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Blood-based gene expression 
signatures of medication-free 
outpatients with major depressive 
disorder: integrative genome-wide 
and candidate gene analyses
Hiroaki Hori1,2, Daimei Sasayama1, Toshiya Teraishi1, Noriko Yamamoto1, Seiji Nakamura3, 
Miho Ota1, Kotaro Hattori1, Yoshiharu Kim2, Teruhiko Higuchi4 & Hiroshi Kunugi1

Several microarray-based studies have investigated gene expression profiles in major depressive 
disorder (MDD), yet with highly variable findings. We examined blood-based genome-wide expression 
signatures of MDD, focusing on molecular pathways and networks underlying differentially expressed 
genes (DEGs) and behaviours of hypothesis-driven, evidence-based candidate genes for depression. 
Agilent human whole-genome arrays were used to measure gene expression in 14 medication-free 
outpatients with MDD who were at least moderately ill and 14 healthy controls matched pairwise for 
age and sex. After filtering, we compared expression of entire probes between patients and controls 
and identified DEGs. The DEGs were evaluated by pathway and network analyses. For the candidate 
gene analysis, we utilized 169 previously prioritized genes and examined their case-control separation 
efficiency and correlational co-expression network in patients relative to controls. The 317 screened 
DEGs mapped to a significantly over-represented pathway, the “synaptic transmission” pathway. 
The protein-protein interaction network was also significantly enriched, in which a number of key 
molecules for depression were included. The co-expression network of candidate genes was markedly 
disrupted in patients. This study provided evidence for an altered molecular network along with several 
key molecules in MDD and confirmed that the candidate genes are worthwhile targets for depression 
research.

Major depressive disorder (MDD) is a common psychiatric condition characterized by persistent low mood and/
or diminished interest or pleasure in activities that used to be pleasurable. With an estimated 350 million people 
affected, depression is a leading cause of disability worldwide according to World Health Organization statistics. 
However, the pathogenesis is yet to be fully understood, and at present, there are no laboratory tests available to 
aid in its diagnosis or prognosis.

With the development of bioinformatics and systems biology methods, analysis of genome-wide gene expression 
patterns has emerged as a powerful tool to probe a molecular phenotype of a disease without requiring an a priori 
hypothesis. Using this technique, studies have suggested gene expression profiles as reliable markers for classifica-
tion, prognostication and prediction of various diseases such as cancer1, autoimmune diseases2 and neurological 
disorders3. As gene expression profiling can reflect a dynamic picture of genomic responses to environmental 
contributions4, it is considered relevant to psychiatric disorders as well5–8.

Concerning the type of sample, earlier genome-wide expression studies in psychiatry often used post-mortem 
brain tissues as the target for sampling. Recently, much attention has turned to more easily accessible peripheral 
blood samples8,9. Several studies to compare gene expression in the blood and brain have demonstrated considerable 
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overlap10,11, and as such, peripheral blood gene expression is regarded as a reasonable surrogate that circumvents 
several limitations associated with postmortem brain tissue9,12. Thus, blood gene expression profiling has become 
an important area of research in psychiatry8,9.

Accordingly, several microarray-based studies13–19 and one study using an RNA sequencing (RNA-seq) tech-
nique20 have investigated blood gene expression signatures in depressive disorders and identified a number of 
differentially expressed genes (DEGs). However, the reported DEGs have been highly variable across studies and, 
in general, most of the DEGs identified in one study have not been replicated in others21. This issue may have 
stemmed, at least in part, from different study design, psychotropic medications including antidepressants, and 
sample characteristics such as postpartum depression13, subsyndromal depression16, anxious depression18, and 
recurrent depression20. Alternatively, the stringent thresholds for a marker to be considered differentially expressed 
(that is, only those markers exceeding the thresholds adjusted for genome-wide error rate were selected as DEGs) 
may have contributed to the inconsistent findings. This explanation is plausible given the relatively small sample 
sizes and large numbers of transcripts simultaneously tested, and as a result, even true susceptibility genes for 
depression that do not necessarily have such a large effect size could be buried in a sea of false negative findings. 
Indeed, it is now widely accepted that depression is a multifactorial and heterogeneous disorder in which many 
susceptibility genes with small effects and a broad range of environmental factors, as well as the resultant complex 
gene-gene and gene-environment interactions, are likely to be in play22.

With respect to analysis and interpretation of genome-wide data, a growing interest has been directed toward 
pathways and networks that reflect dynamic interactions between genes, transcripts and proteins23, as they are 
considered to better harness the rich, comprehensive information in -omics data24,25. Assuming this, transcriptomic 
studies may benefit from searching for interactive relationships between expression levels of a relatively large num-
ber of genes that meet a less conservative statistical threshold. Such an approach may be especially advantageous to 
depression research26, given that the systems biology-oriented strategy could capture the complex disease process 
and, as a consequence, might give rise to the possibility of identifying (a set of) genes involved in depression.

