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Abstract

The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome
and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA
polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not
efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent
binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic
arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could
have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid
arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned
at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However,
polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or
modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results
suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor.
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Introduction

According to the RNA world hypothesis, an early stage of life used

RNA both as genome and as catalyst [1,2,3,4] for recent reviews see

[5,6]. The central activity in an RNA world organism would have

been RNA polymerization to facilitate self-replication. To recapitu-

late an RNA world in the lab, RNA polymerase ribozymes were

developed and improved in several laboratories [7,8,9,10].

These polymerase ribozymes have a length in the range of 200

nucleotides. Therefore, self-replication would require the poly-

merization of about 200 ribozyme-encoding nucleotides. Howev-

er, the best existing polymerase ribozymes favor variants of a

single, short template sequence with the length of less than 20

nucleotides. By concatenating multiple copies of this sequence it

was possible to extend a primer by 95 nucleotides [10]. However,

such a template could not encode a ribozyme. On unrelated

template sequences, polymerization reaches usually less than 10

nucleotides, and recent improvements made it possible to

polymerize 20–30 nucleotides [9,10,11,12]. However, this is still

far below the level required for self-replication. The limiting factor

for polymerization efficiency is the ribozyme’s weak sequence-

independent binding of the primer/template substrate, with a KM

in the millimolar range [13]. Some of the sequence independent

contacts are hydrogen bonds to template 29-hydroxyl groups [14].

However, it may be possible to establish additional sequence

independent contacts mediated by ionic interactions with the

negatively charged phosphodiester groups of the primer/template

substrate. To do this, the ribozyme would have to employ a

positively charged cofactor.

This positive charge can be supplied by metal ions or by cationic

organic molecules. The polymerase ribozyme was originally

selected in the presence of 60 mM magnesium ions [7] and

different versions were optimized in the presence of 36 to 184 mM

free magnesium ions [9,10]. Because magnesium ions are good

ligands for the phosphodiester oxygen anions of RNA [15] the

continuous presence of magnesium ions during the evolutionary

history of polymerase ribozymes should have found the most

beneficial involvements of magnesium ions that increase polymer-

ization efficiency. However, even at the optimal magnesium

concentration of 200 mM the binding of substrate is in the

millimolar range, suggesting that cations different from metal

cations could play a role to improve substrate binding.

In contrast to metal ions the polymerase ribozyme did not

encounter cationic organic molecules during its history. Therefore,

a potential benefit from those molecules would have gone

undiscovered. Specifically, the amino acid arginine carries several

advantages over other cationic cofactors. Most importantly, the

guanidinium group does not establish a hydration shell in aqueous

solution. This helps the binding of negatively charged RNAs

because it avoids the enthalpic cost of displacing a hydration shell

[16]. Additionally, the guanidinium group of arginine has a pKA

of 12.5 [17], maintaining a positive charge at any pH value

encountered by the ribozyme. Evidence that these factors benefit

RNA binding comes from RNA binding proteins, which use

arginine more than any other amino acid at the interface with

RNA [18].

How could arginine cofactors compete with the high concen-

tration of magnesium ions that are required by the polymerase

ribozyme? In addition to the absence of a hydration shell our

experiments carry two designs to help arginine compete with the

magnesium ions. First, we decreased the free magnesium ion

concentration from 184 mM to 64 mM, which facilitates near-
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optimal activity, and further down to 24 mM, which allows weak

but quantifiable polymerization to occur [19]. Second, we

connected the arginine cofactor to the ribozyme via arginine-

nucleic acid conjugates, which base pair to the ribozyme and

thereby generate a high local concentration of arginine proximal

to the binding site. We estimate that the local concentration of the

arginine guanidinium group would be at least 50 mM, based on

the volume accessible constrained by the length of the linker to the

nucleic acid.

In an RNA world, amino acid - nucleid acid conjugates or

peptide - nucleic acid conjugates could have served in the roles of

cofactors and could have established the first steps in a translation

system [20,21]; see also [22]. The synthesis of such conjugates

would have been possible in an RNA world because ribozymes can

generate several different types of RNA-amino acid conjugates

[23,24,25,26]. One benefit of amino acid - nucleic acid conjugates

for an RNA world would have been that less sequence of the

ribozyme needs to evolve for pairing a conjugate compared to

establishing a binding pocket for the cofactor. This means that the

‘combinatorial cost’ of acquiring a cofactor is strongly reduced,

and thereby the evolutionary likelihood of reaching that state is

higher.

