elucidating basic effects, we also examine two related modification 
networks: (i) an ordered double-site modification mechanism (Figure 1C) mediated by a common 
kinase and common phosphatase. The specific ordering of modification involves the phosphorylation 
order being opposite to that of dephosphorylation resulting in one partial phosphoform. This has 
been extensively studied in the literature (e.g. (Thomson and Gunawardena, 2009; Conradi and 
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Figure 1.  (A–C) Schematic representation of the various multisite phosphorylation networks considered in the paper. (A) depicts the core networks 
while (B,C) serve as suitable contrasts to illustrate basic points. The labels ‍κi‍, ‍αi‍ in the schematic represent the triplet of binding, unbinding, and 
catalytic rate constants involved in the enzyme modification for the ﻿‍ith‍ modification (on each leg of the network). Detailed model description is provided 
in Appendix 2—figure 10. (A) shows the various random (distributive) double-site phosphorylation (DSP) networks (the focal point of the study) with 

Figure 1 continued on next page
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Shiu, 2018). (ii) A random mechanism where the dephosphorylation is processive (Figure 1B and 
Appendix 2—figure Appendix 2—figure 1A).

From networks to models
The model for each of these networks (depicted in Figure 1A–C, Appendix 2—figure Appendix 
2—figure 1A) is built up from widely used descriptions of individual substrate modification by an 
enzyme (involving reversible complex formation and irreversible modification to give the product; see 
Appendix 2—figure 10). Such a description makes no a priori assumptions about the kinetic regimes 
of modifications. Further details are presented in Appendix 1. Throughout the paper, we work with 
these canonical modification circuits, where the substrate forms are denoted by ﻿‍ A‍, with subscripts 
denoting the type of modification. Depending on the context, these could represent different proteins.

Associated network symmetries
In order to understand and visualize the types of symmetries we will examine, it is fruitful to examine 
a ‘square’ reaction network, which has the same network topology as that of the multisite modifica-
tion networks above. Note that in this depiction the nodes of the network represent substrates, while 
the enzymes are implicitly present in the arrows: both substrates and enzymes together constitute 
an enzymatic reaction network of this type. As depicted in Figure  1D (left panel), there are two 
types of symmetries which can be encountered. (i) In the first case, the two ‘legs’ of the network are 
symmetric (about the axis of symmetry depicted), which means that the rates of reaction for corre-
sponding reactions on either side of the axis are the same. The associated pair of species (nodes of 
this network representing substrates, on either side of the axis of symmetry) is expected to behave 
identically (assuming the same initial conditions). (ii) In the second case, the symmetry is associated 
with two pairs of species simultaneously and can be viewed as a simultaneous occurrence of two of the 
previous symmetries, along different axes (see Figure 1D). Viewed from a general network perspec-
tive, in each case the symmetry is a consequence of rates of different pairs of reactions (intrinsic 
reaction rate constants as well as total enzyme concentrations) being identical, thus giving rise to the 
symmetry. Thus enabling such symmetries establishes correspondences/constraints between different 
pairs of enzymes. Note that in this network we have not made any restrictions on which enzymes may 
be involved in specific steps. Establishing the structural requirements for symmetry then allows us to 
examine when and how the multisite modification networks we study exhibit different symmetries.

Network symmetry meets multisite phosphorylation
We now focus on the network symmetries in the specific instance of the biochemistry of multisite 
modification. In so doing, we discuss different types of symmetries which multisite modification 
networks can exhibit. While some of these symmetries may appear to be more natural biologically, 

different combinations of enzyme action (common kinase and common phosphatase, separate kinase and common phosphatase, and separate kinase 
and separate phosphatase). (B) shows the random DSP with distributive phosphorylation and processive dephosphorylation (depicted for simplicity as 
direct arrows from ‍A11 → A00‍) with separate kinase and common phosphatase (model: mixed random 2). (C) shows the ordered distributive DSP with 
common kinase and common phosphatase, and an expanded description of reaction mechanism showing in detail the binding, unbinding, and catalytic 
action for each modification step. (D). Schematic representation of the three different classes of symmetries in the random DSP networks considered in 
this study. The different symmetries are depicted in the right-hand panel. In each case, the axis of symmetry is depicted, and nodes of the network on 
either side of this axis (enclosed in a boundary of the same colour) have equal concentration. Identically coloured arrows in schematics are indicative 
of equal kinetic rate constants (for the corresponding triplet of binding/unbinding/catalysis reaction) and equal total concentrations of enzymes 
involved. The associated kinetic and enzymatic requirements required for enforcing symmetries are also listed. These are key ingredient in establishing 
symmetry in the reaction network. The origins of these symmetries can be conceptualized and visualized by examining an enzymatic network with a 
‘square’ topology (left-hand panel), where every reaction is mediated by an enzyme. Such networks can have symmetry about one axis or two axes. Now 
examining the single-axis reflection symmetry in multisite modification results in two possibilities of symmetric nodes (the pair (‍A00, A11‍) and (‍A01, A10

‍)). In each case, symmetry requires different pairs of reactions (depicted by identically coloured arrows) to have equivalent rates and enzyme amounts. 
Importantly, in the ‍A11 = A00‍ case these pairs of reactions are associated with enzymes of different kinds, while in the ‍A01 = A10‍ case they are associated 
with enzymes of the same kind. While this is depicted for a single kinase and a single phosphatase, it applies to any combination of common/separate 
kinase and phosphatase. This dichotomy underscores the difference between case 1 and case 2 symmetry. Overall this conceptualization allows us to 
obtain the three symmetries along with the kinetic and enzymatic requirements shown in the right-hand panel.

Figure 1 continued
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it is useful to examine all these together to obtain a comprehensive systems understanding. Further-
more, some of these have been postulated explicitly or invoked implicitly in multiple different 
contexts.

Symmetries in such networks require basic conditions/constraints on the kinetics and enzyme 
amounts (refer Figure 1D, right panel). In particular, equivalence between two reactions (as repre-
sented in the schematic) requires that the rate constants of their constituent elementary reactions 
(binding, unbinding, and catalytic) remain equal. The first two cases of symmetries correspond to a 
scenario where the two ‘legs’ of the network are symmetric. The difference between them is what the 
symmetric nodes of the network correspond to in the context of multisite modification along with the 
fundamentally distinct pairings of enzymes in each case (discussed further below).

Case 1 symmetry:‍[A00] = [A11]‍
In this case, the nodes involved in either leg of the symmetric network are A00 and A11. In such a case, 
the requirement of a symmetry implies that for these two phosphoforms the action of an enzyme 
(kinase) on one of these substrates (A00) has the same rate as that of another enzyme (phosphatase) 
on the other substrate (A11) (this is seen by the corresponding reaction arrows on the two legs of the 
network). Furthermore, an analogous requirement applies to the production of each of these species 
from the partial phosphoforms. With these requirements a symmetry between A00 and A11 is main-
tained. We further note that such a requirement (of having certain rates of kinase-mediated reactions 
being equal to that of other phosphate-based reactions) places a constraint on total enzyme amounts 
as well. Case 1 symmetry is of interest both as a basic independent symmetry and as a constituent of 
Case 3 symmetry discussed below.

Accommodating the requirements for symmetry
(i) The above requirements can be accommodated both in the common kinase common phosphatase 
case and the separate kinase separate phosphatase case, but not in the separate kinase common 
phosphatase case (discussed in Appendix 1). (ii) We also note that a simpler network, which corre-
sponds to ordered double-site modification, also accommodates a symmetry of this type (while only 
possessing a single partial phosphoform). Here too, this is accommodated in the common kinase 
common phosphatase and separate kinase separate phosphatase cases.

Case 2 symmetry:﻿‍[A01] = [A10]‍
In this case, the nodes involved in either leg of the symmetric network are A01 and A10. Such a symmetry 
is realized if the following pairs of reactions have the same rates: (i) phosphorylation of A00 to produce 
the respective partial phosphoforms, (ii) dephosphorylation of A11 to produce the respective partial 
phosphoforms, (iii) the phosphorylation of the respective partial phosphoforms, and (iv) the dephos-
phorylation of the two partial phosphoforms. Note that equal rates of reaction require the same 
intrinsic kinetic rate constants (for binding, unbinding, and catalysis of substrate by enzymes) as well 
as total enzyme amounts. This is characterized by saying that the rate of modification of all substrates 
of a given level of modification is the same (and likewise for demodification), and this ensures that 
progression in substrate modification is equally balanced between the pathways associated with each 
partial phosphoform (a feature explicitly/implicitly assumed in multiple instances in the literature). 
This symmetry can be accommodated in all cases of separate/common kinases and separate/common 
phosphatases.

Difference between Case 1 and Case 2 symmetries
Case 1 and Case 2 symmetries involve different pairs of symmetric nodes. As noted earlier, the 
symmetries require both intrinsic rate constants and enzyme amounts to be equal for different pairs 
of enzymes. The essential difference between the two cases is the essentially different enzyme pairs 
associated with this. In Case 1 symmetry, the pairing is between enzymes of different types (a kinase 
and a phosphatase), while in Case 2 it is between enzymes of the same type (between kinases and 
between phosphatases). This is exactly why Case 1 symmetry is not possible in the separate kinase 
common phosphatase network, while Case 2 symmetry is.

https://doi.org/10.7554/eLife.65358
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Case 3 symmetry: ‍[A00] = [A11]‍ and ‍[A01] = [A10]‍ simultaneously
This involves the combination of the earlier cases. Here the action of a kinase enzyme on a substrate 
occurs at the same rate as that of the phosphatase enzyme on its associated substrate in the diago-
nally opposite modification leg. Thus the action of the kinase on A00 modifying it to A01 is the same 
as that of the phosphatase action on A11 modifying it to A10. This applies to the modification of all 
substrates in the network. Such symmetries have been implicated in oscillatory networks of multisite 
modification underlying circadian oscillators (Jolley et al., 2012). Again, similar to Case 1 symmetry, 
the separate kinase common phosphatase case cannot accommodate this symmetry.

The basic questions
The basic questions we address below are (i) Are these symmetries always maintained or can they be 
broken? (ii) What network features determine whether or not symmetry breaking is possible? (iii) What 
kind of capabilities does symmetry breaking contribute? (iv) When symmetry breaking is possible, can 
the parameter regimes for symmetry breaking be established?

Methods of analysis
To address the above questions, we employ two approaches in tandem: (i) computational analysis, 
involving simulations and bifurcation analysis, where we demonstrate the possibility of such behaviour 
occurring. We note here that our bifurcation parameter is the total substrate concentration, though 
it could apply to other parameters; and (ii) analytical work which rules out the possibility of symmetry 
breaking in networks irrespective of kinetic parameters, bringing to the fore structural features which 
prevent the occurrence of the behaviour. Analytical work is also used to demonstrate necessary condi-
tions for symmetry breaking (in terms of kinetic parameters and total enzyme and substrate amounts) 
and further that in these cases these conditions are sufficient to guarantee the presence of symmetry 
breaking. Additionally, analytical work also reveals important characteristics of symmetry-broken 
states.

Figure 2. Case 1 and Case 2 symmetry breaking in various double-site phosphorylation (DSP) networks. (A–C). Case 1 symmetry breaking in distributive 
DSP: (A) ordered DSP with common kinase and common phosphatase, (B), random DSP with common kinase and common phosphatase, and (C) 
random DSP with separate kinase and separate phosphatase. Note that in these cases the concentrations of the partially modified substrates are 
fixed after symmetry breaking (in the symmetry-broken state) in the bifurcation diagrams. (D, E). Case 2 symmetry breaking: (D) random DSP with 
separate kinase and separate phosphatase and (E) mixed random DSP with distributive phosphorylation through separate kinases and processive 
dephosphorylation through common phosphatase. Note that in these cases the concentrations of the fully modified and unmodified substrate are 
fixed after symmetry breaking (in the symmetry-broken state) in the bifurcation diagrams. Dashed lines indicate unstable steady states, while solid 
lines represent stable steady states in the bifurcation diagram. Dashed lines in the schematic represent axis of symmetry of the network. BP: pitchfork 
bifurcation.

https://doi.org/10.7554/eLife.65358
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We present the results for Case 1, Case 2, and Case 3 for the different random modification networks 
below. The ordered double-site modification network can exhibit Case 1 symmetry, as noted above. 
Therefore, in presenting Case 1 symmetry, we start with this simpler network, before proceeding to 
the random modification networks.

Analysis of a simpler ordered mechanism reveals the origins of Case 1 
symmetry breaking
We first analyse the scenario of Case 1 Symmetry. It is instructive to examine an ordered mechanism 
(Figure 2A) in this regard as it is simpler while exhibiting the same behaviour encountered in random 
mechanisms. The system has a symmetric steady state which is characterized by (i) equal concentrations 
of unmodified (﻿‍A‍) and fully modified (‍App‍) phosphoforms and (ii) equal concentrations of free kinase and 
phosphatase (note that the total concentrations of these enzymes need to be the same for symmetry 
to be present). This steady state simply represents an absence of bias in the direction of modification 
(i.e. between the unmodified and fully modified phosphoforms). However as the total substrate concen-
tration is varied, we find that this steady state loses stability via a supercritical pitchfork bifurcation 
(Strogatz, 2001). A pair of asymmetric steady states emerge which are stable. These correspond to 
either ‍[App] > [A]‍ or the other way around, and unequal free enzyme concentrations. Interestingly on 
each of these steady-state branches, the value of the intermediate phosphoform ‍App‍ remains fixed at the 
level at the bifurcation point (Figure 2A, lower panel). The presence of asymmetric states, as well as the 
fact that the partial phosphoform concentration is fixed on the branches of asymmetric steady states, is 
established analytically (see Appendix 1, Source code 1 [Section 2.1], and Supplementary file 1).

Conditions for symmetry breaking
The asymmetric steady states represent the establishment of overall directionality in the reaction 
network output, even in the absence of any a priori bias (in terms of reaction rates and enzyme 
concentrations). Analytical work also reveals the necessary conditions for symmetry breaking to occur 
in this system: ‍k21‍. In other words, the catalytic rate constant for the second phosphorylation is greater 
than that of the first phosphorylation step. Note that this does not involve binding or unbinding 
constants for enzyme/substrate interactions. Further analysis indicates that in such a parameter regime 
a symmetry-broken state is guaranteed to exist for some value of the bifurcation parameter ‍ATotal‍ (see 
Appendix 1, Source code 1 [Section 2.1], and Supplementary file 1). It is worth emphasizing here 
that (i) the nonlinearity responsible for the symmetry breaking arises purely from sequestration effects 
with no explicit feedback present and (ii) an analogous case of single-site modification is incapable of 
intrinsically exhibiting such behaviour.

The random mechanism with common kinase and phosphatase
The symmetry breaking observed in this ordered mechanism is seen in the random modification with 
common kinase and phosphatase (Figure 2B). The random modification network can be thought of 
as two connected ‘legs’ of ordered modification networks, and consequently echoes of the behaviour 
seen previously are observed here. In this instance, beyond the bifurcation point, the concentrations 
of both partial phosphoforms remain fixed at their values at the bifurcation point. This is established 
analytically (see Appendix 1, Source code 1 [Section 3.1], and Supplementary file 1).

Conditions for symmetry breaking
An analytical necessary criterion for the presence of symmetry breaking in this system is presented 
in Appendix 1, Source code 1 (Section 3.1), and Supplementary file 1. It takes the form 

‍(k2 − k1) + α(k2/a2)(a2 − a1) > 0‍. Here ‍k1, k2‍ are the catalytic rate constants associated with phosphor-
ylation along one leg of modifications (‍A00 → A01 → A11‍), while ‍a1, a2‍ are the catalytic rate constants 
associated with phosphorylation along the other leg of modifications (‍A00 → A10 → A11‍). Further ﻿‍α‍ is 
a positive constant determined in terms by rate constants (including binding and unbinding). Further 
work in Source code 1 (Section 3.2) and Supplementary file 1 establishes the fact that this is a suffi-
cient condition for the generation of asymmetric states for some value of ‍ATotal‍.

A comparison with ordered mechanisms reveals additional flexibility 
available for symmetry breaking in random mechanisms
We can make multiple inferences from this condition in relation to the corresponding condition for 
ordered mechanisms discussed above. (i) If both ‍k21‍ and ‍a21‍, then the requisite condition is satisfied. 

https://doi.org/10.7554/eLife.65358
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This means that if each leg (viewed as an ordered mechanism) satisfies the conditions for symmetry 
breaking in ordered mechanisms, this guarantees the possibility of symmetry breaking in the random 
mechanism. (ii) For the same reason, if neither leg satisfies the condition, then symmetry breaking is 
precluded in the random modification network. (iii) Interestingly if only one leg satisfies the criterion 
for symmetry breaking, it is possible for the entire random network to break symmetry (an example 
of this is presented in Appendix 2—figure 3). In such a case, the random network can be viewed as 
being comprising two subnetworks, only one of which is the driver of this behaviour.

Symmetry breaking is possible even if the enzymes performing each 
modification are different
Random mechanisms with different kinases and phosphatases can also exhibit the same type of 
symmetry (this places constraints on total concentrations of ‘corresponding’ enzymes, in addition 
to the kinetic constraints already discussed). As seen in Figure 2C, this system also exhibits a similar 
symmetry-breaking behaviour as encountered above, and here again the concentration of partial 
phosphoforms is fixed beyond the bifurcation. The case of different kinases and phosphatases 
represents a much more general case (not requiring any enzyme to perform more than one modifica-
tion) with significantly reduced nonlinearity (for the same reason), which is nonetheless sufficient for 
symmetry breaking.

Conditions for symmetry breaking reveal requirements on both 
modification legs
The necessary conditions for symmetry breaking here are established analytically in Source code 1 
(Section 3.3) and Supplementary file 1, where it is also shown that these conditions guarantee the 
existence of a symmetry-broken state. This takes the form ‍k2/k12Total/P1Total‍ and ‍a2/a11Total/P2Total‍ (the equa-
tion could also be written in terms of the total concentrations of kinases). The main difference here is 
that (i) there are two such conditions to be satisfied and (ii) they also involve total enzyme amounts. 
(iii) When ‍P2Total = P1Total‍, this amounts to ‍k21‍ AND ‍a21‍, which is a requirement for each of the legs of the 
modification network. (iv) When ‍P2Total ̸= P1Total‍, this amounts to a tighter requirement on one of the legs 
(where enzyme P2 is involved in the first dephosphorylation step) and a weaker requirement on the 
other (where P2 is involved in the second dephosphorylation step).

Symmetry breaking cannot be observed in an ordered mechanism 
constituting a single leg of the modification if all modifications are 
effected by different enzymes
Each leg of the modification corresponds to an ordered modification mechanism with different kinases 
and phosphatases, which is incapable of symmetry breaking (as shown in Source code 1 [Section 2.2] 
and Supplementary file 1) and multistability in general. Thus the observed symmetry breaking is an 
emergent behaviour of the entire network with both modification legs.

Implications
The implication of Case 1 symmetry breaking is that it is possible to establish a directionality to the 
modification even if none existed, resulting in an establishment of relative dominance of fully modi-
fied phosphoforms vis-a-vis fully unmodified forms or the other way round. Case 1 symmetry is also a 
constituent of Case 3 symmetry, and this has implications in that situation as well.