In this study, arginine was used as a positively charged cofactor

for the polymerase ribozyme. An arginine - nucleic acid conjugate

was positioned at ten different positions on the ribozyme located

near the substrate-binding site. We tested whether the positively

charged arginine could be used by the ribozyme to increase

polymerization efficiency. However, the arginine did not improve

polymerization in any of these ten positions, suggesting that single

arginines are not sufficient to improve the existing polymerase

ribozyme. This also suggests that it may be harder than previously

thought to take the first step in the development of the translation

apparatus, via amino acid - nucleic acid conjugates.

Results

We used arginine-RNA and arginine-DNA conjugates to

position the arginine cofactor on the ribozyme. Specific sequences

for the nucleic acid handle of the conjugate made it possible to

base pair the conjugate to different positions on the ribozyme

(Fig. 1). This strategy carries several advantages over the use of free

amino acids or free peptides. First, a few unpaired bases on the

ribozyme are sufficient to base pair to the handle of the conjugate.

In comparison, free amino acids or peptides would make it

necessary to establish a binding pocket for the cofactors on the

ribozyme. Second, the amino acid portion of the conjugate is

accessible for interactions with the substrate. In contrast, free

amino acids and short peptides require a cofactor-binding pocket

that obstructs at least some of the possible interactions with the

primer/template.

The arginine-nucleic acid conjugates were synthesized by

carbodiimide peptide coupling chemistry. Fmoc-protected argi-

nine was activated as NHS ester and reacted with amino modified

DNA or RNA. The nucleic acid sequences of these conjugates

were chosen to pair to one of two target sites on the polymerase

ribozyme, thereby forming a 59-terminal duplex, or the P2 duplex.

The choice of these target sites was based on their vicinity to the

catalytic site (Fig. 1; [27]) and because base pairing to these

sequences did not inhibit ribozyme polymerization.

Ten polymerase ribozymes have been developed to date

[7,8,9,10]. Our study focuses on the first published polymerase

ribozyme [7] because this was the most efficient polymerase

ribozyme at the beginning of our study. Our results are relevant

for at least the three most efficient variants of these ribozy-

mes because their secondary structure is almost identical

[7,9,10].

A 59-duplex on the polymerase ribozyme to attach
arginine conjugates

The first site for attaching the arginine conjugates is a duplex

that extends the 59-terminus of the polymerase ribozyme [19].

Choosing this 59-duplex for attaching the arginine has the benefit

that the length of the duplex can be varied, thereby tethering an

arginine to the distal end of the duplex places it at different

positions along a ‘helical ruler’ on the ribozyme [28]. Additionally,

the proximal end of the duplex accesses another position.

Therefore, the 59-duplex allowed us to place an arginine cofactor

at eight positions on the polymerase ribozyme (Fig. 1). In the

absence of a complementary RNA or DNA, all single-stranded 59-

terminal ribozyme sequences inhibited polymerization (data not

shown), confirming that the conjugates annealed to their intended

position at the ribozyme 59-terminus.

To measure the effect of each positioned arginine on ribozyme

function we quantified the polymerization efficiency with and

without the arginine modification. Additionally, we measured the

influence of an amino group, which was used to couple the

arginine with the nucleic acid handle. The polymerization

efficiency was measured as the average number of nucleotides

added to each primer molecule. This readout is sensitive enough to

allow the detection of single hydrogen bonds between the

ribozyme and the primer/template substrate [14]. However, the

arginine modification did not show any effect on ribozyme

polymerization when it was placed at the proximal end of the 59-

duplex or at the distal end of the 59-duplex, with duplex lengths of

9, 14, and 17 base pairs (Fig. 2 and 3).

When the 59-duplex had a length of 7 base pairs, the DNA

derivatives showed lower polymerization efficiency than the RNA

derivatives (Fig. 3). This can be explained by the lower

thermodynamic stability of DNA/RNA duplexes relative to

RNA/RNA duplexes [29]. We assume that the 7-base pair

DNA/RNA duplex was partially dissociated so that the single-

stranded 59-sequence of the ribozyme could inhibit polymeriza-

tion. This interpretation is supported by our observations that the

optimal reaction temperature with the 7-base pair DNA/RNA

duplex was slightly lower than with longer duplexes, and that the

single-stranded 59-sequence inhibits polymerization (data not

shown). All 59-duplexes longer than 7 base pairs appeared to be

stable under the used reaction conditions.

Inhibitory effects of arginine at the 59-duplex
When the length of the 59-duplex was 11 base pairs the arginine

and amino modification showed an inhibitory effect on polymer-

ization (Fig. 3C). While this effect occurred both in the absence

and the presence of a P2 oligo, an inhibitory effect at the 7 base

pair duplex appeared only in the presence of the P2 oligo. The P2

oligo was introduced as a heptanucleotide that complements the

P2 duplex on the polymerase ribozyme (Fig. 1A) and improved

some aspects of polymerization [7]. However, later studies showed

that polymerization also proceeds well in the absence of the P2

oligo [19] and that a truncated P2 oligo is more efficient than the

heptanucleotide [12]. Because the P2 oligo binds adjacent to the

catalytic site we tested most effects found in this study with and

without the optimized, truncated P2 oligo. Because the P2 duplex

affected the positioning of the 59-duplex with 7 base pairs on the

ribozyme but not that of longer 59-duplexes we assume that the

ribozyme forms fundamentally different interactions with 59-

terminal duplexes of 7-base pairs and longer duplexes.

Arginine Cofactors on the Polymerase Ribozyme
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Arginine at the 59-duplex can rescue inhibitory effects
When the 59-duplex had a length of 15-base pairs the RNA/

RNA duplex slightly decreased polymerization, in the absence of a

P2 oligo (Fig. 3C, lower panel). This was concluded from

comparing the polymerization efficiency between RNA/RNA

duplexes and DNA/RNA duplexes, as well as between the

unmodified, amino modified, and arginine modified RNA/RNA

duplex. The inhibitory effect of the 29-hydroxyl group was rescued

by the 29-deoxy modification as well as by the 39-terminal amino

or arginine modification of the RNA. The rescue by 39-terminal

modifications showed that the 39-terminal 29-hydroxyl group

caused the inhibitory effect and not internal 29-hydroxyl groups in

the RNA/RNA duplex. These effects probably also existed for a

duplex length of 13 base pairs and in the presence of the P2 oligo

but were too small to have strong statistical significance (Fig. 3C).

59-terminal duplexes can enter the catalytic site
To explain the inhibitory effect of the 39-terminal RNA 29-

hydroxyl group at the 59-duplex we hypothesized that the distal

terminus of the RNA/RNA duplex entered the active site and

interfered with binding of the primer/template. To test whether

the inhibitory effect of the 39-terminal 29-hydroxyl group could be

due to insertion into the catalytic site we monitored whether the

59-duplex could be used as a primer/template duplex and

extended by the polymerase ribozyme. To obtain a templating

sequence the 59-terminus of the polymerase ribozyme was

elongated by four nucleotides. Polymerization assays showed that

the radiolabeled RNAs at the 59-duplex were indeed extended by

the polymerase ribozyme, with a strong dependence on the length

of the 59-duplex (Fig. 4). The same length dependence was visible

in the absence and the presence of the P2 oligo. The dependence

followed a pattern that coincided with the periodicity of an A-form

helix (11 base pairs), with the exception of the 7 base pair duplex.

These results showed that the distal terminus of the 59-duplex

entered the catalytic site of the ribozyme, confirming the

hypothesis that the 39-terminal 29-hydroxyl group of 59-terminal

RNA/RNA duplexes could inhibit polymerization by insertion

into the catalytic site.