Case 2 symmetry: when can it break?
Case 2 symmetry implies that there is no bias in the ordering of modifications and this is manifest in the 
equal steady-state concentrations of the partial phosphoforms A01 and A10. Examining all the cases of 
random networks together (Figure 1A–C) reveals the following insights: (i) the case of common kinase 
and common phosphatase will not lead to the breaking of this symmetry. (ii) The case of different 
kinase and common phosphatase will also not lead to the breaking of this symmetry. In both cases, 
this can be shown directly analytically by demonstrating that for any steady states (irrespective of 
parameters) the partial phosphoforms necessarily must have equal concentrations (see Source code 
1 [Sections 3.1 and 3.2] and Supplementary file 1). Incidentally, an identical conclusion can be drawn 
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for the common kinase common phosphatase case, irrespective of the number of modification sites. 
(iii) On the other hand, the case of different kinase and different phosphatase can indeed exhibit the 
breaking of this symmetry (Figure 2D) via a supercritical pitchfork bifurcation: here the asymmetric 
steady states are characterized by fixed values of concentrations of unmodified and fully modified 
phosphoforms. This is established analytically (see Source code 1 [Section 3.3] and Supplementary 
file 1).

Conditions for symmetry breaking
Analytical results provide further insights. The necessary requirements for an asymmetric state are 
‍k1/k4Total/KTotal‍ and ‍k2/k3Total/KTotal‍. Note here that ‍KTotal‍ denotes the total concentration of each of the 
kinase enzymes while ‍PTotal‍ denotes the total concentration of each of the phosphatase enzymes (the 
equality, a requirement of symmetry). ‍k1, k2‍ denote the catalytic constants for phosphorylation of ﻿‍ A‍ 
and the partial phosphoforms (the constants being equal), while ‍k3, k4‍ denote the catalytic constants 
of dephosphorylation of A11 and the partial phosphoforms. Further analysis shows that this is sufficient 
for the existence of an asymmetric state. From this we can infer that (i) if ‍k1/k42/k3‍ then this behaviour 
is precluded. (ii) On the other hand if ‍k1/k42/k3‍, then by suitable choices of total enzyme concentra-
tions (quantities easy to manipulate), these conditions can be satisfied. (iii) In such a case, there is 
only a finite range of ratio of total enzyme concentrations (between ‍k2/k3‍ and ‍k1/k4‍) which can result in 
symmetry breaking. (iv) The presence of multiple kinases and phosphatases proves to have a combi-
nation of both sufficient nonlinearity as well as sufficient flexibility (from the multiplicity of enzymes) to 
enable such behaviour. As seen previously with multiple kinases/phosphatases, the parameters need 
to satisfy two inequalities. A combination of the naturalness of the symmetry and the widely encoun-
tered modification scenario suggests that symmetry breaking here may be encountered quite broadly.

Case 2 symmetry breaking in a separate kinase common phosphatase 
network with processive dephosphorylation
We aimed to get further insights into the factors driving such behaviour by comparing it with other 
related networks. To do this, we examined associated random modification networks where the 
dephosphorylation was processive (Figure 1B, Appendix 2—figure 1A). Note that this implies that 
the phosphatase has to be the same for all modifications. Here we find that if the kinase is common to 
different phosphorylation steps, the symmetry does not break; however, surprisingly when the kinases 
are different, symmetry breaking does indeed happen, as shown in Figure 2E (again reinforcing the 
flexibility provided by having different enzymes in enabling such behaviour). This is supported analyt-
ically (see Source code 1 [Section 4.2] and Supplementary file 1). A direct comparison with the 
different kinase common phosphatase random mechanism above reveals a new dimension: having 
processive dephosphorylation while reducing the nonlinearity in the network actually enables this 
behaviour which was otherwise precluded. Elsewhere we have noted how having processive dephos-
phorylation could readily enable other behaviour (oscillations) which was not observed when the 
modification was distributive (Suwanmajo and Krishnan, 2015). We also note that different condi-
tions in the cell (or stimuli) could effect a transition from distributive to processive mechanisms, as 
demonstrated (Aoki et al., 2013; Aoki et al., 2011; Kocieniewski et al., 2012).

Implications
Case 2 symmetry breaking ultimately results in the biasing of one ordered sequence of modifica-
tions over another. The implications of this as a key step for generating ordering of modifications are 
discussed subsequently.

Case 3 symmetry breaking reveals the simultaneous breaking of two 
symmetries
The scenario of Case 3 symmetry is examined in Figure 3. This involves a combination of the earlier 
cases. Figure 3A (Appendix 2—figure 2) focuses on the common kinase common phosphatase case. 
Here too, the symmetric steady state (characterized by ‍[A01] = [A10]‍ and ‍[A00] = [A11]‍) can lose symmetry 
to a pair of asymmetric steady states via a supercritical pitchfork bifurcation (Appendix 2—figure 2). 
The noteworthy point here is that both symmetries necessarily break together in general. In addi-
tion to previously observed bifurcation patterns, new possibilities arise. One is the possibility of a 
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subcritical pitchfork bifurcation (Figure 3A). In such a case, the branches of asymmetric states are 
unstable at the point of inception, but following a saddle node bifurcation, they become stable. As a 
direct consequence of this, when the parameter (total concentration of substrate) is varied, a sudden 
change from a symmetric to asymmetric steady state is observed in simulations, the latter exhibiting 
a pronounced asymmetry, which is not a small perturbation of the symmetric state. The asymmetric 
steady states are characterized by high levels of A11 and one of the partial phosphoforms, and low 
levels of A00 and the other phosphoform, or the other way around. Furthermore, the grouping in which 
each partial phosphoform is present is determined by baseline parameters (and changing baseline 
parameters can alter the grouping).

Irrespective of the nature of the pitchfork bifurcation (supercritical or subcritical), we find that the 
sum of partial phosphoform concentrations remains fixed on the asymmetric branches, and this is 
established analytically (see Appendix 1, Source code 1 [Section 3.3], and Supplementary file 1). 
The implications of this distinct type of invariant are discussed in the next section. It is interesting to 
contrast the invariant in this Case 3 symmetry breaking with invariants in symmetry breaking in the 
constituent symmetries (in this instance of common kinase common phosphatase, Case 1 symmetry, 
since Case 2 symmetry does not break). In Case 1 symmetry breaking, the invariants are the individual 
partial phosphoform concentrations while here it is the sum.

Implications
This simultaneous breaking of symmetries and pairing of partial phosphoform and fully modified (or 
fully unmodified phosphoform) has a transparent interpretation. Symmetry breaking simultaneously 

Figure 3. Case 3 symmetry breaking in various double-site phosphorylation (DSP) networks. (A) shows Case 3 symmetry breaking in random DSP 
with common kinase and common phosphatase. The symmetric steady state is capable of losing stability either through a Hopf bifurcation leading to 
oscillations, which is followed by symmetry breaking through a subcritical pitchfork bifurcation eventually leading to stable asymmetric steady states 
(column 1), or just by breaking symmetry leading to asymmetric branches through a subcritical pitchfork bifurcation, which eventually becomes stable 
(column 2). As seen in the plots, both symmetries simultaneously break. Note that the sum of the concentrations of the partially modified substrates is 
fixed in the asymmetric states in the bifurcation diagrams. Symmetry breaking via a supercritical pitchfork bifurcation, as seen previously in other cases, 
can also be seen (Appendix 2—figure 2). (B) shows Case 3 symmetry breaking in random DSP with separate kinase and separate phosphatase. The 
symmetric steady state is capable of losing stability either through a Hopf bifurcation leading to oscillations (column 1) or by breaking symmetry leading 
to two stable asymmetric branches through a supercritical pitchfork bifurcation (column 2). Note that the sum of the concentrations of the completely 
modified and completely unmodified substrates is approximately constant in the asymmetric steady states in the bifurcation diagram. (However, Case 
3 symmetry breaking in this network is also capable of providing approximate concentration robustness in the sum of the concentrations of partial 
substrate forms; see main text and Appendix 2—figure 4.) Dotted lines indicate unstable steady states, while solid lines represent stable steady 
states in the bifurcation diagram. Shaded regions in the bifurcation diagram indicate regions of oscillations, and the blue lines indicate bounds on 
concentrations during such oscillations. BP: pitchfork bifurcation; HP: Hopf bifurcation; LP: saddle node bifurcation.
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imposes directionality to the modification (i.e. relative dominance of fully modified vs. fully unmodified 
phosphoform) as well as a particular route of modification (via one of the two phosphoforms).

The presence of oscillations
Another behaviour which is observed in a different parameter regime is the emergence of oscillations, 
via a Hopf bifurcation, and this precedes the subcritical pitchfork bifurcation (Figure 3A). The oscilla-
tions do not preserve the symmetry of the original system. Instead we see correlated changes between 
the corresponding pairs of substrates at different time intervals. As the total substrate concentration 
increases, the period of oscillations increases, as the periodic trajectory comes close to a steady state 
in the phase space (Appendix 2—figure 2). Oscillations in such networks can occur without symmetry 
breaking, and in fact oscillations emerging from such random modification networks have been the 
focus of earlier studies (Jolley et al., 2012), Here we show that in the presence of symmetry (a condi-
tion recognized as a desirable criterion for oscillations), oscillations may be present in conjunction with 
symmetry breaking, which affects the oscillatory range and characteristics of oscillations.

Conditions for symmetry breaking
Analytical work in the case of common kinases and common phosphatases reveals a necessary condi-
tion for the realization of an asymmetric state (which is shown to be sufficient as well). This takes 
the form ﻿‍c3(1 − k3/k2) + c1(1 − k1/k4) > 0‍. Here c1 and c3 are known positive constants, which depend 
on kinetic parameters. As in the situation of Case 1 symmetry, this hinges on two ratios of cata-
lytic constants, though in contrast to that case it is the phosphorylation and dephosphorylation rate 
constants associated with the interconversion between A00 and A01 (‍k1/k4‍) and dephosphorylation and 
phosphorylation rate constants for the interconversion between A01 and A11 (‍k3/k2‍). As before we can 
make a range of conclusions: (i) ‍k3/k2 > 1‍ and ‍k1/k4 > 1‍ will preclude an asymmetric state; (ii) ‍k3/k2 < 1‍ 
and ‍k1/k4 < 1‍ will ensure the possibility of an asymmetric state; and (iii) a combination of parts of the 
above conditions can allow for an asymmetric state depending on the constants ‍c1, c3‍. In this regard, 
we also point out that these results show when symmetry breaking is precluded, and this combined 
with (Jolley et al., 2012) yield conditions under which oscillations can occur without interference from 
symmetry breaking (and in fact multistability).

The case of different kinases and phosphatases
Here (Figure 3B), we again find symmetry breaking via supercritical pitchfork bifurcations (but not 
subcritical pitchfork bifurcations), and the symmetry-broken states (which necessarily have both 
symmetries broken: see Source code 1 [Section 3.3] and Supplementary file 1) are characterized by 
having a higher level of one pair of substrates (one partial phosphoform and a completely modified/
unmodified phosphoform) and a lower level for the other pair.

Here an exact invariant of the form examined previously does not hold: instead we find that 
(depending on parameters) either the sum of partial phosphoform concentrations or the sum of 
concentrations of A00 and A11 is approximately constant (see Figure 3, Appendix 2—figure 4, Source 
code 1 [Section 3.3], and Supplementary file 1). It is worth noting as a contrast that fixed indi-
vidual concentrations for pairs of species ‍(A01, A10)‍ and ‍(A00, A11)‍ are obtained in this case for symmetry 
breaking of the constituent Case 1 and Case 2 symmetries, respectively. The possibility of oscillations 
(stable over a broad range of parameters) emerging is also seen here (Figure 3B), though we have 
never found it occurring side-by-side with symmetry breaking (seen earlier in the common kinase 
common phosphatase network). The presence of oscillations expands on and complements (Jolley 
et al., 2012), by revealing oscillations in this network which is desirable as it has additional tuneable 
dials (multiple total enzyme amounts).

Implications for inferences based on measurements
In Case 3 symmetry breaking in both the common kinase common phosphatase and separate kinase 
separate phosphatase, we find that in the symmetry-broken state the concentration of one partial 
phosphoform and either unmodified or fully modified form may be significantly elevated relative to 
its counterpart. This disparity between the two pairs can become pronounced and easily be misinter-
preted as suggesting (i) the nonexistence of other active modifications or (ii) a significant disparity in 
intrinsic kinetic rates of modification in the two legs of the network.

https://doi.org/10.7554/eLife.65358
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Discussion
This paper has focused on symmetry-breaking behaviour in MSP systems (summarized in Figure 4). 
The wide prevalence and relevance of MSP is well-established, but why focus on symmetry?

There are multiple reasons for this: (i) the structure of basic modification networks for MSP (the 
topology as well as positions of enzyme action therein) admits to the possibility of symmetries. Addi-
tionally, these have been sometimes implicitly or explicitly assumed in the literature (Sadreev et al., 
2014; Enciso and Ryerson, 2017): for example, Case 2 symmetries where different partial phospho-
forms behave in a similar way. In such instances, our results indicate that even if there is no biasing in 
the network interactions, the two phosphoforms in such a case may end up behaving very differently. 
Thus a simple, plausible assumption may have far-reaching and unexpected consequences. (ii) Certain 
symmetries may indeed naturally exist, for example, the possibility that modification/demodifica-
tion can proceed at an equal rate, irrespective of the modification site under consideration (Case 2 
symmetry). In other instances (Case 3 symmetry), exhaustive parametric analysis of random double-
site modification networks reveals the fact that oscillatory behaviour occurs in clusters centred around 
these symmetric networks (i.e. parameter sets which enable Case 3 symmetry) (Jolley et al., 2012). 
Thus networks which possess these symmetries (or represent small to moderate deviations there-
from) represent those enabling oscillations, suggestive of a basic design principle. Case 3 symmetry 
involves Case 1 and Case 2 symmetries as basic building blocks. Our analysis in both instances indi-
cates distinct, unexpected outcomes which can emerge in terms of system behaviour and informa-
tion processing characteristics. (iii) The breaking of symmetries may have been exploited during the 
process of evolution: in such cases. the presence of observed asymmetric networks may have its 
origins in symmetric cases encountered in evolution. In particular, as discussed further below, we show 
how multisite modification possesses natural ingredients for creating ordering by (Case 2) symmetry 
breaking. (iv) The insights we obtain are also relevant to systems where the exact symmetry may not 
strictly hold, but which are not large deviations of the symmetric case. In the latter case, clear echoes 
of the behaviour we discuss may continue to be observed (Appendix 2—figures 5 and 6). In such 
cases, the symmetric scenario provides a key vantage point from which to understand the origins of 
the behaviour. This behaviour may manifest itself as multistability in these cases, but in contrast to 
multistability which may be more broadly seen in parameter space, the origins and characteristics of 
the steady states in these instances can be traced back to the symmetric case and symmetry breaking. 
This is also an example of how having clear-cut reference cases allows us to elucidate how and why 
certain behaviour may arise, going beyond parameter scanning-based model analysis and data anal-
ysis. We further emphasize that as the number of modifications increases the underlying modification 
networks become considerably more complex (with an exponential increase in the size of the network 
in the absence of ordering) and symmetric networks represent one of the few tractable vantage points 
from which to study such networks. (v) In addition to revealing distinct new information processing 
characteristics of multisite modification (for instance, exact absolute concentration robustness [ACR] 
of different types) of relevance in natural systems, this also serves as a potentially fruitful point of 
departure in engineering information processing circuits involving multisite modification in synthetic 
biology.

Our studies primarily focussed on different random mechanisms of double-site modification, with 
different combinations of common/separate kinase and common/separate phosphatase. These serve 
as a useful basis for investigation, noting that (i) these different types of enzyme combinations are 
widely encountered in cellular biology (Stepanov et al., 2018; Lyons et al., 2013; Ramachandran 
et al., 1992), and (ii) the double-site mechanism is among the simplest multisite modification system 
which both exhibits different types of symmetries and symmetry breaking. This provides a tractable 
case for understanding this behaviour transparently, serving as a basis for subsequent investigation of 
more complex modification scenarios. Furthermore, the insights obtained from our analysis suggest 
natural extensions and generalizations to modification networks with a greater number of modifica-
tion sites. This is seen in preliminary studies of ordered triple-site modification systems (see Source 
code 1 [Section 2.3], Supplementary file 1, and Appendix 2—figure 8).

Symmetries
The symmetries which arise can be conceptualized and understood by examining symmetries of 
the underlying ‘square’ reaction network topology (refer Figure 1D). That viewpoint, relevant for a 
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Figure 4.  (A) Schematic representation of realization of symmetry and symmetry breaking in multisite modification networks through the interplay 
of basic biochemistry of post-translational protein modification and network symmetry. The analysis of the multisite network through symmetry and 
symmetry breaking reveals the underpinnings of new network features and serves as a rich and distinct vantage point to understand information 
processing behaviour in multisite modification networks. (B) Symmetry breaking as a new vista for understanding behaviour and engineering 

Figure 4 continued on next page
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broad class of chemical reaction networks, can then be applied to the specific instance of multisite 
substrate modification networks. Our studies involved a systematic analysis of different symmetries 
which emerge (noting the reasons above): symmetry in the modification direction (Case 1 symmetry: 
arising from a symmetry in action of the two enzymes on their corresponding substrates), symmetry 
between different branches of modification (Case 2 symmetry: arising from the same rates of modifi-
cation to and from phosphoforms at a given level of modification: see text for distinction from Case 
1) and combinations of the two (Case 3 symmetry: arising from a symmetry in the action of the two 
enzymes in the modification/demodification at a given site, but on opposite legs). The different types 
of symmetries are encountered among the different classes of multisite modification networks (with 
either common/separate kinase/phosphatase) though some networks may not exhibit all symmetries 
(summarized in Figure 4C).

Which symmetries can be broken?
Case 1 symmetry can be broken in all the random modification networks where it exists. This symmetry 
breaking serves as a distinct mechanism for establishing directionality. Additionally, Case 1 symmetry 
breaking can also be observed in a simple ordered DSP network (with only a single partial phospho-
form), though only in the common kinase, common phosphatase case. This ordered network serves as 
a simpler network for understanding this symmetry breaking transparently. Case 2 symmetry breaking 
is the basis of ordering of modifications. While Case 2 symmetry is possible for all combinations 
of common/separate kinase and common/separate phosphatase, the symmetry is broken only for 
the different kinase and different phosphatase case. A combination of the flexibility afforded by the 
different sets of enzymes, along with sufficient nonlinearity (due to enzymes participation in multiple 
complexes), enables this. Interestingly, if the dephosphorylation mechanism is processive (rather than 
distributive, as assumed throughout), the separate kinase common phosphatase network can also give 
rise to Case 2 symmetry breaking, reinforcing how the interplay of processive and distributive modi-
fication can enable new behaviour (see (Suwanmajo and Krishnan, 2015) for another example). In 
Case 3, the two symmetries necessarily break together. A distinct behaviour encountered here is the 
presence of symmetry breaking and oscillatory behaviour. In most cases, the symmetry-broken states 
are associated with transparent invariants which we analytically identify: these represent a behaviour 
reminiscent of absolute concentration robustness (discussed below). Additionally, the symmetry 
breaking manifests as a supercritical pitchfork bifurcation, while in Case 3 symmetry with common 
kinase/common phosphatase, a subcritical pitchfork bifurcation is observed, along with possible 
tristability. Our analytical work reveals how symmetry breaking (in all cases studied) may be accessed 
in large regions of (symmetric) parameter space by varying total enzyme/substrate concentrations, 
which represent easy to manipulate experimental factors (see Appendix 2—figure 7).

Multisite modification and network symmetry breaking
It is worth viewing the above results from a different perspective: the breaking of symmetry in 
(potentially general) biochemical networks of the ‘square’ topology (discussed in Figure 1D). While 
symmetry simply imposes the restriction that the two legs of the network have kinetics which are iden-
tical, when can the symmetry actually break? Our study presents multiple insights: (i) firstly, a degree 
of nonlinearity is required, and this arises from conservation of species and sequestration of enzymes/
substrates in complexes, a fundamental aspect of biochemical systems. All the modification networks 
we consider have enzymes shared between at least two enzyme-substrate complexes (this stems from 
the fact that a given modification is effected by only one enzyme, and without any ordering) and this 
provides the nonlinearity. (ii) On the other hand, for symmetry breaking to occur, a sufficient flexibility 
is required in the network to be able to allow for this. This is clearly seen in Case 2 symmetry in modi-
fication networks (with distributive enzyme mechanism), where reduced nonlinearity notwithstanding, 
it is only the separate kinase separate phosphatase modification network that allows symmetry to be 

functionality in multisite modification networks: symmetry breaking can confer network features such as ordering and directionality to multisite 
phosphorylation (MSP) networks, limit the range of oscillations, and enable robust homeostasis for individual or combinations of substrates. It also 
provides key insights on the origin of behaviours in networks which are not far from symmetry. (C) A tabular summary of the presence and absence of 
symmetry and symmetry breaking in MSP networks, along with features of the symmetry-broken states (exact absolute concentration robustness).

Figure 4 continued
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broken. In general, there is a trade-off between nonlinearity and flexibility (associated with distinct 
enzymes for different steps), but multisite modification provides many instances of sufficient combi-
nations of both factors to realize symmetry breaking. These insights, bringing together basic (bio)
chemistry and network features, are broadly relevant in biochemical networks.

Enzyme sequestration
Enzyme sequestration (and competition) provides the key nonlinearity for generating symmetry 
breaking obviating the need for explicit feedback. Eliminating enzyme sequestration eliminates the 
possibility of symmetry breaking. Enzyme competition is a key ingredient in multisite modification, and 
in general this could combine with zeroth-order ultrasensitivity to generate new behaviour. However, 
the symmetry breaking we have found does not require any explicit assumption on the kinetic regime 
of enzymatic action (as seen from the sufficient conditions we have obtained) and so zeroth-order 
ultrasensitivity is neither necessary nor sufficient for this.

We now discuss the relevance of our results from different vantage points. All of these underscore 
the fact that information processing is a characteristic and consequence of the modification network 
(rather than an individual modification) and that symmetry and symmetry breaking provides distinct 
classes of insights therein (see Figure 4).

Ordering and directionality in multisite modification
Multisite modification systems encountered in vivo often exhibit different degrees of ordering ranging 
from complete ordering of the sequence of modifications, to partial ordering, to a complete absence 
of ordering (symmetric scenario). Ordering is a fundamental aspect of substrate modification and its 
deployment in different pathways and processes. In fact, ordering of modifications is key to estab-
lishing a strictly sequential logic, which is likely to be an important aspect of information processing 
in those cellular contexts. A range of studies focus on these contexts, basic principles, and the potent 
role in engineering multisite modification (Kocieniewski et al., 2012; Lyons et al., 2013; Ramachan-
dran et al., 1992; Lössl et al., 2016; Valk et al., 2014; Kõivomägi et al., 2013). How ordering has 
emerged is however unclear, and there could be multiple contributing factors. Our results indicate that 
the basic biochemistry of multisite modification by itself provides the basis for creating an ordering by 
breaking symmetry. The biasing which emerges can itself be very significant, and with possible addi-
tional refinements, gives rise to ordering. This demonstrates that a key driving factor could be at the 
modification network level rather than at the molecular level. Our analysis of the different symmetry 
cases allows us to explore the different ways in which both ordering and directionality may be deter-
mined. We determine explicit conditions for the occurrence of symmetry breaking, revealing broad 
ranges of parameter space where this can happen. In the context of ordering, this, along with the 
demonstration of sufficiency of the conditions for symmetry breaking, demonstrates the robustness of 
the mechanism. We further point out that even if the system is not exactly symmetric an echo of such 
symmetry breaking may be seen, which is indicated by multiple steady states which strongly bias one 
pathway over another, in a manner which is not commensurate with the (small) differences in kinetics 
of the pathways (Appendix 2—figures 5; 6).

Given a symmetric (Case 2 symmetry) or close to symmetric network where different phosphoforms 
behave (essentially) the same, there are different ways in which evolution could lead to biasing of 
one modification pathway over the other. One is by effecting local changes in one of the pathways. 
Symmetry breaking allows for a distinct mechanism whereby changing one easy to manipulate param-
eter (expression level of substrate), a significant biasing of one pathway over the other is established. 
This could be further reinforced (if this is a desirable outcome) by local changes in the pathway or 
increasing substrate amounts further (which further accentuates the biasing). This can lead to either 
partial or even complete ordering subsequently. Thus the mechanism could be seen as an efficient 
way of effecting a substantial change which could be reinforced and consolidated by further tinkering. 
It can also generate different robustness characteristics.

A similar comment applies to directionality. Case 3 symmetry breaking results in a combination 
of ordering and directionality, which ultimately manifests itself as elevated combinations of specific 
partial phosphoforms and unmodified/fully modified forms. Such a behaviour of the network (for 
instance, if observed experimentally) could easily be misinterpreted as suggestive of either some 
modification being inactive or there being a strong bias in the intrinsic kinetics, neither of which may 
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be correct. Our results also provide important insights in the cases of larger numbers of modification 
sites. For instance, analogues of Case 2 symmetry breaking could explain both ordering and partial 
ordering (some sequences of modifications ordered) in those systems.

Absolute concentration robustness
Our analysis reveals the presence of (exact) ACR of different species in the symmetry-broken state. In 
this regard, we note that (i) the relevant species (in some cases, partial phosphoforms, and in others 
the fully modified or fully unmodified phosphoforms) exhibit concentration robustness to changes 
in total substrate concentration and are fixed at a level corresponding to the concentration of these 
species at the symmetry-breaking bifurcation (the inception of the asymmetric branch). (ii) Depending 
on the network and the type of symmetry broken, this can manifest itself as ACR for pairs of species 
(Case 1 and Case 2). (iii) In other cases (Case 3), the robustness is in the sum of concentrations of 
species, either exactly or approximately. From the above points, we see that multisite modification 
contains an in-built mechanism of creating robustness for clusters of species, either individually or 
collectively, something which represents an appealing characteristic for natural and engineered modi-
fication networks. It remains to be seen how this has been exploited in cells. (iv) There are different 
ways in which ACR may be obtained (for instance, in bifunctional enzymes (Batchelor and Goulian, 
2003; Krishnan et al., 2020). The mechanism seen here shares a feature of ACR observed in auto-
catalytic networks, arising from a transcritical bifurcation (Shinar and Feinberg, 2011; Krishnan and 
Floros, 2019) as being intimately tied to a nonlinear dynamic transition arising from the biochemistry. 
In both cases, there is more than one steady state possible, and one of the steady states exhibits the 
ACR.

The origins of ACR
Based on the above, a natural question is which substrates could exhibit (exact) ACR and whether 
symmetry is a prerequisite. We note that in the ACR we have made no assumption/restriction or 
invoked any particular kinetic regime for enzymatic action. We answer the questions (based on analyt-
ical work: see Appendix 1 and Appendix 2—figure 9) relating to ACR in these terms in the ordered 
DSP network. (i) Only ‍Ap‍ can exhibit ACR, and this occurs only in response to ‍ATotal‍ (not ‍KTotal‍ or ‍PTotal‍). 
(ii) ACR necessarily requires multiple steady states, with two branches of steady states exhibiting ACR.
There is another steady-state branch which does not exhibit ACR, but intersects one of the branches 
in what was computationally observed to be a transcritical bifurcation. (iii) There is a constraint on 
parameters to enable this, which is weaker than the symmetry condition. (iv) In the case of symmetry, 
the two ACR branches are symmetric and intersect with the other branch in a pitchfork bifurcation.

Approximate ACR
As noted above, networks deviating from exact symmetry can exhibit approximate concentration 
robustness (refer Appendix  2—figure 6). Concentration robustness (approximate) could also be 
obtained in specific limiting kinetic parameter regimes. In ordered DSP with common kinase common 
phosphatase, we find that (i) ‍App‍ and ‍A‍ could also exhibit concentration robustness. This can happen 
in a regime where the enzyme producing this (from ‍Ap‍) acts in the saturated regime while the action of 
both enzymes on reactions not involving the species under consideration acts in the unsaturated limit 
(see Appendix 1). Here approximate ACR occurs without requiring multistability. (ii) Similarly approx-
imate ACR can occur in ‍Ap‍ without multistability by (for instance) having phosphorylation of A in the 
saturated regime and phosphorylation of ‍Ap‍ and dephosphorylation of ‍App‍ in the unsaturated limit 
(or having phosphatases in excess). Similar insights can enable approximate ACR for one species in 
the corresponding random network (see Appendix 1). In contrast to such limiting regimes, absolute/
approximate concentration robustness via symmetry breaking is present along with a rich repertoire 
of information processing characteristics.

Pathways and modularity
How does symmetry breaking in multisite modification both affect and be affected by the behaviour 
of a signalling network of which it is a part? (i) The importance of multisite modification stems from 
the fact that it confers functionality to proteins which can regulate other processes. Here the symmetry 
breaking allows for both regulation of downstream pathways as well as insulation of some downstream 
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pathways from the effect of total upstream substrate and other upstream perturbations (via ACR for 
specific substrates in the modification network). This ability to insulate some parts of a network, while 
not the others, is a desirable feature which can be exploited: symmetry breaking in multisite modifica-
tion provides a way of realizing this exactly purely from chemistry without requiring elaborate network 
structures (incorporating adaptation, feedback, etc.). (ii) Additionally, we find examples of ‘shared 
ACR’ where the sum of two species concentrations is fixed. This represents a case where robustness 
is applied to a combination of pathways if the two species regulate different pathways. This may be 
relevant in multiple cell signalling contexts by directly incorporating an inbuilt trade-off between the 
activation of two pathways, for instance, for efficient resource allocation. If the two species regulate 
the same pathway in the same way, this translates into robustness in regulating the pathway, while 
allowing flexibility through the redundancy. (iii) The effect of sequestration of a substrate species can 
be to either facilitate or make difficult the possibility of symmetry breaking. The sequestration of a 
substrate species in a downstream complex is the basis of a retroactive effect in a signalling pathway 
(Ventura et al., 2010; Del Vecchio et al., 2008). In the current case, this retroactive effect can help 
facilitate the possibility of symmetry breaking, and further that this happens in a context-dependent 
way. (iv) Other factors associated with the network, for instance, feedback, may also significantly 
affect the possibility of this happening. These aspects need to be assessed systematically and will be 
studied in the future. Interestingly an existing study (Krishnamurthy et al., 2007) examines sequential 
multisite modification with two explicit feedbacks: one from the maximally modified phosphoform 
increasing the probability of (every) modification and the other from the unmodified form increasing 
the probability of every demodification. In a stochastic setting, this has been shown to result in 
breaking a symmetry between phosphorylation and dephosphorylation even with no enzyme seques-
tration. In contrast to this, all our studies are on the intrinsic behaviour of multisite modification and 
in a deterministic setting.

Relevance to oscillatory enzymatic networks
Studies of multisite networks have focused on their capacity of generating oscillations (Rust et al., 
2007; Van Zon et al., 2007), including random networks with common kinase and common phospha-
tase with a view to their relevance in circadian oscillators (Jolley et al., 2012). A detailed computational 
study (Jolley et al., 2012) reveals regions of parameter space which facilitate the presence of oscilla-
tions, and the prominent regions are clustered around a symmetric network (the Case 3 network that 
we have studied). What is the relevance of our analysis here? Our study shows how oscillations occur 
in such cases, and also how (by changing substrate amounts) both oscillations and symmetry breaking 
may occur. We can identify different regimes based on our analysis. (i) A regime where symmetry 
breaking is ruled out. Here our analysis indicates regimes where oscillations can occur without any 
potential interference from symmetry breaking. (ii) A regime where symmetry breaking is possible, 
and in fact guaranteed, for some total substrate amount. In the latter case, we demonstrate that by 
varying total enzyme amounts (easily tuneable dials) it is possible to obtain, multistability, oscillations 
or a combination of such behaviour (see Appendix 2—figure 7). It indicates how in certain cases 
symmetry breaking may occur, limiting/preventing a range of oscillations. In particular, it indicates that 
oscillations do not have to be present for an indefinitely large range (suggested in the computations 
of (Jolley et al., 2012)). We provide further insights with regard to oscillations. (iii) The existence of 
long period oscillations which hover between different symmetric states is also seen (Appendix 2—
figure 2). (iv) We demonstrate the possibility of oscillations in networks with different kinases and 
phosphatases, which potentially benefit from a greater tuneability than the common kinase common 
phosphatase case. (v) By contrast, we find that the other symmetries do not readily yield oscillatory 
behaviour, though further work needs to be done to study this exhaustively. The above points sharpen 
our understanding of oscillations emerging in random modification mechanisms and reinforce the 
theme of multisite modification as a complex information processor.

Experimental signatures and testable predictions
Our analysis reveals the key features associated with symmetry breaking, which suggest multiple 
non-trivial signatures which could be seen experimentally: for instance, a considerable disparity 
in partial phosphoform behaviour, which may be incommensurate with the (minor) differences in 
kinetics in the legs of modification, characteristic patterns of ACR for specific species or groups. 
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These signatures even if approximate could suggest the presence of symmetry breaking. On the 
other hand, experiments could be developed to realize this behaviour by constructing underlying 
modification circuits either for synthetic purposes or to probe and test the behaviour itself. The 
multiplicity of enzymes involved allows for the deployment of a broad experimental tool kit for 
these purposes. Systems mimicking Case 2 symmetry could be created by engineering different 
modification sites (of similar properties), with modification by different isoforms of an enzyme. If this 
is also done for the demodification, then an approximate realization of a Case 2 symmetry (different 
kinase different phosphatase) can be realized. Alternatively, in a similar vein it may be possible to 
engineer a different kinase common phosphatase system with processive dephosphorylation: here 
the dephosphorylation could be induced to be processive (as seen elsewhere in cellular contexts). 
Other approaches could involve reconstitution of components of existing systems, such as circadian 
oscillators.

It is worth examining the implications and extensions of our study to a larger number of modifica-
tion sites. Random networks lead to an exponential increase in the number of states. Additionally, the 
modifications/demodifications can be effected by common enzymes (for all modifications), distinct 
enzymes (for every modification), or a combination thereof, leading to a further combinatorial explo-
sion in possibilities. Clearly direct analogues of the symmetry breaking seen here (e.g. Case 1 and 
Case 2) can be encountered here. In addition, new possibilities can emerge. In Case 2, for instance, in 
addition to the situation where all modification legs behave the same, we can have a situation where 
some modification legs (or parts thereof) are the same. Furthermore, not surprisingly, new behavioural 
characteristics can emerge. For instance, in the ordered triple-site phosphorylation network (Case 
1 symmetry: common kinase common phosphatase), we find shared robustness (see Appendix 2—
figure 8), not seen in the ordered double-site modification. These aspects need a dedicated study 
of their own and will be studied in the future. Viewed from the perspective of information storage, 
symmetry breaking suggests that a symmetric double-site modification network contains a bit of 
information. We emphasize, however, that symmetric network encodes a richer set of information, 
such as simultaneously presenting homeostasis and multiple steady states, an observation relevant to 
networks of any number of modification sites.

All in all, we have shown how basic biochemistry of multisite modification even within simple 
modification networks can be the basis of symmetry breaking. Symmetry breaking in turn can confer 
ordering, directionality, exact concentration robustness, and can significantly enhance the repertoire 
of information processing in multisite modification and regulation in signalling networks where they 
are present. The insights which arise from a structured systems study are of relevance in multiple 
contexts spanning the chemical and the biological, from systems biology to systems chemistry with 
potential in synthetic biology and the engineering of chemical systems.
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Appendix 1
This paper analyses the propensity for symmetry and symmetry-breaking behaviour in networks 
involving multisite PTM of proteins. The study is conducted from the vantage point of a 
proto-typical example of PTMs, protein phosphorylation. MSP is a common PTM that confers 
functionality to proteins and is responsible for regulation of multiple cellular pathways. In this 
paper, multiple variations of double-site phosphorylation (DSP), realized through different 
combinations of common/separate kinases/phosphatases, random/ordered modifications, 
and the possibility of processivity in modification (refer to Figures 1 and 4 and Appendix 2—
figure 1), have been considered. By using the DSP as a suitable example, we have explored the 
phenomenon of symmetry and symmetry breaking in basic PTM networks. We present essential 
information about the methodology and analysis below, with additional details in Source code 1 
and Supplementary file 1. The information in this section is presented in the following order.

•	 Model descriptions
•	 Methodology
•	 Analytical proofs for arguments made in the main text
•	 Parameter values

Model descriptions
We now present the kinetic descriptions of our modification networks. In all cases, we employ 
ODE-based kinetic descriptions as these focus on the central aspects of interest (the modifications 
and their sequence) for the purposes of our study. Spatial and stochastic aspects can be studied as 
extensions of this.

Consider enzyme action on a protein substrate with two modification sites and a common 
enzyme acting on both sites. The mechanism of modification could be either distributive or 
processive manner as described below:

Enzyme action: double-site modification (processive)

	﻿‍

Substrate + Enzyme ⇌ Complex ⇌ Mod. Com.1 → Mod. Sub. + Enzyme
[A00] [K] [A00K] [A01K] [A11] [K]

OR
[A00] [K] [A10K] [A10K] [A11] [K] ‍�

Enzyme action: double-site modification (distributive)

	﻿‍

Substrate + Enzyme ⇌ Complex1 → Mod. Sub. + Enzyme
[A00] [K] [(A00K)2] [A01] [K]
[A01] [K] [A01K] [A11] [K]

OR
[A00] [K] [(A00K)2] [A10] [K]
[A10] [K] [A10K] [A11] [K] ‍�

In each case (processive and distributive), the enzyme (in the context of a phosphorylation 
and dephosphorylation – kinase and phosphatase, respectively) binds reversibly to the protein 
substrate to form an enzyme-substrate complex. If the enzyme action is processive, the enzyme 
is bound to the substrate (in multiple complexes) until all modifications are effected, after which 
it irreversibly detaches to give the completely modified protein and the free enzyme. In the 
context of a random double-site modification as shown, there are two possible ways in which 
the modifications can be (processively) effected, corresponding to the ordering in modifications, 
that is, first site being modified followed by the second site and vice versa. If the enzyme 
action is distributive, the enzyme detaches from the substrate after effecting each modification 
before reversibly binding again with the partially modified substrate to form a new complex 
corresponding to the additional modification. Similar to the processive enzyme action, there are 
two pathways (corresponding to different ordering) in which modifications can be effected in the 
double-site module as shown, each leading to a unique partially modified substrate. Combinations 
of processive and distributive enzyme action are also possible. Furthermore, additional variations 
in multisite modifications are possible depending on enzyme specificity. In the example above, 
we considered a case where both modification sites were effected by a common enzyme (kinase/
phosphatase). However,(de)modification of each modification site can be effected by a different 

https://doi.org/10.7554/eLife.65358
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enzyme, and thus the possibility of having common/separate enzymes performing different 
modifications represents a suite of basic modification scenarios.