Figure 1. Structure of ribozyme constructs used in this study. The 59-terminus of the ribozyme (green) is in close contact with the primer
(red) and template (orange). The P2 oligo (dark blue) is base paired to a complementary region on the ribozyme (light blue), forming the P2 helix. (A)
Secondary structure of the polymerase ribozyme [7] with the 59-duplexes and the P2 duplex that were used to attach arginine or amino cofactors.
The length of the 59-duplex is indicated. ‘‘X’’ denotes the position of the chemical modification. The P2 oligo is truncated, and the internal mismatch
was removed [12]. (B) 3D structure of the ligase domain in the polymerase ribozyme, based on the crystal structure of the ligase [27]. Atoms that do
not appear in the polymerase ribozyme were deleted. The asterisk denotes the position of the catalytic site. The positions where the 59-duplex and
the accessory domain are attached to the ligase domain are indicated, as well as the 59-terminus and 39-terminus of the P2 oligo.
doi:10.1371/journal.pone.0025030.g001
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Arginine at the P2 duplex can mediate an initial burst of
polymerization

The second site on the ribozyme that was used for the

attachment of conjugates is the P2 duplex, which was formed by

the polymerase ribozyme base pairing to the RNA hexanucleotide

59-GGCGCC-39 [7,12] (Fig. 1). The P2 oligo is positioned

adjacent to the catalytic site as judged by the crystal structure of

the catalytic core of the ribozyme (Fig. 1B; [27]). To test whether

the positive charge next to the catalytic site could improve

polymerization further we modified both the 59-terminus and the

39-terminus of this P2 oligo with arginine (Fig. 1A).

An arginine or amino modification at the 59-terminus of the P2

oligo resulted in an initial burst of polymerization but caused a

stalling of polymerization after five or six nucleotides were added

(Fig. 5). This mirrors the behavior when the P2 oligo is a

heptanucleotide, differing from our hexanucleotide by a 39-

terminal adenosine [12]. This 39-terminal adenosine interacts with

the single-stranded portion of the same template as used in this

study (T21) but not with other templates (T50a, T50b). Consistent

with that we did not find an influence of modifications at the 59-

terminus of the P2 oligo when other templates were used (T50a or

T50c from reference [12]; data not shown). When the arginine or

amino modification was placed at the 39-terminus of the P2 oligo it

did not affect polymerization efficiency. This is consistent with a

previous study, which found that nucleotide extensions at the 39-

terminus of the P2 oligo are tolerated [12].

Influence of arginine conjugates at low magnesium
concentrations

All experiments above were conducted at magnesium ion

concentrations of 80 mM Mg2+ (64 mM free Mg2+), which may be

too high for arginine to compete with, to bind to phosphodiester

oxygens. Therefore, we reduced the concentration of Mg2+ to

40 mM (24 mM free Mg2+), which is high enough to obtain

quantifiable data from polymerization but perhaps low enough to

see a positive effect of arginine cofactors [19]. A positive effect by

arginine cofactors at this concentration would not mean that the

polymerase ribozyme efficiency is improved over its optimal

activity (which requires 200 mM Mg2+) but that single arginines

could have a role in nucleic acid interactions in an RNA world,

at these lower Mg2+ concentrations. However, even at this low

concentration we did not detect increased polymerization effi-

ciencies due to arginine (Fig. 6). On the contrary, the arginine

modification was inhibitory when the 59-duplex had a length of 11

or 13 base pairs. The inhibitory effect at a duplex length of 11 base

pairs was consistent with the effect at 80 mM Mg2+ whereas the

inhibitory effect at a 59-duplex length of 13 base pairs was not seen

at 80 mM Mg2+ and may therefore reflect a minor structural

change of the ribozyme between 40 mM and 80 mM Mg2+.

Discussion

In an effort to increase the polymerization efficiency of the

polymerase ribozyme we tested whether arginine conjugates could

improve polymerization. However, we found that arginine did not

improve polymerization when placed at ten different positions on

the polymerase ribozyme.

Why did the use of arginine-nucleic acid conjugates not improve

the efficiency of the polymerase ribozyme? One possibility is that a

single arginine is not sufficient to show a strong effect on primer/

template binding. However, our assay is sensitive enough to detect

even single hydrogen bonds that affect substrate binding [14].

Second, although we tested ten different positions for arginine on

the ribozyme the best location may not have been among them.