These complexities (for the double-site modification of substrate) are captured in the models 
depicted in Figure 1. The networks are modelled as a system of ODEs generated by describing 
the individual elementary reactions (as shown above in Figure 1 and Appendix 2—figure 10) 
using generic mass action kinetic descriptions. This makes no assumptions on the kinetic regime of 
modification.

The nomenclature used for modelling is as follows. The kinetic constants of the binding and 
unbinding reactions are denoted by the letters ‍kbi‍ and ‍kubi‍ while that of the irreversible catalytic 
reaction of the complex is denoted by ki; where ﻿‍ ‍ is an index which stands for the reaction number 
in a given model. For the sake of clarity and brevity, models represented in the figures in the main 
text (refer Figure 1) use ‍κi‍ and ‍αi‍ to concisely represent binding, unbinding, and catalytic reaction 
rate constants involved in a particular modification. An individual modification/demodification step 
involves the enzyme reversibly binding to the substrate to form a complex, which then involves 
an irreversible catalytic reaction to produce the modified form (and release the enzyme): this 
represents a widely employed model of substrate modification. The detailed model description 
for the networks considered in the paper is constructed by employing such mass action kinetic 
descriptions of the elementary reactions for all modification/demodification steps (refer to 
Appendix 2—figure 10 for a detailed schematic denoting independent reactions and their kinetic 
nomenclature). All models are presented in dimensionless form.

Ordered distributive multisite phosphorylation
DSP: common kinase common phosphatase
The ordered distributive DSP with common kinase common phosphatase acting on both 
modification sites (refer Figure 1C) is realized when the order of phosphorylation and order 
of dephosphorylation are opposite. This results in a single partially modified (phosphorylated) 
substrate. In the model description, ‍[A]‍ represents the substrate while its subscript designation 
represents the number of modifications effected, that is, ‍[Ap]‍ represents the partially modified 
substrate and ‍[App]‍ represents the completely modified substrate. As shown in the schematic, the 
substrate (‍[A]‍) first reversibly binds to the kinase (‍[K]‍) to form an enzyme-substrate complex (‍[AK]
‍). The modification is then effected with the complex irreversibly producing the modified substrate 
(‍[Ap]‍) and the free enzyme (‍[App]‍). Phosphorylation and dephosphorylation proceed in a distributive 
manner at both modification sites. Using mass action kinetics and the kinetic nomenclature 
described earlier, we can model the system as a set of ODEs as follows:

	﻿‍

d[A]
dt

= −kb1[A][K] + kub1[AK] + k4[ApP]
d[Ap]

dt = −kb2[Ap][K] − kb4[Ap][P] + k1[AK] + kub2[ApK] + kub4[ApP] + k3[AppP]
d[App]

dt = −kb3[App][P] + k2[ApK] + kub3[AppP]
d[AK]

dt = kb1[A][K] − (kub1 + k1)[AK]
d[ApK]

dt = kb2[Ap][K] − (kub2 + k2)[ApK]
d[AppP]

dt = kb3[App][P] − (kub3 + k3)[AppP]
d[ApP]

dt = kb4[Ap][P] − (kub4 + k4)[ApP]
d[K]

dt = −kb1[A][K] + (kub1 + k1)[AK] − kb2[Ap][K] + (kub2 + k2)[ApK]
d[P]
dt = −kb3[App][P] + (kub3 + k3)[AppP] − kb4[Ap][P] + (kub4 + k4)[ApP] ‍�

(1)

The total substrate and enzyme concentrations are also conserved in this system. This is 
represented mathematically as follows:

	﻿‍

ATotal = [A] + [Ap] + [App] + [AK] + [ApK] + [AppP] + [ApP]

KTotal = [K] + [ApK] + [AK]

PTotal = [P] + [AppP] + [ApP] ‍�

(2)

https://doi.org/10.7554/eLife.65358
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Triple-site phosphorylation (TSP) – common kinase common phosphatase
While DSP networks are the primary focal point of the study, we use the ordered distributive TSP 
to make some specific points. The ordered distributive TSP with common kinase and common 
phosphatase acting on all modification sites is realized when the order of phosphorylation and 
dephosphorylation is reversed (see Appendix 2—figure 8). The network is modelled as a system 
of ODEs using mass action kinetic description of the elementary reactions involved. Similar to 
the ordered distributive DSP, the substrate is represented by ‍[A]‍, while the subscript represents 
the number of phosphorylated modification sites. The equations are presented in Source code 1 
(Section 2.3) and Supplementary file 1.

Random double-site modification
The random DSP network is realized when there is no preferential ordering for either the 
modification/demodification (phosphorylation/dephosphorylation). In this paper, we have 
considered multiple variations of random DSP, depending on whether the enzymes (kinases/
phosphatases) effecting the modifications are the same or different (namely, systems 1–3, refer 
Figure 1).

The general nomenclature used in these models is as follows. The substrate is denoted by 
the letter ﻿‍A‍, while the subscript with binary digits is used to denote the nature of the specific 
modification sites. ‘1’ represents a phosphorylated modification site, while ‘0’ represents that 
the specific site is unphosphorylated. Thus ‍[A00]‍ and ‍[A11]‍ represent the completely unmodified 
and completely modified substrates, while ‍[A01]‍ and ‍[A10]‍ represent partially modified substrates 
with only the second and first site modified, respectively. Where required, the enzyme-substrate 
complexes are further designated with subscript numbers (outside curved brackets) to differentiate 
between complexes where the enzymes are associated with different modification (e.g. ﻿‍[(A00K)1]‍ 
and ‍[A11]‍).

The ODE models are constructed in a similar manner to those of the ordered mechanism by 
combining mass action kinetic descriptions of the elementary steps. For a detailed schematic 
including kinetic representation of the elementary binding and unbinding reactions, please refer to 
Appendix 2—figure 10.

System 1 – common kinase common phosphatase:
System 1 has a single kinase and phosphatase that effects phosphorylation and dephosphorylation, 
respectively, on both the modification sites. Using the above nomenclature, this system can be 
represented as a system of ODEs as follows:

https://doi.org/10.7554/eLife.65358
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	﻿‍

d[A00]
dt

= −kb1[A00][K] − ab1[A00][K] + kub1[(A00K)1] + aub1[A00K2] + a4[A10P] + k4[A01P]
d[A10]

dt = −ab2[A10][K] − ab4[A10][P] + a1[(A00K)2] + aub2[A10K] + aub4[A10P] + a3[(A11P)2]
d[A01]

dt = −kb2[A01][K] − kb4[A01][P] + k1[(A00K)1] + kub2[A01K] + kub4[A01P] + k3[(A11P)1]
d[A11]

dt = −kb3[A11][P] − ab3[A11][P] + a2[A10K] + k2[A01K] + kub3[(A11P)1] + aub3[(A11P)2]
d[(A00K)1]

dt = kb1[A00][K] − (kub1 + k1)[(A00K)1]
d[A01K]

dt = kb2[A01][K] − (kub2 + k2)[A01K]
d[(A00K)2]

dt = ab1[A00][K] − (aub1 + a1)[(A00K)2]
d[A10K]

dt = ab2[A10][K] − (aub2 + a2)[A10K]
d[(A11P)1]

dt = kb3[A11][P] − (kub3 + k3)[(A11P)1]
d[A01P]

dt = kb4[A01][P] − (kub4 + k4)[A01P]
d[(A11P)2]

dt = ab3[A11][P] − (aub3 + a3)[(A11P)2]
d[A10P]

dt = ab4[A10][P] − (aub4 + a4)[A10P]
d[K]

dt = −kb1[A00][K] + (k1 + kub1)[(A00K)1] − ab1[A00][K]

+(aub1 + a1)[(A00K)2] − ab2[A10][K] + (aub2 + a2)[A10K]

−kb2[A01][K] + (k2 + kub2)[A01K]
d[P]
dt = −kb3[A11][P] + (kub3 + k3)[(A11P)1] − ab3[A11][P]

+(aub3 + a3)[(A11P)2] − ab4[A10][P] + (aub4 + a4)[A10P]

−kb4[A01][P] + (kub4 + k4)[A01P] ‍�

(3)

The total substrate and enzyme concentrations are conserved in the system. This is represented 
mathematically as follows:

	﻿‍

ATotal = [A00] + [A10] + [A01] + [A11] + [(A00K)1] + [A01K] + [(A00K)2]

+[A10K] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P]

KTotal = [K] + [(A00K)1] + [A10K] + [(A00K)2] + [A01K]

PTotal = [P] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P] ‍�

(4)

System 2 – separate kinase common phosphatase:
System 2 has a distinct kinase acting on each modification site, while a common phosphatase 
effects dephosphorylation on both sites. Using the nomenclature discussed earlier, the system is 
modelled as a set of ODEs as shown below:

https://doi.org/10.7554/eLife.65358
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	﻿‍

d[A00]
dt

= −kb1[A00][K1] − ab1[A00][K2] + kub1[A00K1] + aub1[A00K2] + k4[A01P] + a4[A10P]
d[A01]

dt = −kb2[A01][K2] − kb4[A01][P] + k1[A00K1] + kub2[A01K2] + kub4[A01P] + k3[(A11P)1]
d[A10]

dt = −ab2[A10][K1] − ab4[A10][P] + a1[A00K2] + aub2[A10K1] + aub4[A10P] + a3[(A11P)2]
d[A11]

dt = −kb3[A11][P] − ab3[A11][P] + k2[A01K2] + a2[A10K1] + kub3[(A11P)1] + aub3[(A11P)2]
d[A00K1]

dt = kb1[A00][K1] − (k1 + kub1)[A00K1]
d[A10K1]

dt = ab2[A10][K1] − (a2 + aub2)[A10K1]
d[A00K2]

dt = ab1[A00][K2] − (aub1 + a1)[A00K2]
d[A01K2]

dt = kb2[A01][K2] − (kub2 + k2)[A01K2]
d[(A11P)1]

dt = kb3[A11][P] − (kub3 + k3)[(A11P)1]
d[A10P]

dt = ab4[A10][P] − (aub4 + a4)[A10P]
d[(A11P)2]

dt = ab3[A11][P] − (aub3 + a3)[(A11P)2]
d[A01P]

dt = kb4[A01][P] − (kub4 + k4)[A01P]
d[K1]

dt = −kb1[A00][K1] + (k1 + kub1)[A00K1] − ab2[A10][K1] + (a2 + aub2)[A10K1]
d[K2]

dt = −ab1[A00][K2] + (aub1 + a1)[A00K2] − kb2[A01][K2] + (kub2 + k2)[A01K2]
d[P]
dt = −kb3[A11][P] + (kub3 + k3)[(A11P)1] − ab4[A10][P] + (aub4 + a4)[A10P]

−ab3[A11][P] + (aub3 + a3)[(A11P)2] − kb4[A01][P] + (kub4 + k4)[A01P] ‍�

(5)

The total substrate and enzyme concentrations are conserved in this system. Note that each 
distinct kinase is associated with a conservation condition.

	﻿‍

ATotal = [A00] + [A10] + [A01] + [A11] + [A00K1] + [A01K2] + [A00K2]

+[A10K1] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P]

K1Total = [K1] + [A00K1] + [A10K1]

K2Total = [K2] + [A00K2] + [A01K2]

PTotal = [P] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P] ‍�

(6)

System 3 – separate kinase separate phosphatase:
System 3 has distinct kinases and phosphatases effecting phosphorylation and dephosphorylation 
on each modification site. The system is modelled as a set of ODEs as shown below:

https://doi.org/10.7554/eLife.65358
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	﻿‍

d[A00]
dt

= −kb1[A00][K1] − ab1[A00][K2] + kub1[A00K1] + aub1[A00K2] + k4[A01P1] + a4[A10P2]
d[A01]

dt = −kb2[A01][K2] − kb4[A01][P1] + k1[A00K1] + kub2[A01K2] + kub4[A01P1] + k3[A11P2]
d[A10]

dt = −ab2[A10][K1] − ab4[A10][P2] + a1[A00K2] + aub2[A10K1] + aub4[A10P2] + a3[(A11P1]
d[A11]

dt = −ab3[A11][P1] − kb3[A11][P2] + k2[A01K2] + a2[A10K1] + aub3[A11P1] + kub3[A11P2]
d[A00K1]

dt = kb1[A00][K1] − (k1 + kub1)[A00K1]
d[A01K2]

dt = kb2[A01][K2] − (k2 + kub2)[A01K2]
d[A11P2]

dt = kb3[A11][P2] − (k3 + kub3)[A11P2]
d[A01P1]

dt = kb4[A01][P1] − (k4 + kub4)[A01P1]
d[A00K2]

dt = ab1[A00][K2] − (a1 + aub1)[A00K2]
d[A10K1]

dt = ab2[A10][K1] − (a2 + aub2)[A10K1]
d[A11P1]

dt = ab3[A11][P1] − (a3 + aub3)[A11P1]
d[A10P2]

dt = ab4[A10][P2] − (a4 + aub4)[A10P2]
d[K1]

dt = kb1[A00][K1] − (k1 + kub1)[A00K1] + ab2[A10][K1] − (a2 + aub2)[A10K1]
d[K2]

dt = ab1[A00][K2] − (a1 + aub1)[A00K2] + kb2[A01][K2] − (k2 + kub2)[A01K2]
d[P1]

dt = ab3[A11][P1] − (a3 + aub3)[A11P1] + kb4[A01][P1] − (k4 + kub4)[A01P1]
d[P2]

dt = kb3[A11][P2] − (k3 + kub3)[A11P2] + ab4[A10][P2] − (a4 + aub4)[A10P2] ‍�

(7)

The conservation condition for the substrate and each of the enzymes is shown below:

	﻿‍

ATotal = [A00] + [A10] + [A01] + [A11] + [A00K1] + [A01K2] + [A11P2] + [A01P1]

+[A00K2] + [A10K1] + [A11P1] + [A10P2]

K1Total = [A00K1] + [A10K1] + [K1]

K2Total = [A01K2] + [A00K2] + [K2]

P1Total = [A11P1] + [A01P1] + [P1]

P2Total = [A10P2] + [A11P2] + [P2] ‍�

(8)

Mixed random DSP
The ‘mixed random’ DSP which we study involves a combination of distributive phosphorylation 
and processive dephosphorylation, without any ordering. In this paper, multiple such mixed 
random modification networks (mixed random 1, 2, and 3; refer Figure 1 and Appendix 2—figure 
1) are analysed from a specific viewpoint: their individual capacity to exhibit Case 2 symmetry 
breaking. The goal there is to establish whether having processive modification results in any new 
insights. The model description for these systems is as follows.

Mixed random 1 – common kinase common phosphatase
Mixed random 1 has a common kinase that effects phosphorylation on both the modification sites. 
Using the above nomenclature, this system can be represented as a system of ODEs as follows:

https://doi.org/10.7554/eLife.65358
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	﻿‍

d[A00]
dt = −kb1[A00][K] − ab1[A00][K] + kub1[A00K1] + aub1[A00K2] + k4[A01P] + a4[A10P]

d[A01]
dt = −kb2[A01][K] + k1[(A00K)1] + kub2[A01K]

d[A10]
dt = −ab2[A10][K] + a1[(A00K)2] + aub2[A10K]

d[A11]
dt = −kb3[A11][P] − ab3[A11][P] + k2[A01K] + a2[A10K] + kub3[(A11P)1] + aub3[A11P2]

d[(A00K)1]
dt = kb1[A00][K] − (k1 + kub1)[(A00K)1]

d[A10K]
dt = ab2[A10][K] − (a2 + aub2)[A10K]

d[(A00K)2]
dt = ab1[A00][K] − (aub1 + a1)[(A00K)2]

d[A01K]
dt = kb2[A01][K] − (kub2 + k2)[A01K]

d[(A11P)1]
dt = kb3[A11]P − (kub3 + k3)[(A11P)1]

d[A10P]
dt = −[A10P]a4 + [A11P2]a3

d[A11P2]
dt = ab3[A11][P] − (aub3 + a3)[A11P2]

d[A01P]
dt = −[A01P]k4 + [(A11P)1]k3

d[K]
dt = −kb1[A00][K] + (k1 + kub1)[(A00K)1] − ab2[A10][K] + (a2 + aub2)[A10K] − ab1[A00][K]

+(aub1 + a1)[(A00K)2] − kb2[A01][K] + (kub2 + k2)[A01K]
d[P]
dt = −kb3[A11][P] + (kub3 + k3)[(A11P)1] + a4[A10P] − a3[A11P2]

−ab3[A11][P] + (aub3 + a3)[A11P2] + k4[A01P] − k3[(A11P)1] ‍�

(9)

The total concentrations of substrates and enzymes are conserved, and this is depicted below:

	﻿‍

ATotal = [A00] + [A10] + [A01] + [A11] + [A00K1] + [A01K] + [A00K2]

+[A10K] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P]

KTotal = [K1] + [A00K1] + [A10K] + [A01K] + [(A00K)2]

PTotal = [P] + [(A11P)1] + [A10P] + [(A11P)2] + [A01P] ‍�

(10)

Mixed random 2 – separate kinase common phosphatase: mixed random 2
This modification network differs from the previous one in one respect: distinct kinases 
effect phosphorylation on each modification site, while a common phosphatase performs 
the dephosphorylation in a processive manner, just as described above. This system can be 
represented as a system of ODEs as follows:

	﻿‍

d[A00]
dt = −kb1[A00][K1] − ab1[A00][K2] + kub1[A00K1] + aub1[A00K2] + k4[A01P] + a4[A10P]

d[A01]
dt = −kb2[A01][K2] + k1[A00K1] + kub2[A01K2]

d[A10]
dt = −ab2[A10][K1] + a1[A00K2] + aub2[A10K1]

d[A11]
dt = −kb3[A11][P] − ab3[A11][P] + k2[A01K2] + a2[A10K1] + kub3[(A11P)1] + aub3[(A11P)2]

d[A00K1]
dt = kb1[A00][K1] − (k1 + kub1)[A00K1]

d[A10K1]
dt = ab2[A10][K1] − (a2 + aub2)[A10K1]

d[A00K2]
dt = ab1[A00][K2] − (aub1 + a1)[A00K2]

d[A01K2]
dt = kb2[A01][K2] − (kub2 + k2)[A01K2]

d[A11P1]
dt = kb3[A11][P] − (kub3 + k3)[(A11P)1]

d[A10P]
dt = −a4[A10P] + a3[(A11P)2]

d[A11P2]
dt = ab3[A11][P] − (aub3 + a3)[(A11P)2]

d[A01P]
dt = −k4[A01P] + k3[(A11P)1]

d[K1]
dt = −kb1[A00][K1] + (k1 + kub1)[A00K1] − ab2[A10][K1] + (a2 + aub2)[A10K1]

d[K2]
dt = −ab1[A00][K2] + (aub1 + a1)[A00K2] − kb2[A01][K2] + (kub2 + k2)[A01K2] ‍�

(11)

The total concentrations of the substrate and respective enzymes are conserved as shown 
below:

https://doi.org/10.7554/eLife.65358
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	﻿‍

ATotal = [A00] + [A10] + [A01] + [A11] + [A00K1] + [A01K2] + [A00K2]

+[A10K1] + [(A11P)1] + [[A10]P] + [(A11P)2] + [A01P]

K1Total = [K1] + [A00K1] + [A10K1]

K2Total = [K2] + [A00K2] + [A01K2]

PTotal = [P] + [(A11P)1] + [[A10]P] + [(A11P)2] + [A01P] ‍�

(12)

Mixed random 3 – separate kinase common phosphatase (unsaturated 
phosphorylation)
The model of mixed random 3 is similar to that of the mixed random 2 network, except that 
the dephosphorylation of the fully modified to unmodified form is described by a pair of linear 
reaction. This can happen when the catalytic constants for the dephosphorylation are significantly 
higher than the binding/unbinding of substrate to the phosphatase. The model is depicted below:

	﻿‍

d[A00]
dt

= −kb1[A00][K1] − ab1[A00][K2] + kub1[A00K1] + aub1[A00K2] + k3[A11] + a3[A11]
d[A11]

dt = k2[A01K2] + a2[A10K1] − k3[A11] − a3[A11] ‍�
(13)

Methodology
Our approach to analyse the different networks in this paper relies on a careful balance of 
analytical and computational work. Through these two strands, we clearly isolate the presence 
or absence of classes of symmetry breaking, and where possible elucidate the necessary and 
sufficient conditions for this to occur. The networks described above as system of ODEs were 
simulated using the ode15s solver in MATLAB Shampine and Reichelt, 1997. The results of the 
simulations were complemented and cross-verified using the computational software COPASI 
(Hoops et al., 2006). COPASI automatically generates the system of ODEs based on provision of 
the network schematic and thus is used to cross-validate the MATLAB models. Bifurcation analysis 
was carried out using the computational package ‘MatCont’ Dhooge et al., 2003 in MATLAB, and 
the symbolic software package Maple Inc, 2018 was used to cross-verify the analytical results.

The bifurcation analysis presented in the paper is performed by varying the total substrate 
concentration ‍ATotal‍ is a natural choice for a bifurcation parameter in this context as varying this 
parameter still accommodates the different classes of symmetries (Cases 1–3). However, the 
symmetry breaking in all cases reported can also be isolated from bifurcation along any kinetic 
parameter (or parameter pair) or total enzyme concentrations as long as the original symmetric 
structure is maintained.

We comment here that echoes of the symmetry breaking observed here are also seen when 
exact symmetry is not maintained (as shown in Appendix 2—figures 5; 6). Further discussion on 
approximately symmetric systems and echoes of ’symmetry breaking’ in such contexts is presented 
in the main text.

Parameters
The parameters used to generate the figures in the paper are presented in Appendix 2. Our results 
focus on instances of symmetry breaking and associated behaviour. The parameters used are 
generic and are in ranges commensurate with values typically reported in literature. We emphasize 
that we use computation here primarily as a tool to complement analysis from analytical work 
and to show the presence of symmetry breaking and associated features in a model. Thus, in this 
spirit, the values used are only representative and the behaviour is seen in a well-defined region 
of the parameter space (as we demonstrate in the analytical work). Analytical work also explicitly 
reveals basic features about the symmetry-broken state seen computationally. In networks where 
symmetry breaking does not occur, this fact is established analytically. The analytical results 
concerning features of symmetry breaking and the asymmetric states are cross-validated by 
computational analysis (bifurcation analysis). This cross-validation is presented along with the 
parameters used in the Maple file Source code 1 and Supplementary file 1.

Mass action kinetic descriptions are used for the elementary reactions involved as this does 
not make any assumptions regarding regimes of enzyme activity and complex formation (unlike 
other reaction descriptions such as Hill kinetics and Michaelis–Menten kinetics). Thus the results 
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and model behaviour shown are not artefacts of the choice of kinetic description used and are 
representative of the true functionality of these networks.

Computational resources:
A Maple file with the model descriptions and detailed analytical proofs is presented along with 
this text (see Source code 1). A PDF copy of the entire Maple document is also provided (see 
Supplementary file 1), with the files printed in the same order as they appear within the Maple 
document, for easy accessibility.

Analytical proofs for arguments made in the main text
This section contains a summary of the basic analytical arguments used to explore the feasibility 
of symmetry breaking and its associated features in the various MSP networks considered in this 
paper. This analysis is expanded on in detail in Source code 1 and Supplementary file 1.

The symmetry in the context of our models is established through a strict kinetic structure and 
enforcement of total enzyme concentrations which ensures that certain pairs of kinetic terms are 
equal (refer Figure 1). Note that this requires, in general, the binding, unbinding, and catalytic 
constants to be the same. This ensures that starting with symmetric initial conditions for the 
appropriate variables (substrates and associated enzymes and complexes), the system evolves 
maintaining this symmetry. In this context, we point out that all three constants could affect the 
modification rate, and in fact studies Hatakeyama and Kaneko, 2014; Hatakeyama and Kaneko, 
2020 show how even unbinding constants significantly affect efficacy of modification.

The equality of reaction rates results in symmetries in terms of concentrations of substrates at 
(one of) the steady state(s) of the system. The phenomenon of symmetry breaking allows for this 
symmetric state to lose stability, giving rise to stable asymmetric steady states. In this section, 
we show the infeasibility of asymmetric states existing in some networks, thereby ruling out any 
symmetry breaking; in other instances, we complement computational results showing symmetry 
breaking in other networks with analytical results, including necessary and sufficient conditions for 
symmetry breaking. This is done by solving the system of ODEs of the associated model at steady 
state and isolating asymmetric steady states therein (if they exist).

In each of the networks considered, we first isolate the substrate and enzyme pairs that 
share symmetry (symmetry breaking leading to asymmetric states thus naturally implies that 
this symmetric pairing is no longer maintained). For example, in Case 1 symmetry of an ordered 
distributive DSP with common kinase and common phosphatase, the enzyme pairs ‍[K]‍ & ‍[P]‍ and 
substrate pairs ‍[A]‍ & ‍[App]‍ are equal. Thus an asymmetric steady state is characterized by ‍[K] ̸= [P]‍ 
and ‍[A] ̸= [App]‍. This allows us to characterize the asymmetric state and focus on that in the analysis.

Thus in this way, through a series of algebraic manipulations (to obtain reduced equations 
characterizing steady states, and asymmetric ones in particular), we isolate the necessary and 
sufficient conditions for the asymmetric state. However, only a direct steady-state determination is 
performed, and the stability of these states is not discussed in the analytical work presented here. 
The following notation is used hereon for the sake of brevity in analytical expressions:

	﻿‍ ci = kbi
ki+kubi

and di = abi
ai+aubi ‍�

Ordered distributive DSP – common kinase and common phosphatase
The ordered distributive DSP with common kinase and common phosphatase acting on both 
modification sites is capable of exhibiting Case 1 symmetry. The kinetic constraints necessary to 
impose this symmetry are given in the schematic in Figure 2A (‍k3 = k1‍, ‍k4 = k2‍, ‍kb3 = kb1‍, ‍kb4 = kb2

‍, ‍kub3 = kub1‍, ‍kub4 = kub2‍ and ‍PTotal = KTotal‍). Under these constraints, Case 1 symmetry is established, 
resulting in equal concentrations of the substrates ‍[A]‍ and ‍[App]‍ and equal concentrations of the 
enzymes ‍[K]‍ and ‍[P]‍. Imposing these constraints and evaluating the steady states of the system (by 
successively solving for the steady states of the ODEs), we get the following equation involving the 
concentrations at steady state:

	﻿‍
([K] − [P])

(
[Ap](k1−k2)c2+k1

k1

)
= 0

‍� (14)

https://doi.org/10.7554/eLife.65358
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From this expression, we can clearly see that the system accommodates asymmetric solutions 
(i.e. ‍[K] ̸= [P]‍) when the term ‍([Ap](k1 − k2)c2 + k1)‍ is 0. Using this information, we identify features 
of the asymmetric steady state. We show that at a given asymmetric state the concentration of 

‍[Ap]‍ is fixed at a certain value (invariant), given only by key kinetic constants. Further, since the 
concentration of a substrate is always positive, this asymmetric state can only exist when ‍k21‍, which 
gives us a necessary condition for the symmetry to break. The sufficiency of this condition follows 
by evaluating all species concentrations at this invariant value of ‍Ap‍ and proving that (i) they are 
positive when the necessary condition is satisfied, and (ii) that they satisfy the system of ODEs at 
steady state and the conservation conditions. Thereby, we show the presence of asymmetric states 
for some suitable value of ‍ATotal‍ (which is determined from the resulting steady-state substrate 
concentrations). This is carried out in Source code 1 (Section 2.1) and Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍k2 > k1‍
•	 Invariant:

‍[Ap] = 1
c2

[
k1

k2−k1

]
‍

Ordered distributive DSP – separate kinase and separate phosphatase
The ordered distributive DSP with separate kinase and separate phosphatase acting on each 
modification site can present Case 1 symmetry similar to the case of ordered distributive DSP 
with common kinase and common phosphatase acting on both modification sites. The symmetry 
is established with similar kinetic constraints (though now involving different pairs of enzymes; 
‍K1Total = P2Total‍ and ‍K2Total = P1Total‍). At symmetric steady states, this network can be shown to 
necessarily have the following symmetric enzyme pairing, ‍[K1] = [P2]‍ and ‍[K2] = [P1]‍, in addition to 
symmetry in the substrate pair ‍[A] = [App]‍. Through a simple algebraic analysis following solving 
for steady states, we can establish that an asymmetric state violating these symmetric pairings 
of variables can never exist, thus ruling out symmetry breaking in the model (see Source code 1 
(Maple file) for more details).

Specifically by successively solving for the steady states of the ODEs, we can ascertain that 
the following equation is always true at steady state for the model, indicating that an asymmetric 
steady state is infeasible.

	﻿‍
[A] = [App] = [Ap]

(
[P1]
[P2]

)(
c2k2
c1k1

)
‍�

Ordered distributive TSP – common kinase and common phosphatase
The ordered distributive TSP with common kinase common phosphatase is capable of exhibiting 
Case 1 symmetry with ‍[A]‍ = ‍[Appp]‍ and ‍[Ap]‍ = ‍[App]‍. The kinetic constraints necessary to impose this 
symmetry are given in the schematic in Appendix 2—figure 8; ‍k4 = k1‍, ‍k5 = k2‍, ‍k6 = k3‍, ‍kb4 = kb1

‍, ‍kb5 = kb2‍, 

‍kb6 = kb3‍

, ‍kub4 = kub1‍, ‍kub5 = kub2‍, ‍kub6 = kub3‍ and ‍PTotal = KTotal‍. Under these constraints, Case 
1 symmetry is established with ‍[A]‍ = ‍[Appp]‍, ‍[Ap]‍ = ‍[App]‍ along with ‍[K]‍ = ‍[P]‍. Solving the resulting 
system of equations for steady states, we arrive at the following equation:

	﻿‍
([K] − [P])

(
[Ap][[K]+[P]](k1−k3)c3+k1[P]

[P]k1

)
= 0

‍� (15)

Hence for an asymmetric solution (‍[K] ̸= [P]‍) to exist, the second term has to be 0, and thus 
with this we find the features and necessary conditions of the asymmetric state. From this, we 
show that at an asymmetric steady state the sum of the concentration of the partially modified 
substrates (‍[Ap]‍ + ‍[App]‍) is fixed at a certain value (invariant), given only by key kinetic constants. 
This is an example (seen elsewhere) of the sum of concentrations of two species fixed at steady 
state. Further, since the concentrations of substrates are strictly positive, we can show that the 
asymmetric state can only exist when ‍k31‍, which gives us the necessary conditions for the symmetry 
to break. The sufficiency of this condition follows by evaluating all species concentrations at 
values of ‍Ap‍ and ‍App‍ obtained from this invariant and proving that (i) they are positive when the 
necessary condition is satisfied, and (ii) that they satisfy the system of ODEs at steady state and the 
conservation conditions. We show the presence of asymmetric states for some suitable value of 
‍ATotal‍. This is carried out in Source code 1 (Section 2.3) and Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

https://doi.org/10.7554/eLife.65358
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‍k3 > k1‍
•	 Invariant:

‍[Ap] + [App] = 1
c3

[
k1

k3−k1

]
‍

Random system 1 – common kinase and common phosphatase
The random distributive DSP with common kinase and common phosphatase acting on both 
modification sites (system 1) is capable of Case 1, Case 2, and Case 3 symmetries. However, only 
Case 1 and Case 3 symmetries can be broken. Here we present analytical arguments elucidating 
the presence of Case 1 and Case 3 symmetry breaking and its associated features. We also present 
the analytical arguments precluding Case 2 symmetry breaking.

Case 1 symmetry
Case 1 symmetry is established in the random DSP through the kinetic structure provided in 
Figure 1 (‍k3 = k1‍, ‍k4 = k2‍, ‍kb3 = kb1‍, ‍kb4 = kb2‍, ‍kub3 = kub1‍, ‍kub4 = kub2‍, ‍a3 = a1‍, ‍a4 = a2‍, ‍ab3 = ab1‍, ‍ab4 = ab2

‍, ‍aub3 = aub1‍, and ‍aub4 = aub2‍). In addition, the following constraint on enzyme total amounts also 
needs to be satisfied for exact symmetry to be present: ‍KTotal = PTotal‍. Superimposing these kinetic 
constraints results in Case 1 symmetry with ‍[A00]‍ = ‍[A11]‍ along with equality of the free enzyme 
concentrations ‍[K]‍ = ‍[P]‍. Similar to the analysis earlier on the ordered distributive DSP models, we 
solve the system for steady states in terms of fewer variables. This results in the following equation:

	﻿‍
([K] − [P])

(
([A10]((k1−k2)c1−d1k2)c2+c1k1)a2+[A10]c2d1k2a1)

(c1k1a2)

)
= 0

‍� (16)

Thus for an asymmetric state (‍[K] ̸= [P]‍) to exist, the second term needs to be equal to 0. 
Setting this second term to zero reveals the features of the asymmetric steady state. Using this 
information, we can establish that the concentrations of the partially modified substrates in the 
asymmetric steady states are both fixed at a constant value (invariants), determined by a few key 
kinetic constants. Since the concentrations are always positive, we get the necessary conditions 
for symmetry breaking as shown below. The sufficiency of this condition follows by evaluating 
all species concentrations at this invariant value of A01 and A10 (inferring the other species 
concentrations) and proving that (i) they are positive when the necessary condition is satisfied, and 
(ii) that they satisfy the system of ODEs at steady state and the conservation conditions. From this, 
we can deduce that asymmetric states exist beyond a critical value of ‍ATotal‍. This is carried out in 
Source code 1 (Section 3.1) and Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍c1a2(k2 − k1) + d1k2(a2 − a1) > 0‍
•	 Invariants:

‍[A01] = −d1k2a1
d2((d1(a1−a2)−c1a2)k2+c1k1a2)‍

‍[A10] = −c1k1a2
c2(((k1−k2)c1−d1k2)a2+d1k2a1)‍

Case 2 symmetry
Case 2 symmetry is likewise established in the random DSP through the kinetic structure provided 
in Figure 1 with constraints on pairs of parameters (‍a1 = k1‍, ‍a2 = k2‍, ‍ab1 = kb1‍, ‍ab2 = kb2‍, ‍aub1 = kub1

‍, ‍aub2 = kub2‍, ‍a3 = k3‍, ﻿‍a4 = k4‍, ‍ab3 = kb3‍, ‍ab4 = kb4‍, ‍aub3 = kub3‍, and ‍aub4 = kub4‍). However unlike other 
symmetries, it needs no additional constraint on total enzyme amounts for exact symmetry to be 
present. Under these conditions, Case 2 symmetry is established with ‍[A01]‍ = ‍[A10]‍. Hence should 
symmetry break and an asymmetric steady state exist, it would be characterized by ‍[A01] ̸= [A10]
‍. Solving for the steady states of these substrates in terms of the free enzyme concentrations and 
the fully unmodified substrate, we can ascertain that the concentrations of ‍[A01]‍ will always equal 
‍[A10]‍, and thus that no asymmetric state can exist (see Source code 1 for more details). In particular, 
we can see that for any given steady state, 

‍
[A10] = [A01] = [A00]

(
[K]
[P]

)(
c1k1
c4k4

)
‍
 , making any asymmetric 

steady state impossible.

Case 3
Case 3 symmetry is established in the random DSP through the kinetic structure provided in 
Figure 1 with constraints ‍a1 = k3‍, ‍a2 = k4‍, ‍ab1 = kb3‍, ‍ab2 = kb4‍, ‍aub1 = kub3‍, ‍aub2 = kub4‍, ‍a3 = k1‍, ‍a4 = k2

‍, ‍ab3 = kb1‍, ‍ab4 = kb2‍, ‍aub3 = kub1‍, and ‍aub4 = kub2‍. In addition, the following constraint on total enzyme 
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concentrations needs to be satisfied for exact symmetry, ‍KTotal = PTotal‍. Under these conditions, Case 
3 symmetry is established with ‍[A00] = [A11]‍ and ﻿‍[A01] = [A10]‍ along with equality of the free enzyme 
concentrations ‍[K] = [P]‍. Imposing these conditions and solving for the steady states of the system, 
we get the following correlation involving concentrations of the variables:

	﻿‍

(ϵ− 1)(c1c2
2 ϵk1k2

2 + (c1k1 + c3k3)c4(((ϵ2 − [A11](c1 + c3)ϵ− [A11]

(c1 + c3))k4 + [A11]c1k1(ϵ + 1))k2 + k4[A11]c3k3(ϵ + 1))c2 + c3c2
4 ϵk3k2

4 ) = 0‍�
(17)

where ‍ϵ = [K]
[P]‍. Thus for an asymmetric state to exist (‍[K] ̸= [P]‍, or ‍ϵ ̸= 1‍), the second term 

needs to be equal to 0. Using this information to further solve for the steady states of the ODEs 
reveals features of the asymmetric steady states. We find that the sum of the concentrations 
of the partially modified substrates is fixed at a constant value (invariant), determined by a few 
key kinetic constants. Since the concentrations are always positive, we also get the necessary 
conditions for symmetry breaking as shown below. The sufficiency of this condition follows by 
evaluating all species concentrations at this invariant value of ‍A01 + A10‍ and proving that (i) they 
are positive when the necessary condition is satisfied, and (ii) that they satisfy the system of ODEs 
at steady state and the conservation conditions. This demonstrates that there exist values of ‍ATotal‍ 
beyond which asymmetric steady states exist. This is carried out in Source code 1 (Section 3.1) and 
Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍c3k4(k2 − k3) − c1k2(k1 − k4) > 0‍
•	 Invariant:

‍[A01] + [A10] = −c1c2k1k2−c3c4k3k4
(((−c1−c3)k4+c1k1)k2+c3k3k4)c4c2‍

Random system 2 – separate kinase and common phosphatase
The random distributive DSP with separate kinase acting on each modification site and a common 
phosphatase effecting dephosphorylation (system 2) can only permit Case 2 symmetry (‍[A01]‍ 
= ‍[A10]‍). This is due to the nature of independent enzymes effecting phosphorylation on each 
modification site while a common enzyme is responsible for dephosphorylation, which precludes 
Case 1 and Case 3 symmetry. In this subsection, we present the analytical arguments precluding 
Case 2 symmetry breaking in the network.