Third, the current polymerase ribozymes may not benefit from the

conjugates because the ribozymes were optimized in the absence

of these conjugates. A partial randomization and re-selection in

the presence of these conjugates may find polymerase ribozymes

that efficiently use the conjugates. Lastly, it is possible that the

magnesium concentration that is necessary for activity of the

polymerase ribozyme shielded the phosphodiester groups suffi-

ciently that the effect of an arginine was too low to detect.

Although we decreased the concentration of free magnesium ions

to 24 mM (Fig. 6) we did not find a beneficial effect of arginine on

polymerization. This suggests that at the magnesium concentra-

tion necessary for activity of the ribozyme single arginines cannot

improve polymerization of the existing polymerase ribozymes.

The potential benefit of the amino acid histidine for acid-base

catalysis in ribozymes and deoxyribozymes was explored previ-

ously. Histidine promised to be useful for a catalytic function

because it has a pKA close to the neutral pH, whereas nucleic acids

do not [30]. Indeed, an in vitro selection found deoxyribozymes

that use free histidine as cofactor, probably with a catalytic role

[31]. However, the rate enhancements of histidine-using deoxyr-

ibozymes are not higher than those that use divalent metal ion

cofactors or no cofactors at all [32,33], and it was found that

ribozymes can perturb the pKAs of nucleobases close to the neutral

pH [34,35,36]. Additionally, it appears easier for nucleic acids to

use divalent cations rather than histidine as cofactor [37].

Therefore, histidine (and perhaps any other amino acid) does

not seem to be important for general acid-base catalysis in

ribozymes or deoxyribozymes.

Peptides and proteins fulfill several non-catalytic roles in natural

ribozymes. The bacterial RNase P ribozyme requires the C5

protein for recognition of the pre-tRNA substrate [38] and

ribosomal proteins fulfill a very diverse set of functions [39].

Although natural hammerhead ribozymes do not require a protein

cofactor, a trans-acting variant of the hammerhead ribozyme

benefits from the nonspecific binding of the HIV p7 nucleocapsid

protein, for the annealing of substrates and the dissociation of

products [40]. Therefore, trans-acting ribozymes can benefit from

Figure 2. Influence of arginine and amino modifications at the
proximal end of the 59-duplex, on polymerization. Shown is an
autoradiogram of PAGE separated polymerization products. For each
sample, the polymerization products at six incubation times are shown.
The number of nucleotides added to the primer during polymerization
is indicated. The eighth nucleotide addition results in two bands due to
nucleotide misincorporation. The length of the 59-duplex was 17 base
pairs. No difference in polymerization efficiency was found between
unmodified and modified ribozymes, within the errors of three
replications of the experiments.
doi:10.1371/journal.pone.0025030.g002

Arginine Cofactors on the Polymerase Ribozyme

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25030



Figure 3. Influence of arginine and amino modifications at the distal end of the 59-duplex on polymerization. (A) Autoradiogram of
PAGE separated polymerization products, with RNA/RNA duplexes at the 59-terminus of the ribozyme, in the presence of our P2 oligo. The length of
the 59-duplexes as well as the chemical modification, are indicated. (B) Autoradiogram of PAGE separated polymerization products, with RNA/RNA
duplexes at the 59-terminus of the ribozyme, in the absence of a P2 oligo. The length of the 59-duplexes as well as the chemical modification, are
indicated. (C) Quantitation of polymerization efficiencies for RNA/RNA (filled symbols) and DNA/RNA (open symbols) duplexes at the ribozyme 59-
terminus. The polymerization efficiency is described as the average number of nucleotides added per primer. For each length of the 59-duplex, three
variants were tested: Unmodified (circles), amino modified (squares), and arginine modified (triangles) duplexes. Symbols above the grey dashed line
show the results of reactions in the presence of the P2 oligo; symbols below the grey dashed line show the results in the absence of a P2 oligo. Errors
are standard deviations from three experiments.
doi:10.1371/journal.pone.0025030.g003

Arginine Cofactors on the Polymerase Ribozyme

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25030



peptides or proteins for the function of substrate interactions.

Although our study did not identify how single arginines can assist

ribozyme polymerization we assume that a different setup with

short peptides can help the polymerase ribozyme to bind the

primer/template substrate.

Ribozymes have been selected previously to require the

presence of a peptide or protein to be active [41,42,43]. Here,

the peptides/proteins appear to stabilize the catalytically active

structure of the ribozyme. However, in none of these cases was the

activity of the RNP complex higher than that of the parent

ribozyme. Therefore, these RNPs show how the activity of a

ribozyme can be regulated by a peptide but not how the activity

can be increased. In contrast, our study aimed solely to obtain

ribozymes with higher efficiency.

In an RNA world, amino acid - nucleid acid conjugates could

have been crucial intermediates for establishing a translation

system [20,21,24]. In the first step amino acid-nucleic acid

conjugates would have been synthesized. Although we did not find

a functional benefit of single amino acid conjugates for the

polymerase ribozyme they could have carried different immediate

evolutionary advantages [20]. With respect to the evolution of the

translational apparatus these conjugates would have served as the

ancestors of aminoacyl-tRNAs [44]. The next step in the evolution

would have been the attachment of multiple amino acids to a

single conjugate. This formation of peptide bonds can be catalyzed

by ribozymes [45] and could have carried immediate benefits, for

example by tighter interactions of diarginine with RNA than of

arginine. If the source of this second amino acid would have been

another conjugate then the ribozyme that catalyzed this peptidyl

transfer would have been a primitive ribosome: the conjugates

(precursors of tRNAs) would be aligned by base pairing to an

mRNA (either a sequence in the ribozyme or a separate RNA).

The nucleic acid portion of the conjugate would then have served

as precursor to the tRNA anticodon and facilitated the first

encoded peptide synthesis. Further evolutionary steps would have

improved the efficiency and accuracy of this machinery to the

present-day translation apparatus. One strength of this model is

that each of these evolutionary steps has been shown to be

accessible to ribozymes, and that each evolutionary step carried an

evolutionary advantage for the RNA world organism [20,46].

Materials and Methods

Ribozymes and substrates
Ribozymes were synthesized by in vitro transcription from PCR

products, using bacteriophage T7 RNA polymerase as described

[19]. Transcribed ribozymes were purified by 7 M urea 5%

polyacrylamide gel electrophoresis (PAGE). RNAs were purchased

from Dharmacon, and DNAs were purchased from IDT. All

RNAs and DNAs were PAGE purified. Primers were radiolabeled

using T4 polynucleotide kinase (NEB) and [c-32P] ATP (Perkin-

Elmer). All chemicals were Molecular Biology grade or higher.