Case 2
Case 2 symmetry is established in the random ordered distributive DSP network through the 
kinetic structure provided in Figure 1 with constraints ‍a1 = k1‍, ‍a2 = k2‍, ‍ab1 = kb1‍, ‍ab2 = kb2‍, ‍aub1 = kub1

‍, ‍aub2 = kub2‍, ‍a3 = k3‍, ‍a4 = k4‍, ‍ab3 = kb3‍, ‍ab4 = kb4‍, ‍aub3 = kub3‍, and ‍aub4 = kub4‍. In addition, the following 
constraint on total enzyme amounts needs to be satisfied for exact symmetry: ‍K1Total = K2Total‍. 
Under these kinetic constraints, Case 2 symmetry is established with ‍[A01]‍ = ‍[A10]‍. Imposing these 
constraints and solving for the steady states of these substrates, we get the following correlation 
representing permissible steady states:

	﻿‍
([K1] − [K2])

(
[A00]kb1+k1+kub1

k1+kub1

)
= 0

‍� (18)

Since the concentrations of the substrates and the kinetic constants are always positive, we can 
ascertain that the only steady state permitted by the system is when ‍[K1]‍ = ‍[K2]‍, or ‍[A01]‍ = ‍[A10]‍. Thus 
Case 2 symmetry breaking is not possible in random system 2 with separate kinase and common 
phosphatase. See Source code 1 (Section 3.2) and Supplementary file 1.

Random system 3 – separate kinase and separate phosphatase
The random distributive DSP with separate kinase and separate phosphatase effecting 
modifications in each modification site (system 3) is capable of Case 1, Case 2, and Case 3 
symmetries, and each of these symmetries is capable of breaking. Here we derive the necessary 
and sufficient conditions for symmetry breaking, and the features of the symmetry-broken state in 
that process.

https://doi.org/10.7554/eLife.65358
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Case 1 symmetry
Case 1 symmetry is established in the random DSP through the kinetic structure provided in 
Figure 1 with constraints ‍k3 = k1‍, ‍k4 = k2‍, ‍kb3 = kb1‍, ‍kb4 = kb2‍, ‍kub3 = kub1‍, ‍kub4 = kub2‍, ‍a3 = a1‍, ‍a4 = a2

‍, ‍ab3 = ab1‍, ‍ab4 = ab2‍, ‍aub3 = aub1‍, and ‍aub4 = aub2‍. In addition, the following constraint on total enzyme 
concentrations needs to be satisfied for exact symmetry, ‍K1Total = P2Total‍ and ‍K2Total = P1Total‍. Under 
these conditions, Case 1 symmetry is established with ‍[A00] = [A11]‍ along with equality of the free 
enzyme concentrations ‍[K1]‍ and ‍[P2]‍ and ‍[K2]‍ and ‍[P1]‍. Imposing these kinetic constraints and 
evaluating the steady states of the system (by successively solving the steady states of ODEs for 
variables in terms of each other), we can get the following equation representing permissible 
steady states of the model:

	﻿‍
(ϵ− 1) [K1]2ϵa2c1([A01]c2+1)k2

1+k2[P1]2[A01]a1c2d1([A01]c2+1)k1−[A01]2[P1]2a2c2
2d1k2

2
([K1]c1ϵk2

1a2) = 0
‍�

(19)

where ‍ϵ = [A00]
[A11]‍. Thus for asymmetric solutions (‍ϵ ̸= 1‍) to exist, the second term in the expression 

needs to be equal to zero. Using this information and rearranging the terms, we can establish the 
following correlation between concentrations of the partially modified substrates [A01] and [A10]:

	﻿‍ λ[A01]λ[A10] = 1‍�

where

	﻿‍ λ[A01] = k2c2[A01]
k1(c2[A01]+1) and λ[A10] = a2d2[A10]

a1(d2[A10]+1)‍� (20)

This correlation represents asymmetric steady-state solutions to the system of ODEs (for 
additional details, see Source Code 1 [Section 3.3] and Supplementary file 1). Simultaneously, by 
solving the steady state of the system, using the total individual enzyme conservation equations we 
get an alternative correlation between the partial substrate concentrations [A01] and [A10] as shown 
below, which is valid for all steady states:

	﻿‍
P2Total
P1Total

=
[Dαλ[A01]+1

Dα+λ[A10]

]
‍� (21)

where

	﻿‍ D = c2[A01]+1
d2[A10]+1 and α = [K2]+[P1]

[K1]+[P2]‍� (22)

Using the above correlations between concentrations of [A00] and [A11] (eq. (20)representing the 
asymmetric solutions and eq. (21) representing all feasible solutions) we can ascertain additional 
features of the asymmetric state. We find that in a symmetry-broken state the concentrations of 
the partially modified forms ([A01] and [A10]) are fixed at constant values determined by key kinetic 
constants and total enzyme concentrations. Since the concentrations cannot be negative, we can 
also thus isolate the necessary constraints for symmetry breaking in this network as shown below. 
The sufficiency of this condition follows by evaluating all species concentrations based on the 
invariant values of A01 and A10, and proving that (i) they are positive when the necessary condition 
is satisfied, and (ii) that they satisfy the system of ODEs at steady state and the conservation 
conditions. This indicates that there are values of ‍ATotal‍ beyond which asymmetric steady states are 
guaranteed to exist. This is carried out in Source code 1 (Section 3.3) and Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍k2P1Total > k1P2Total‍
‍a2P2Total > a1P1Total‍

•	 Invariants:

‍[A01] = −k1P2Total
c2(k1P2Total−k2P1Total)‍

‍[A10] = −a1P1Total
d2(a1P1Total−a2P2Total)‍

Case 2 symmetry
Case 2 symmetry is likewise established in the random DSP through the kinetic structure provided 
in Figure 1 with constraints ‍a1 = k1‍, ‍a2 = k2‍, ‍ab1 = kb1‍, ‍ab2 = kb2‍, ‍aub1 = kub1‍, ‍aub2 = kub2‍, ‍a3 = k3‍, ‍a4 = k4

‍, ‍ab3 = kb3‍, ‍ab4 = kb4‍, ‍aub3 = kub3‍, and ‍aub4 = kub4‍. In addition, the following constraints on total enzyme 
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concentrations are also needed for exact symmetry, ‍K1Total = K2Total = KTotal‍ and ‍P2Total = P1Total = PTotal

‍. Under these conditions, Case 2 symmetry is established with ‍[A01] = [A10]‍ along with equality 
of the free enzyme concentrations ‍[K1] = [K2]‍ and ‍[P1] = [P2]‍. Imposing these kinetic constraints 
and evaluating the steady states of the system, we can get the following equation representing 
permissible steady states of the model:

	﻿‍
(ϵ− 1) (−k3ϵ[P1]2c4([A00]c1+1)k2

4−[K1]2[A00]c1c2k1k2([A00]c1+1)k4+[A00]2[K1]2c2
1c2k2

1k3)[K2]
([P1]c4k2

4k3ϵ) = 0
‍�

(23)

where ‍ϵ = [A00]
[A11]‍. Thus for asymmetric solutions (

‍ϵ ̸= 1‍
) to exist, the second term in the expression 

needs to be equal to zero. Using this information and rearranging the terms, we can establish the 
following correlation between concentrations of the fully modified and fully unmodified substrates 
[A00] and [A11]:

	﻿‍ λ[A00]λ[A11] = 1‍�

where

	﻿‍ λ[A00] = k1c1[A00]
k4(c1[A00]+1) and λ[A11] = k3c3[A11]

k2(c3[A11]+1)‍� (24)

This correlation represents a requirement for asymmetric steady-state solutions to the system 
of ODEs. Simultaneously by solving the steady state of the system, using the total individual 
enzyme conservation equations, we get an alternative correlation between the partial substrate 
concentrations as shown below:

	﻿‍
PTotal
KTotal

= αD
[Dαλ[A00]+1

Dα+λ[A11]

]
‍� (25)

where

	﻿‍ D = c1[A00]+1
c3[A11]+1 and α = [K2]+[K1]

[P1]+[P2] ‍� (26)

Using the above correlations between concentrations of [A00] and [A11] together (eq. (24) 
representing the asymmetric solutions and eq. (25) representing all feasible solutions), we can 
ascertain additional features of the asymmetric state. We find that in a symmetry-broken state 
the concentrations of the completely modified and unmodified substrate forms (‍[A00]‍ and ﻿‍[A11]
‍) are fixed at constant concentrations (invariant) given by key kinetic constants and total enzyme 
concentrations. Since the concentrations cannot be negative, we can also thus isolate the 
necessary constraints for symmetry breaking in this network as shown below. The sufficiency of this 
condition follows by evaluating all species concentrations at this invariant value of A01 and A10 and 
proving that (i) they are positive when the necessary condition is satisfied, and (ii) that they satisfy 
the system of ODEs at steady state and the conservation conditions. This then indicates that there 
exist finite positive values of ‍ATotal‍ for which asymmetric states exist. This is carried out in Source 
code 1 (Section 3.3) and Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍k1KTotal > k4PTotal‍
‍k3PTotal > k2KTotal‍

•	 Invariants:

‍[A00] = k4PTotal
c1(k1KTotal−k4PTotal)‍

‍[A11] = −k2KTotal
c3(k2KTotal−k3PTotal)‍

Case 3
Case 3 symmetry is established in the random DSP through the kinetic structure provided in 
Figure 1 with constraints ‍a1 = k3‍, ‍a2 = k4‍, ‍ab1 = kb3‍, ‍ab2 = kb4‍, ‍aub1 = kub3‍, ‍aub2 = kub4‍, ‍a3 = k1‍, ‍a4 = k2

‍, ‍ab3 = kb1‍, ‍ab4 = kb2‍, ‍aub3 = kub1‍, and ‍aub4 = kub2‍. In addition, the following constraints on total enzyme 
concentrations are also needed for exact symmetry, ‍K1Total = P1Total‍ and ‍K2Total = P2Total‍. Under these 
conditions, Case 3 symmetry is established with ‍[A01] = [A10]‍ and ‍[A00] = [A11]‍, along with equality of 
the free enzyme concentrations ‍[K1] = [P1]‍ and ‍[P2] = [K2]‍.
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This symmetry can indeed break as shown computationally in the main text (Figure 3 and 
Appendix 2—figure 4). Similar to the approach used earlier, in order to obtain the necessary and 
sufficient conditions for symmetry breaking, we solve for the steady states of the system of ODEs 
successively to obtain steady-state correlations of variables in terms of each other. In so doing and 
by isolating asymmetric solutions of the type ‍[A00] ̸= [A11]‍ and ‍[A01] ̸= [A10]‍, we obtain the necessary 
conditions (see below) for symmetry breaking (analysis not shown here; please refer to Source 
code 1 [Section 3.3] and Supplementary file 1).

However unlike other classes of symmetries, Case 3 symmetry breaking in this model is not 
associated with a simple linear invariant in terms of concentrations of species. Moreover, the 
symmetry breaking in this instance can be of qualitatively different types, (i) where the asymmetry 
in the symmetry-broken states is more pronounced in the partial phosphoforms A01 and A10 or (ii) 
where the asymmetry is more pronounced in the fully modified/unmodified forms A00 and A11.

These come with contrasting qualitative implications with regard to the symmetry-broken 
steady states. As shown earlier in Figure 3B (panel 2) and Appendix 2—figure 4, depending 
on the nature of symmetry breaking outlined above, either the sum of the partially modified 
substrates, or the sum of the completely modified and unmodified substrates, can exhibit an 
approximate robustness in concentration relative to the other pair. This qualitative difference can 
be traced to the underlying kinetics. In particular, in our analytical work (Source code 1 [Section 
3.3] and Supplementary file 1), we have shown that the choice of kinetics can dictate the nature of 
symmetry breaking.

This approximate concentration robustness exhibited by either pair of substrates can be traced 
to the fact that in an asymmetric steady state one pair of substrate concentrations ([A01] and [A10] 
or [A00] and [A11]) is bounded and asymptotically reaches a certain value as the total substrate 
concentration approaches infinity, while the other pair can vary in an unbounded manner with 
varying total substrate concentration. This is summarized below.

•	 Necessary and sufficient conditions for symmetry breaking

‍k1 > k4‍and‍k3 > k2‍
OR
‍k4 > k1‍and‍k2 > k3‍

•	 Features of asymmetric steady states

IF ‍k1 > k4‍ and‍k3 > k2‍
Concentrations of [A00] and [A11] exhibit approximate robustness.
Asymptotic concentration of [A00] at infinite ‍ATotal‍ = ‍

k4
c1(k1−k4)‍ or‍

k2
c3(k3−k2)‍ 

Asymptotic concentration of [A11] at infinite ‍ATotal‍ = ‍
k2

c3(k3−k2)‍ or‍
k4

c1(k1−k4)‍ 

IF ‍k4 > k1‍ and‍k2 > k3‍
Concentration of [A01] and [A10] exhibit approximate robustness.
Asymptotic concentration of [A01] at infinite ‍ATotal‍ = ‍

k3
c2(k2−k3)‍ or‍

k1
c4(k4−k1)‍ 

Asymptotic concentration of [A10] at infinite ‍ATotal‍ = ‍
k1

c4(k4−k1)‍ or‍
k3

c2(k2−k3)‍ 

These asymptotes obtained analytically have been cross-validated with bifurcation analysis, and 
the specific cross-validation for the figures in this paper are provided in the file (​Read_​Me.​mw of 
Source code 1 and Supplementary file 1).

Mixed random 1 – common kinase and common phosphatase
The mixed random ordered DSP with a common kinase effecting distributive phosphorylation and 
a common phosphatase effecting processive dephosphorylation is capable of Case 2 symmetry. 
However, this symmetry cannot be broken. In this subsection, we present the analytical arguments 
precluding Case 2 symmetry breaking in this network.

Case 2 symmetry
Case 2 symmetry is established in the mixed random DSP through the kinetic structure provided 
in Figure 2E with constraints ‍a1 = k1‍, ‍ab1 = kb1‍, ‍aub1 = kub1‍, ‍a2 = k2‍, ‍ab2 = kb2‍, ‍aub2 = kub2‍, ‍a3 = k3‍, ‍ab3 = kb3
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‍, ‍aub3 = kub3‍ and ‍k4 = a4‍. Under these conditions, Case 2 symmetry is established with ‍[A01] = [A10]‍. 
Imposing these constraints and solving for the steady states of these substrates in terms of the free 
enzyme concentrations and the fully unmodified substrate, we can ascertain that ‍[A01]‍ always equals 
‍[A10]‍. In particular, 

‍
[A01] = [A10] = [A00]

(
c1k1
c2k2

)
‍
 is always true at steady state, making any asymmetric 

steady state infeasible (see Source code 1 [Section 4.1] and Supplementary file 1 for more 
details).

Mixed random 2 – separate kinase and common phosphatase
The mixed random DSP with separate kinases acting on each site effecting distributive 
phosphorylation and a common phosphatase effecting processive dephosphorylation is capable 
of Case 2 symmetry, and it is possible for this symmetry to break. In this subsection, we show the 
necessary conditions for symmetry breaking and features of the asymmetric state.

Case 2
Case 2 symmetry is established in the mixed random DSP through the kinetic structure provided 
in Figure 2E with constraints ‍a1 = k1‍, ‍ab1 = kb1‍, ‍aub1 = kub1‍, ‍a2 = k2‍, ‍ab2 = kb2‍, ‍aub2 = kub2‍, ‍a3 = k3‍, ‍ab3 = kb3‍ 
and ‍aub3 = kub3‍ and ‍k4 = a4‍. In addition, the following constraints on total enzyme concentrations 
need to be satisfied for exact symmetry: ‍K1Total = K2Total‍. Under these conditions, Case 2 symmetry 
is established with ‍[A01] = [A10]‍ along with equality of the free enzyme concentrations ‍[K1] = [K2]
‍. Imposing these kinetic constraints and evaluating the steady states of the system, we get the 
following equation representing permissible steady states of the model:

	﻿‍ (ϵ− 1)(−k1ϵ + [A01]c2(k1 − k2)) = 0‍� (27)

where ‍ϵ = [K1]
[K2]‍. Thus we can see that the system accommodates an asymmetric steady state 

where ‍ϵ ̸= 1‍, provided the second term in the equation is 0. From this, we can ascertain the 
features of asymmetric state by isolating correlations for A01 from the above equation and using 
it to simplify the steady states of system of ODEs. We find that in a symmetry-broken state the 
concentrations of the completely modified and unmodified substrate forms (‍[A00]‍ and ‍[A11]‍) are 
fixed at constant values (invariant) given by key kinetic constants and total enzyme concentrations. 
Since the concentrations cannot be negative, we can also thus isolate the necessary constraints 
for symmetry breaking in this network as shown below. The sufficiency of this condition follows 
by evaluating all species concentrations at this invariant value of A00 and A11 and proving that (i) 
they are positive when the necessary condition is satisfied, and (ii) that they satisfy the system 
of ODEs at steady state and the conservation conditions. This ensures that there exist values 
of ‍ATotal‍ for which asymmetric states exist. This is carried out in Source code 1 (Section 4.2) and 
Supplementary file 1.

•	 Necessary and sufficient conditions for symmetry breaking:

‍k2 < k1‍
‍k2K1Total(k3 + k4) < PTotalk3k4‍

•	 Invariant(s):

‍[A00] = 1
c1

[
k2

(k1−k2)

]
‍

‍[A11] = −k2k4K1Total
(2(k2K1Total(k3+k4)−PTotalk3k4))c3‍

In the limit where dephosphorylation is acting in the unsaturated limit (mixed random 2A), as 
described in the models section earlier, the dephosphorylation is replaced by a single linear 
reaction from A11 to A00 (with a rate constant which is denoted by k3 which implicitly contains the 
effect of the total phosphatase concentration: in fact, it corresponds to ‍kb3PTotal‍ in the previous 
model). In this case, the symmetry established can still break. The necessary and sufficient 
conditions, and the features of the asymmetric state, are as follows (the analysis is the same as 
above; see Source code 1 [Section 4.3] and Supplementary file 1 for more details):

•	 Necessary and sufficient condition for symmetry breaking:

‍k2 < k1‍
•	 Invariant(s):

‍[A00] = 1
c1

[
k2

k1−k2

]
‍

‍[A11] = K1Total

[
k2

2k3

]
‍
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Sufficiency of necessary conditions
We have established necessary conditions for the presence of symmetry breaking in various 
classes of symmetries and networks. We have also further shown that these necessary conditions 
are also sufficient for symmetry breaking to occur at some positive total substrate concentration. 
The sufficiency argument has been briefly discussed above at the appropriate sections, and 
the approach is consolidated below. For more details, please refer to Source code 1 and 
Supplementary file 1. The feasibility of any steady state for the models described above relies on 
the concentrations of variables at steady state satisfying three separate constraints.

1.	 Variable values satisfy ODE description of the model (for a given set of kinetic parameters).
2.	 Conservation equations (for the enzymes and total substrate concentrations) should be 

satisfied.
3.	 All variable values (concentrations) must be positive.

We obtained the necessary conditions for symmetry breaking by suitably leveraging points 
1–3. By solving for the steady states of the system of ODEs, we obtained correlations between 
concentrations of various variables in terms of kinetic parameters and total enzyme concentrations. 
Further, by isolating asymmetric solutions, we established the features of the asymmetric state. 
Then by requiring that the concentrations of key substrates (invariants) be positive, we obtained 
the necessary conditions.

We extended this argument to ensure sufficiency of these conditions by evaluating 
concentrations of all variables in the asymmetric state and showing that they are indeed positive 
if the necessary conditions (in terms of kinetic constants and total enzyme concentrations) are 
satisfied for some total substrate concentration (note here that the bifurcation diagram is along 
‍ATotal‍). We also verify that in each case the total enzyme conservations are satisfied. In this manner, 
we have shown that the necessary conditions are indeed sufficient for symmetry breaking to occur 
for some total enzyme and substrate concentration.

In addition, the analysis provided in Source code 1 (and Supplementary file 1) also evaluates 
and predicts the position of symmetry breaking along ‍ATotal‍ (not shown here in Appendix 2). Note 
that the intersection of the symmetric steady state and the asymmetric steady state denotes a 
pitchfork bifurcation and thus the position of symmetry breaking. In each case, along with the 
invariants we also evaluate the total substrate concentration at which the pitchfork bifurcation 
occurs by imposing features of symmetry in terms of concentration of various variables in the 
asymmetric steady-state invariants and correlations. This is presented in Source code 1 (Maple 
file) and has been cross-validated with bifurcation analysis for all plots provided in this paper. This 
prediction and cross-validation can be found in (​Read_​Me.​mw) and Supplementary file 1.

Origins of ACR
In each instance of symmetry breaking encountered in the above models, we observe that either 
the concentration of specific individual substrates or sum of concentrations of specific substrates 
exhibits strict ACR in the asymmetric branches (with Case 3 symmetry breaking in the separate 
kinase separate phosphatase network being an exception, where approximate concentration 
robustness is exhibited by sums of concentrations of pairs of substrates). Overall, following 
symmetry breaking in these networks, the asymmetric steady states are characterized by the 
concentration of the specific substrates (or sums thereof) being (exactly) fixed, and in fact this 
remains so indefinitely along increasing ‍ATotal‍ concentrations.

To understand the origins of ACR and its dependence on symmetry and symmetry breaking, we 
use the ordered DSP model as a basis of exploration.

Note that ACR in this instance is defined to mean the concentration of some substrate form 
being exactly maintained at some fixed concentration (along a steady-state branch) for a range 
of total concentrations of either the substrate or the enzymes. In this definition, we make no 
assumptions on the kinetic regime of modification/demodification of substrates. Note that it is 
possible for the concentration of a substrate species to be approximately constant (something 
encountered in limiting regimes of enzymatic action), and this will be described subsequently.

We begin by analysing the ordered distributive DSP network with common kinase and common 
phosphatase (refer Figure 1 for the schematic) in the absence of any symmetry in either the kinetic 
parameters or the total concentrations of enzymes/substrate. This network has three substrate 
forms, ﻿‍A‍, ‍Ap‍ and ‍App‍ that can potentially exhibit ACR. Note that earlier in our analysis of Case 1 
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symmetry breaking in the model, we observed ‍Ap‍ exhibiting ACR with increasing concentration of 
‍ATotal‍, in the asymmetric branches following symmetry breaking.

The analysis carried out here is structured to answer four key questions regarding the 
phenomenon of ACR.

•	 Which substrates in this network are capable of exhibiting ACR?
•	 Is ACR (where possible) only exhibited with respect to the (change of) total substrate concen-

tration? Is ACR possible with changing total enzyme concentration?
•	 Are there any additional constraints on the kinetic parameters required to observe ACR (where 

possible)?
•	 What associated features (if any) are exhibited when ACR is observed in this network?

The mathematical analysis is described in detail in the attached Maple document (Section 5.1). 
The results are summarized here following which the key analytical arguments used are briefly 
presented.

•	 Our analysis reveals that ACR can only be exhibited by the partially modified substrate form 
(‍Ap‍)

•	 ACR in ‍Ap‍ is only possible with changing concentration of total substrate.
•	 Further analysis of the ACR in ‍Ap‍ reveals necessary (and sufficient) constraints on the kinetics 

and total concentrations of enzymes.
‍

k3PTotal
c2
(

k2KTotal−k3PTotal
) = k1KTotal

c4
(

k4PTotal−k1KTotal
) > 0

‍
•	 Our analysis was able to further characterize associated features of this network when ‍Ap‍ 

exhibits ACR. In particular,

If this system exhibits ACR in ‍Ap‍ for a range of total substrate concentration, 
it is necessarily multistable within that range with two steady states exhibit-
ing ACR. 
There necessarily exists another steady-state branch for all positive to-
tal substrate concentrations. This branch intersects one of the two ACR 
branches which at some ‍ATotal‍ value (computationally found to be a transcriti-
cal bifurcation, refer Appendix 2—figure 9) 
This non-ACR branch state is characterized by a fixed ratio of free (un-
bound) kinase to free (unbound) phosphatase concentration for all positive 
total substrate concentrations, given by

	﻿‍
[K]
[P] = KTotal

PTotal ‍�  

This analysis allows us to summarize a number of key insights, specifically in the context of 
symmetry and symmetry breaking.

Complemented by Appendix 2—figure 9, our analysis reveals that a strict Case 1 symmetry is 
not a prerequisite for encountering ACR in the network. However, there is a kinetic requirement 
(which is sufficient) for the network to exhibit ACR (mathematically exact) (see above and in eq. 
(31)). It is noteworthy to observe that this requirement is satisfied trivially by an assumption of 
Case 1 symmetry in the network, but is a weaker condition. Similarly, the non-ACR branch of 
steady states becomes the symmetric branch with the assumption of Case 1 symmetry, and the 
transcritical bifurcation (at the intersection of the non-ACR branch and an ACR branch) as seen in 
Appendix 2—figure 9 becomes a pitchfork bifurcation.

Thus while Case 1 symmetry is not a strict prerequisite for obtaining ACR in the model, it is a 
suitable vantage point to analyse the phenomenon, additionally serving to reduce the parametric 
complexity of the network and highlighting multisite-specific characteristics such as directionality 
of modifications.

In the following subsection, we provide the key insight used (refer to attached Maple document; 
Source code 1, Section 5.1) to obtain proofs for the above conclusions. We also provide a sketch 
of the proof establishing the presence of ACR in ‍Ap‍ with increasing (changing) ‍ATotal‍ here.
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Approach used for determining absence or presence of ACR in the 
ordered DSP with common kinase and common phosphatase
In the absence of any imposed symmetry, the DSP model is a set of nine ODEs involving 15 
parameters, 9 variables, and 3 conservation conditions. However at steady state, the ODEs reduce 
to a system of nonlinear equations for the variable concentrations. The solution of these equations 
in sequence allows for eliminating many of the variables (by writing them in terms of a smaller set 
of variables). This systematic algebraic reduction of the system of equations allows for the system 
at steady state to be represented as a set of two coupled polynomial equations in two variables. In 
each proof, this reduction is in terms of the following two variables, namely, variable of the species 
being investigated for exhibiting the ACR and the variable, which is the ratio of free kinase to free 
phosphatase concentrations (denoted by ε). Note that the (feasible) solutions of these coupled 
polynomials determine the steady-state concentrations as the concentration of all other variables 
of the system can be obtained as functions of these variables.

As a consequence of ACR in the variable of interest, with changing total concentration (of 
substrate/enzyme), both equations need to be satisfied with only ε being allowed to vary. Thus 
the resulting two polynomials should accommodate a common root for ε for changing total 
amounts of either substrate/the enzymes (as pertinent to the proof) if ACR is to be exhibited in the 
substrate form of interest. This insight allows us to rule out ACR by contradiction in cases where 
the resulting polynomials do not provide this flexibility. Further in the case of ACR in ‍Ap‍ with total 
amount of substrate, it allows us to elucidate the necessary and sufficient conditions for obtaining 
ACR in the network.

In the next section, we show exactly how this is pursued by providing a sketch of the proof for 
the presence of ACR in ‍Ap‍ with changing total amounts of substrate.

Proof: partially modified substrate exhibits ACR with changing total 
substrate concentration
As mentioned earlier, at steady the DSP model can be simplified as a set of coupled polynomials 
in two variables; namely, the substrate form being investigated for exhibiting ACR and the ratio of 
free (unbound) kinase and the free (unbound) phosphatase. In the context of this specific proof, the 
two variables are ‍Ap‍ and ε. This results in the following two coupled polynomials whose feasible 
solutions determine the steady-state concentrations of the system:

	﻿‍ 0 =
[
Apc2(k2KTotal − k3PTotal) − k3PTotal

]
k1ϵ +

[
Apc4(k1KTotal − k4PTotal) + k1KTotal

]
k3‍� (28)

	﻿‍

0 =
[
−(c3(c1ϵ ∗ k1 + c4k4)k3 + c1c2ϵ

2k1k2)(c2ϵk2 + c4k3)
]

A2
p +[

k3(c2k1c1((−PTotalk3 + k2(ATotal − PTotal))c3 − k2)ϵ2 + k3c1c3((c4ATotal − c4PTotal − 1)k1 − PTotalc4k4)ϵ− c3c4k3k4)
]

Ap+

c1c3ϵk1k2
3 ATotal ‍

� (29)

where the concentrations of the other variables can be obtained from these as shown below:

	﻿‍

[A] =
[

Ap
ϵ

] [
c4k4
c1k1

]
[App] = [Ap][ϵ]

[
c2k2
c3k3

]

[AK] = k3c4k4PTotal[Ap]
k1([ϵ][Ap]c2k2+k3c4[Ap]+k3) [ApK] = ϵPTotalk3c2[Ap]

k3+(c2k2ϵ+c4k3)[Ap]

[AppP] = k2c2PTotal[Ap][ϵ]
k3+k3c4[Ap]+k2c2[Ap][ϵ] [ApP] = k3c4PTotal[Ap]

k3+(k3c4+k2c2)[Ap]

[P] = PTotalk3
k3+k3c4[Ap]+c2k2[Ap][ϵ] ‍� (30)

Now assuming ‍Ap‍ exhibits ACR for changing ‍ATotal‍, both equations need to be satisfied with only 
epsilon allowed to vary.

The two polynomials have the following structure. (i) The polynomial in eq. (29) is a cubic 
polynomial in ε whose coefficients include the parameter ‍ATotal‍ (and ‍[Ap]‍). (ii) The polynomial in 
eq. (28) is a linear expression in ε and its coefficients do not involve total substrate concentration 
parameter ‍ATotal‍ (but includes ‍[Ap]‍).

It then follows that as ‍ATotal‍ changes the roots of the cubic polynomial eq. (29) (for ε) change. 
However, the polynomial in eq. (28) cannot accommodate a changing ε (being independent of 

https://doi.org/10.7554/eLife.65358


 Research article﻿﻿﻿﻿﻿ Physics of Living Systems

Ramesh, and Krishnan. eLife 2021;10:e65358. DOI: https://​doi.​org/​10.​7554/​eLife.​65358 � 43 of 59

‍ATotal‍) unless the presence of ε in this equation is eliminated by a suitable parameter choice. In this 
instance, eq. (28) can be satisfied independent of ε (and ‍ATotal‍).

This can only be accomplished if the coefficient of ε and the constant term in the polynomial 
(eq. (28)) are both simultaneously zero. Thus we get kinetic constraints that permit the possibility 
of ACR. Since these expressions both include ‍Ap‍, this also provides the ACR concentration of ‍Ap‍ as 
shown below:

	﻿‍
[Ap] = k3PTotal

c2
(

k2KTotal−k3PTotal
) = k1KTotal

c4
(

k4PTotal−k1KTotal
) > 0

‍� (31)

Hence, the above simultaneously establishes the ACR concentration of ‍Ap‍, while providing us 
the kinetic constraints required for ACR. As mentioned earlier, it is also noteworthy to observe that 
a Case 1 symmetry in kinetics and enzyme concentrations trivially transforms this kinetic constraint 
to that observed earlier in the symmetric instance.

Thus, under conditions in, eq. (31), the polynomial, eq. (28) is satisfied independent of ‍ATotal‍ or 
ε. The other polynomial (eq. (29)) can be rewritten as a polynomial in ε (with ‍Ap‍ assuming the 
fixed value given in eq. (31)) as shown below in eq. (32)

	﻿‍

0 =
[
c1c2

2 k1k2
2 [Ap]2

]
ϵ3 +

[
c1((([Ap] + PTotal − ATotal)c3 + [Ap]c4 + 1)k2 + PTotalc3k3)[Ap]k3c2k1

]
ϵ2+[

(c1([Ap]2c4k1 + (((−ATotal + PTotal)k1 + PTotalk4)c4 + k1)[Ap] − ATotalk1)k3 + [Ap]2c2c4k2k4)k3c3

]
ϵ +

[
[Ap]c3c4k2

3 k4([Ap]c4 + 1)
]

‍
� (32)

Note that the coefficient of ﻿‍ϵ3‍ and the constant term in this polynomial are both positive, 
indicating the presence of one negative real root. This also implies that the product of the three 
roots is negative. Thus, if there exists an ACR branch (i.e. positive real roots in ε), it necessarily 
implies that there exists another positive real root for ε, indicating the presence of another 
second ACR branch.

Sufficiency
For large enough ‍ATotal‍, the sum of the roots (the ratio of the coefficient of the ﻿‍ϵ2‍ and the leading 
coefficient) is positive, and it can be shown that the discriminant of this polynomial is also positive 
(refer Source code 1 [Section 5.1] and Supplementary file 1). This together guarantees the 
presence of two positive real roots in ε, proving the sufficiency of kinetic constraints in eq. (32) to 
obtain ACR in ‍Ap‍ at some finite range of concentrations of ‍ATotal‍.

Extension of this proof to ascertain associated features of ACR networks in DSP is provided in 
detail in Source code 1 (Section 5.1) and Supplementary file 1.

Approximate concentration robustness
We now turn to the case of approximate ACR wherein a substrate may exhibit concentration 
robustness approximately in some limiting regime of enzymatic action. We will show that such 
behaviour can be readily obtained in different scenarios.

We begin our analysis by focusing on the ordered DSP network. We assume that the 
concentration of the phosphatase is much higher than the concentration of the kinase or the 
substrate. Thus the dephosphorylation of substrates, ‍Ap‍ and ‍App‍, can be approximated by simple 
first-order reactions.

Approximate concentration robustness in the partial substrate (﻿‍Ap‍)
We assume that the phosphorylation of ‍Ap‍ is in the unsaturated limit and the phosphorylation 
of ﻿‍A‍ is saturating. In this case, the concentration of the ‍ApK ‍ complex is negligible and further 

‍K ≈ KTotal
1+αA ≈ KTotal

αA ‍. This implies that the flux of phosphorylation of ‍Ap‍ is a zeroth-order reaction, 

‍
KTotalβ

α ‍. Since steady state in this network involves pairwise equilibrium, we have

	﻿‍ RatePhosphorylation−of−A = RateDePhosphorylation−of−Ap =⇒ βKTotal
α ≈ Apγ‍�

where ﻿‍α‍, ‍β‍, ‍γ‍ are kinetic constants of the network.
Thus the concentration of ‍Ap‍ is approximately given by ‍Ap ≈ βKTotal

αγ ‍ for a range of ‍ATotal‍.

https://doi.org/10.7554/eLife.65358
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Approximate concentration robustness in the fully modified substrate 
(‍App‍)
Here similar to the logic above, if the phosphorylation of ‍Ap‍ is in the saturated limit and the 
phosphorylation of ﻿‍A‍ is in the unsaturated limit, then (as a consequence of equilibrium between ‍Ap‍ 
and ‍App‍) we find that ‍App‍ exhibits approximate ACR.

A similar proof assuming an excess of kinase in the network can be used to show the feasibility 
of approximate concentration robustness in ﻿‍A‍.

Comment about different kinases and different phosphatases
The above logic can readily be used in the case of different kinases or phosphatases. In fact, having 
different enzymes only removes constraints on kinetic regimes/enzyme amounts.