Synthesis of conjugates
Arginine conjugates were synthesized from amino-modified

RNAs or DNAs via NHS-activated arginine. The amino mo-

difications contained a tether to the nucleic acid by six methylene

groups (C6-linker). In dry DMF, 143 mM a-amino-Fmoc-arginine

were reacted with 143 mM N-hydroxy succinimide (NHS) and

143 mM N,N9-dicyclohexyl carbodiimide (DCC) for 1 hour at

50uC. After cooling to room temperature the reaction mixture was

mixed with the 2.5-fold volume of an aqueous solution with

100 mM amino-modified nucleic acid and 200 mM MES/NaOH

pH 6.5. After incubation for 2 hours at room temperature the

reaction mixture was dried in vacuum, then deprotected in an

excess of 100 mM NaOH for 1 hour at 40uC. RNA coupling

products were deprotected in an excess of 50 mM NaOH and

50 mM Na2CO3 for 2 hours at 10uC. Deprotected products were

neutralized, ethanol precipitated, and purified by 7 M urea 20%

PAGE. The overall yield was 5–10% for RNA-arginine conjugates

and 10–20% for DNA-arginine conjugates, as calculated based

on the nucleic acid. The identity of the DNA conjugates was

confirmed by MALDI Mass Spectroscopy, using hydroxypicolinic

acid and ammonium citrate as matrix and a DNA 12mer and

21mer as internal standard for calibration. Expected mass for our

test amino modified DNA: 5330.6; found: 5330.7. Expected mass

for the corresponding arginine modified DNA with Fmoc

protection: 5709.0; found: 5708.7. Expected mass for deprotected

arginine modified DNA: 5486.8. Found: 5486.9. Additionally, the

identity of both DNA and RNA conjugates was confirmed by

Figure 4. Extension of primers that were base paired to the 59-
terminus of the polymerase ribozyme. The extension efficiency of
these primers was measured as a function of the length of the 59-
duplex. (A) Autoradiogram of PAGE separated polymerization products,
in the absence of the P2 oligo. For each length of the 59-duplex
(indicated) the unreacted primer and the reaction products are shown.
(B) Quantitation of polymerization efficiencies. The polymerization
efficiency was measured as the average number of nucleotides added
per primer and plotted as a function of the length of the 59-duplex. The
polymerization efficiencies in the absence (open squares) and in the
presence of the P2 oligo (filled squares) are shown. Errors are standard
deviations from triplicate experiments and were usually smaller than
the symbols.
doi:10.1371/journal.pone.0025030.g004
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the migration pattern of 59-radiolabeled samples in denaturing

PAGE.

Ribozyme Reactions
Ribozyme reactions were performed as described [19]. All RNAs

were dissolved in water at the appropriate concentration (final

reaction concentration: 2 mM Ribozyme, 1 mM template, less than

50 nM 59-radiolabeled primer, 2.5 mM P2 oligo, 2.5 mM 59

terminus oligo), heat denatured (2 min/80uC) and cooled to the

reaction temperature (17uC) at 0.1uC/sec. Reactions were started

by adding 2.56 reaction buffer containing magnesium chloride,

buffer (Tris/HCl, pH 8.5), and NTP (an equimolar mix of the four

nucleoside triphosphates) so that the final concentrations were

50 mM Tris/HCl and 4 mM of each NTP. Magnesium chloride

was 80 mM with the exception of primer extensions at the 59-

duplex (200 mM MgCl2), or reactions annotated to contain 40 mM

MgCl2. Reaction times were 24 hours for reactions with P2 oligo

and 3 hours for reactions without P2 oligo if not indicated

otherwise. Reaction times for reactions with 40 mM MgCl2 were

22 hours. The reason for the different incubation time is that in the

absence of the P2 oligo polymerization is fast during the first hours

and then stalls, whereas in the presence of the P2 oligo

polymerization is slower during the first hours but extends further

[12]. The reactions were stopped by the addition of a 1.5 fold

volume of stop buffer (80% (v/v) formamide, 200 mM Na2EDTA

at pH 8.4) and a template-complementary RNA added in 20-fold

excess over the template. The mixtures were heat denatured

(2 min/80uC) and cooled to room temperature at 0.1uC/sec before

loading and separating on 7 M urea 0.56TBE 20% PAGE.

Data analysis
Autoradiographs of the PAGE separations were recorded by a

PMI phosphorimager (Bio-Rad) and quantitated using the

software Quantity One. Shifts higher than 11 nt above the primer

were counted as full-length extension. The values for ‘‘average

nucleotides per primer’’ were obtained by multiplying the fraction

of intensity for each band (minus background signal) with the

number of added nucleotides corresponding to that band. For

quantifying the effect of 29-deoxy substitutions, the method was

described previously [14]. All experiments were repeated at least

in triplicate.
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Figure 5. Influence of arginine and amino modifications at the P2 oligo. The position and the modification of the DNA P2 oligo 59-GGCGCC-
39 is shown for each reaction, as well as the number of nucleotides added to the primer. The images are representative for three experiments. (A)
Autoradiogram of PAGE separated polymerization products, after 24 hours of polymerization. (B) Autoradiogram of PAGE separated polymerization
products, after increasing times for polymerization.
doi:10.1371/journal.pone.0025030.g005

Figure 6. Influence of arginine and amino modifications on
polymerization at low magnesium concentration. Quantitation
of polymerization efficiencies for DNA conjugates at the ribozyme 59-
terminus (in the absence of a separate P2 oligo) and at the P2 site. The
polymerization efficiency is described as the average number of
nucleotides added per primer. For each experiment, three DNAs were
tested: Unmodified (circles), amino modified (squares), and arginine
modified (triangles) DNAs. Errors are standard deviations from three
experiments.
doi:10.1371/journal.pone.0025030.g006
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