Random modification networks
The above approach can be employed to establish approximate ACR for one species in the 
random modification network. This is facilitated by having separate kinases and separate 
phosphatases. Here we simply need to ensure that the two production reactions for a substrate are 
acting in the saturated regime (these are associated with different enzymes) which can be assumed 
to perform other modifications in the unsaturated limit. Further enzymes involved in the removal of 
the substrate are assumed to be in large amounts relative to the substrate concentration.

https://doi.org/10.7554/eLife.65358
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Appendix 2
Parameter values
Figure 2

•	 A. ‍k1‍ = 0.1; ‍k2‍ = 0.5; ‍k3‍ = 0.1; ‍k4‍ = 0.5; ‍KTotal‍ = 0.1; ‍PTotal‍ = 0.1;
•	 B. ‍k1‍ = 0.1; ‍k3‍ = 0.1; ‍a1‍ = 0.25; ‍a2‍ = 0.4; ‍a3‍ = 0.25; ‍a4‍ = 0.4; ‍KTotal‍ = 1; ‍k1‍ = 1;
•	 C. ‍k1‍ = 0.1; ‍k3‍ = 0.1; ‍a1‍ = 0.5; ‍a2‍ = 1.5; ‍a3‍ = 0.5; ‍a4‍ = 1.5; ‍K1Total‍ = 1; ‍P1Total‍ = 1; ‍K2Total‍ = 1; ‍P2Total‍ 

= 1;
•	 D. ‍k1‍ = 2.35; ‍k2‍ = 0.46; ‍k3‍ = 1.86; ﻿‍k4‍ = 1.1; ‍a1‍ = 2.35; ‍a2‍ = 0.46; ‍a3‍ = 1.86; ‍a4‍ = 1.1; ‍K1Total‍ = 1; 

‍P1Total‍ = 1; ‍K2Total‍ = 1; ‍P2Total‍ = 1;
•	 E. ‍k1‍ = 2; ‍k2‍ = 0.1; ‍k3‍ = 0.75; ‍a1‍ = 2; ‍a2‍ = 0.1; ‍a3‍ = 0.75; ‍K1Total‍ = 0.1; ‍K1Total‍ = 0.1; ‍PTotal‍ = 0.2;

Figure 3
•	 A. (Panel 1 – Hopf and pitchfork bifurcation): ‍k1‍ = 100; ‍k2‍ = 2; ‍k3‍ = 0.01; ‍k4‍ = 20; ‍a1‍ = 0.01; ‍a2‍ 

= 20; ‍a3‍ = 100; ‍a4‍ = 2; ‍kb1‍ = 100; ‍kb3‍ = 100; ‍kb4‍ = 0.1; ‍ab1‍ = 100; ‍ab3‍ = 100; ‍ab2‍ = 0.1; ‍KTotal‍ = 1.25; 
‍PTotal‍ = 1.25;

•	 A. (Panel 2 – pitchfork bifurcation): ‍k1‍ = 100; ‍k2‍ = 2; ‍k3‍ = 0.01; ‍k4‍ = 20; ‍a1‍ = 0.01; ‍a2‍ = 20; ‍a3‍ = 
100; ‍a4‍ = 2; ‍kb1‍ = 100; ‍kb3‍ = 100; ‍kb4‍ = 0.1; ‍ab1‍ = 100; ‍ab2‍ = 0.1; ‍ab3‍ = 100; ‍KTotal‍ = 10; ‍PTotal‍ = 10;

•	 B. (Panel 1 – Hopf bifurcation): ‍k1‍ = 150; ‍k2‍ = 50; ‍k3‍ = 1; ‍k4‍ = 10; ‍a1‍ = 1; ‍a2‍ = 10; ‍a3‍ = 150; ‍a4‍ = 
50; ‍kb1‍ = 100; ‍kb3‍ = 0.01; ‍kb4‍ = 500; ‍ab1‍ = 0.01; ‍ab2‍ = 500; ‍ab3‍ = 100; ‍K1Total‍ = 1; ‍P1Total‍ = 1; ‍K2Total‍ 
= 1; ‍P2Total‍ = 1;

•	 B. (Panel 2 – pitchfork bifurcation): ‍k1‍ = 10; ‍k2‍ = 1; ‍k3‍ = 2; ‍k4‍ = 5; ‍a1‍ = 2; ‍a2‍ = 5; ‍a3‍ = 10; ‍a4‍ = 1; 
‍K1Total‍ = 1; ‍P1Total‍ = 1; ‍K2Total‍ = 1; ‍P2Total‍ = 1;

Appendix 2—figure 1
•	 ‍k1‍= 0.9; ‍k2‍ = 0.8; ‍k3‍ = 2; ‍a1‍ = 0.9; ‍a2‍ = 0.8; ‍a3‍ = 2; ‍K1Total‍ = 0.1; ‍K2Total‍ = 0.1;

Appendix 2—figure 2
•	 A. (Panel 1 – Hopf bifurcation): ‍k1‍ = 100; ‍k2‍ = 20; ‍k4‍ = 2; ‍a2‍ = 2; ‍a3‍ = 100; ‍a4‍ = 20; ‍kb1‍ = 100; ‍kb3‍ 

= 100; ‍ab1‍ = 100; ‍ab3‍ = 100; ‍KTotal‍ = 1; ‍PTotal‍ = 1;
•	 B. (Panel 2 – dynamic simulation): parameter set in Figure 3A where ‍ATotal‍ = 12.95;
•	 C. (Panel 3 – pitchfork bifurcation): ‍k1‍ = 0.1; ‍k3‍ = 2; ‍k4‍ = 5; ‍a1‍ = 2; ‍a2‍ = 5; ‍a3‍ = 0.1; ‍KTotal‍ = 1; ‍PTotal‍ 

= 1;
Appendix 2—figure 3

•	 ‍k1‍= 0.1; ‍k3‍ = 0.1; ‍KTotal = 1‍;‍PTotal = 1;‍
Appendix 2—figure 4

•	 ‍k2‍= 2; ‍k4‍ = 20; ‍a2‍ = 20; ‍a4‍ = 2; ‍kb1‍ = 10; ‍kb3‍ = 10; ‍ab1‍ = 10; ‍ab3‍ = 10; ‍K1Total‍ = 5; ‍P1Total‍ = 5; ‍K2Total‍ 
= 5; ‍P2Total‍ = 5;

Appendix 2—figure 5
•	 ‍k1‍= 1.25; ‍k2‍ = 1.1; ‍k3‍ = 2.5; ﻿‍k4‍ = 0.4; ‍a1‍ = 1.25; ‍a3‍ = 2.5; ‍a4‍ = 0.4; ‍K1Total‍ = 1; ‍P1Total‍ = 1; ‍K2Total‍ = 

1; ‍P2Total‍ = 1;
Appendix 2—figure 6

•	 ‍k2‍= 0.5; ‍k3‍ = 0.1; ‍k4‍ = 0.5; ‍kb1‍ = 1; ‍kb2‍ = 1; ‍kb3‍ = 1; ‍kb4‍ = 1; ‍KTotal‍ = 0.1; ‍PTotal‍ = 0.1;
Appendix 2—figure 7

•	 (Left Panel): ‍k1‍ = 30; ‍k2‍ = 2; ‍k3‍ = 0.3; ‍k4‍ = 20; ‍a1‍ = 0.3; ‍a2‍ = 20; ‍a3‍ = 30; ‍a4‍ = 2; ‍kb1‍ = 100; ‍kb3‍ = 
100; ‍kb4‍ = 0.1; ‍ab1‍ = 100; ‍ab2‍ = 0.1; ‍ab3‍ = 100; ‍KTotal‍ = 1; ‍PTotal‍ = 1;

•	 (Right Panel): ‍KTotal‍ = 20; ‍PTotal‍ = 20;
Appendix 2—figure 8

•	 ‍k1‍= 0.1; ‍k2‍ = 1.5; ‍k3‍ = 2; ‍k4‍ = 0.1; ‍k5‍ = 1.5; ‍k6‍ = 2; ‍KTotal‍ = 0.1; ‍PTotal‍ = 0.1;
Appendix 2—figure 9

•	 ‍k1‍= 1; ‍k2‍ = 2; ‍k3‍ = 0.5; ‍k4‍ = 1.2; ‍kb1‍ = 1; ‍kb2‍ = 1; ‍kb3‍ = 1; ‍kb4‍ = 11; ‍KTotal‍ = 1; ‍PTotal‍ = 1;
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Appendix 2—figure 1.  (A) Schematic representation of the mixed random ordered double-
sitephosphorylation (DSP) network with common kinase and common phosphatase effecting 
distributive phosphorylation and processive dephosphorylation (mixed random 1), and the mixed 
random ordered DSP network with separate kinases and common phosphatase effecting distributive 
phosphorylation and processive dephosphorylation in the unsaturated regime (mixed random 2a). 
(B) shows Case 2 symmetry breaking in the mixed random 2a network. Note that the concentration 
of the fully modified and unmodified substrate forms is fixed in the asymmetric steady states. Dotted 
lines indicate unstable steady states, while solid lines represent stable steady states in the bifurcation 
diagram. BP: pitchfork bifurcation.

The online version of this article includes the following source code for appendix 2—

•  Appendix 2—figure 1—source data 1. 

Appendix 2— Figure 2. Case 3 symmetry breaking in random ordered double-site phosphorylation 
with common kinase and common phosphatase acting on each modification site. Column 1 shows 
Appendix 2 continued on next page
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the presence of oscillations emerging through a Hopf bifurcation in the bifurcation diagram along 
‍ATotal‍. Column 2 shows long period oscillations in the system represented in Figure 3A from the 
main text (for a ‍ATotal = 12.95‍). Such long period oscillations emerge when the oscillatory branch from 
the Hopf bifurcation approaches asymmetric stable steady states. Column 3 shows the presence of 
symmetry breaking through a supercritical pitchfork bifurcation. Note that the sum of concentrations 
of the partial substrates is conserved in the asymmetric steady states. This network is also capable of 
symmetry breaking through a subcritical pitchfork as seen in Figure 3. Dotted lines indicate unstable 
steady states, while solid lines represent stable steady states in the bifurcation diagram. Shaded 
regions in the bifurcation diagram indicate regions of oscillations, and the blue lines indicate bounds 
on concentrations during such oscillations. BP: pitchfork bifurcation; HP: Hopf bifurcation.

The online version of this article includes the following source code for appendix 2— figure 2:

•  Appendix 2—figure 2—source data 1. 

Appendix 2—figure 3. Case 1 symmetry breaking in the random ordered double-site 
phosphorylation with common kinase and common phosphatase acting on each modification site, 
even when one of the legs (‍A00 ⇐⇒‍A11) is incapable of breaking symmetry by itself (i.e. viewed as 
an ordered mechanism the kinetic parameters of the ‍A00 ⇐⇒‍A11 leg forbid independent symmetry 
breaking; see main text and analytical work for discussion). Homeostasis (absolute concentration 
robustness) is observed in both partial substrates. Dotted lines indicate unstable steady states, while 
solid lines represent stable steady states in the bifurcation diagram. BP: pitchfork bifurcation.

The online version of this article includes the following source code for appendix 2—figure 3:

Appendix 2 continued
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•  Appendix 2—figure 3—source data 1. 
the presence of oscillations emerging through a Hopf bifurcation in the bifurcation diagram along 
‍ATotal‍. Column 2 shows long period oscillations in the system represented in Figure 3A from the 
main text (for a ‍ATotal = 12.95‍). Such long period oscillations emerge when the oscillatory branch from 
the Hopf bifurcation approaches asymmetric stable steady states. Column 3 shows the presence of 
symmetry breaking through a supercritical pitchfork bifurcation. Note that the sum of concentrations 
of the partial substrates is conserved in the asymmetric steady states. This network is also capable of 
symmetry breaking through a subcritical pitchfork as seen in Figure 3. Dotted lines indicate unstable 
steady states, while solid lines represent stable steady states in the bifurcation diagram. Shaded 
regions in the bifurcation diagram indicate regions of oscillations, and the blue lines indicate bounds 
on concentrations during such oscillations. BP: pitchfork bifurcation; HP: Hopf bifurcation.

The online version of this article includes the following source code for appendix 2— figure 2:

•  Appendix 2—figure 2—source data 1. 

Appendix 2—figure 3. Case 1 symmetry breaking in the random ordered double-site 
phosphorylation with common kinase and common phosphatase acting on each modification site, 
even when one of the legs (‍A00 ⇐⇒‍A11) is incapable of breaking symmetry by itself (i.e. viewed as 
an ordered mechanism the kinetic parameters of the ‍A00 ⇐⇒‍A11 leg forbid independent symmetry 
breaking; see main text and analytical work for discussion). Homeostasis (absolute concentration 
robustness) is observed in both partial substrates. Dotted lines indicate unstable steady states, while 
solid lines represent stable steady states in the bifurcation diagram. BP: pitchfork bifurcation.

The online version of this article includes the following source code for appendix 2—figure 3:
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Appendix 2—figure 4. Case 3 symmetry breaking through a supercritical pitchfork bifurcation in the 
Appendix 2—figure 4 continued on next page
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random ordered double-sitephosphorylation with separate kinase and separate phosphatase acting 
on each modification site. Note that the sum of the concentrations of the partially modified substrates 
is approximately fixed in the asymmetric steady states in the bifurcation diagram. However, Case 3 
symmetry breaking in this network is also capable of providing approximate concentration robustness 
in the sum of the concentrations of the completely modified and unmodified substrate forms; see 
main text and Figure 3. Dotted lines indicate unstable steady states, while solid lines represent stable 
steady states in the bifurcation diagram. BP: pitchfork bifurcation.

The online version of this article includes the following source code for appendix 2—figure 4:

•  Appendix 2—figure 4—source data 1. 

Appendix 2—Figure 5. Features of symmetry and symmetry breaking can still manifest when 
the network is only approximately symmetric. This is represented through the example of Case 2 
symmetry breaking in the distributive ordered double-sitephosphorylation with separate kinase and 
separate phosphatase affecting phosphorylation and dephosphorylation, respectively. Dotted lines Appendix 2—figure 4. Case 3 symmetry breaking through a supercritical pitchfork bifurcation in the 

Appendix 2—figure 4 continued

Appendix 2—Figure 5 continued on next page
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indicate unstable steady states, while solid lines represent stable steady states in the bifurcation 
diagram. BP: pitchfork bifurcation; LP: saddle node bifurcation.

The online version of this article includes the following source code for appendix 2—figure 5:

•  Appendix 2—figure 5—source data 1. 

Appendix 2—figure 6. Approximate concentration robustness shown by systems that deviate from 
exact symmetry: Figure represents the approximate concentration robustness shown by ‍Ap‍ in the 
ordered distributive double-site phosphorylation with common kinase and common phosphatase 
when the network is not symmetric. Note that the system is symmetric when ‍k1 = 1‍ and is presented in 
Figure 2A. In order to ascertain the behaviour of the system and in particular absolute concentration 
robustness (ACR) characteristics of ‍Ap‍, we perturb the kinetics (k1) at six values between ‍50%‍ and ‍150%‍ 
of the symmetric value (while keeping all other kinetics fixed) and present the result in six panels 

Appendix 2—Figure 5 continued

Appendix 2—figure 6 continued on next page
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composed of three plots each; the first represents a bifurcation diagram showing the presence of 
steady-state branches in a range of ‍ATotal‍(0–100) where multistability is present. The other two are bar 
graphs representing the norm of the concentration (max value – min value) of ‍Ap‍ on the branches 1 
and 3, and branch 2, respectively, across the entire range of variation (‍ATotal = 0 − 100‍). Note that in 
the symmetric network we obtain a perfect pitchfork bifurcation; however when the system deviates 
from exact symmetry, multistability is obtained through a saddle node bifurcation as shown here and 
in Appendix 2—figure 5. The norm of ‍Ap‍ is significantly smaller in magnitude on branches 1 and 3 
(which would be the perturbed analogues of the ACR branches in the perfectly symmetric system) 
as compared to the norm in branch 2 (the perturbed analogue of the symmetric branch). The norm 
on branch 2 scales with increasing range of ‍ATotal‍ (note: the norm shown here is only for the range of 
‍ATotal = 0 − 100‍) while the norms of branches 1 and 3 are varying negligibly with changing ‍ATotal‍. This 
behaviour is depicted for six different parameter values between ‍50%‍ to ‍150%‍ and is again indicative 
of approximate concentration robustness seen in near symmetric systems for a large range of total 
substrate concentration.

The online version of this article includes the following source code for appendix 2—figure 6:

•  Appendix 2—figure 6—source data 1. 

indicate unstable steady states, while solid lines represent stable steady states in the bifurcation 
diagram. BP: pitchfork bifurcation; LP: saddle node bifurcation.

The online version of this article includes the following source code for appendix 2—figure 5:

•  Appendix 2—figure 5—source data 1. 

Appendix 2—figure 6. Approximate concentration robustness shown by systems that deviate from 
exact symmetry: Figure represents the approximate concentration robustness shown by ‍Ap‍ in the 
ordered distributive double-site phosphorylation with common kinase and common phosphatase 
when the network is not symmetric. Note that the system is symmetric when ‍k1 = 1‍ and is presented in 
Figure 2A. In order to ascertain the behaviour of the system and in particular absolute concentration 
robustness (ACR) characteristics of ‍Ap‍, we perturb the kinetics (k1) at six values between ‍50%‍ and ‍150%‍ 
of the symmetric value (while keeping all other kinetics fixed) and present the result in six panels 
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Appendix 2—Figure 7. Total enzyme concentrations are an additional lever (apart from 
basic network kinetics) that can independently tune symmetry-breaking behaviour in multisite 
phosphorylation networks. This is represented through the example of Case 3 symmetry breaking in 
the distributive random double-site phosphorylation with common kinase and common phosphatase). 
Panel 2 shows how increasing enzyme concentrations (left ﻿‍−→‍ right) can lead to loss of oscillatory 
behaviour in the network for the same basal kinetics parameters.

The online version of this article includes the following source code for appendix 2—figure 7:

•  Appendix 2—figure 7—source data 1. 

https://doi.org/10.7554/eLife.65358
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Appendix 2—Figure 7. Total enzyme concentrations are an additional lever (apart from 
basic network kinetics) that can independently tune symmetry-breaking behaviour in multisite 
phosphorylation networks. This is represented through the example of Case 3 symmetry breaking in 
the distributive random double-site phosphorylation with common kinase and common phosphatase). 
Panel 2 shows how increasing enzyme concentrations (left ﻿‍−→‍ right) can lead to loss of oscillatory 
behaviour in the network for the same basal kinetics parameters.

The online version of this article includes the following source code for appendix 2—figure 7:

•  Appendix 2—figure 7—source data 1. 
Appendix 2—Figure 8 continued on next page
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Appendix 2—Figure 8. Case 1 symmetry breaking in the distributive ordered triple-site 
phosphorylation network. Here we observe absolute concentration robustness in the sum of the 
concentrations of the partially modified substrates. Dotted lines indicate unstable steady states, while 
solid lines represent stable steady states in the bifurcation diagram. BP: pitchfork bifurcation.

The online version of this article includes the following source code for appendix 2—figure 8:

•  Appendix 2—figure 8—source data 1. 

Appendix 2—Figure 8 continued
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Appendix 2—Figure 9. Absolute concentration robustness (ACR) in ordered double-site 
phosphorylation: The ordered double site with common kinase common phosphatase is capable of 
exhibiting (exact) ACR in the partially modified substrate (‍Ap‍) with respect to changing total substrate 
concentration even in the absence of symmetry in the kinetics or total enzyme amounts (however, 
Appendix 2—Figure 9 continued on next page
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a weaker constraint is required to enable this). The figure presents a computational example of this 
(complementing the discussion in the main text and Appendix 1). We observe a single non-ACR-
exhibiting branch of steady states exchanging stability with branches of ACR-exhibiting steady states 
through a transcritical bifurcation (as opposed to a pitchfork bifurcation as seen in the symmetric 
examples earlier). The concentration of ‍Ap‍ is fixed to be mathematically exact on these ACR branches 
as shown in the top-right plot. The unstable ACR branch emerging out of the transcritical bifurcation 
becomes stable through a saddle node bifurcation as shown. Dotted lines indicate unstable steady 
states, while solid lines represent stable steady states in the bifurcation diagram. BP: pitchfork 
bifurcation; LP: saddle node bifurcation.

The online version of this article includes the following source code for appendix 2—figure 9:

•  Appendix 2—figure 9—source data 1. 

•  Source code 1. Maple document (Containing detailed proofs and parameter values used for the 
figures).

Appendix 2—Figure 9 continued
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Appendix 2—Figure 10. Detailed model description of the various multisite phosphorylation 
networks used in this paper. The constituent binding, unbinding, and catalytic reactions of each 
modification step are described in detail and are modelled using mass kinetic description.

https://doi.org/10.7554/eLife.65358
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