On the other hand, genetic research for MDD in the past few decades has extensively studied the so-called 
candidate genes for depression that were primarily chosen based on their biological mechanisms, such as genes 
involved in monoamine and glutamate neurotransmission, hypothalamic-pituitary-adrenal (HPA) axis function, 
and neurogenesis. As there have been over 100 such genes implicated in depression27, genome-wide expression 
data will provide a unique opportunity to simultaneously examine these genes. Nonetheless, they have rarely been 
identified as DEGs in the above-mentioned transcriptome studies13–20, which may again be attributable to the 
rigorous threshold that could discard most of these genes with small to moderate sizes of effect. Hence, it would 
be of interest to test whether the hypothesis-driven, evidence-based candidate genes overall tend to be associated 
with depression, and, if so, which genes or gene networks are particularly relevant.

Against these backgrounds, the present study set out to investigate blood-based genome-wide expression 
signatures in patients with MDD relative to healthy controls matched pairwise for age and sex. The main aims 
were to examine how the identified DEGs would be translated into molecular pathways and networks and how 
the evidence-based candidate genes for depression would behave in the genome-wide expression data. We were 
particularly interested in inspecting the obtained results in the context of extant evidence in the literature.

Results
Characteristics of each sample are shown in Supplementary Table S1. The pipeline for microarray data analysis is 
illustrated in Fig. 1.

Genome-wide analysis. The overabundance analysis of the filtered 28,439 probes illustrated that a greater 
number of differentially expressed probes between patients and controls were observed than would be expected 
by chance, across the entire p value range (Supplementary Fig. S1). The principal component analysis of the 
28,439 probes showed that the two diagnostic groups were to some extent, but not sufficiently, linearly separable 
as either patient or control in the first two principal component dimensions (Supplementary Fig. S2).

Expression levels of the 28,439 probes were compared between patients and controls, using the hybrid thresh-
olds of t-test p value less than 0.01 and absolute fold change greater than 1.5. This process yielded 317 DEGs, of 
which 247 were down-regulated and 70 were up-regulated in patients. The thresholding process is visualized as a 
volcano plot in Supplementary Fig. S3. Of the 317 DEGs, 234 probes with corresponding gene symbols are listed 
in Supplementary Table S2. A list of the top 20 DEGs is shown in Table 1; the top-hit gene was LUZP1, followed 
by UGCG and UBQLN4.

With respect to case-control separation performance of the DEGs, the principal component analysis of the 317 
DEGs revealed that 24/28 (85.7%) of the samples were linearly separable (Supplementary Fig. S4). Results of the 
unsupervised hierarchical clustering on the 317 DEGs are displayed as a dendrogram in Supplementary Fig. S5, 
indicating that 23/28 samples (82.1%) were correctly classified.

Next we performed gene ontology (GO) and pathway/network analyses and conducted literature mining. 
The DAVID functional enrichment analysis revealed that there were 17 over-represented GO terms for the 182 
down-regulated DEGs with gene symbols (Supplementary Table S3); in contrast, no terms were obtained for the 
52 up-regulated DEGs. The 182 down-regulated DEGs and 52 up-regulated DEGs were separately mapped to 
the BioCarta, KEGG, and Reactome pathway databases, resulting in one significant pathway (p =  0.011) in the 
Reactome database, “REACT_13685: Synaptic Transmission”, for the down-regulated genes (Fig. 2a). Four genes 
in the input list, BCHE, CACNA1B, CACNA1E and VAMP2, were included in this pathway. This pathway con-
sisted of 3 components: “Transmission across Electrical Synapses (Component 1)”, “Transmission across Chemical 
Synapses (Component 2)”, and “Potassium Channels (Component 3)”. All the 4 input genes were included in the 
Transmission across Chemical Synapses component (Fig. 2b–e) There were 280 genes (molecules) participating in 
the global pathway, of which 25 were found in the 169 candidate gene list of Kao et al.27 (Supplementary Table S4).  
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Considering that the number of human genes listed in the leading repositories of genome annotation (eg. Ensembl, 
NCBI’s RefSeq and UCSC genome browser) is around 22,00028, the observed number was indicative of a remark-
able over-representation (25/280 vs. 169/22,000; approximately 11.6 times greater). A protein-protein interaction 
network for the annotated 234 DEGs as determined by STRING is shown in Fig. 3. Of the input 234 genes, 199 
genes (proteins) matched the database and were used to construct the network, of which 62 had at least one inter-
action with other protein(s) and constituted the entire network comprising several sub-networks. The statistical 
enrichment analysis incorporated in STRING revealed that the whole network was significantly enriched (number 
of proteins used: 199; number of proteins observed: 62; number of proteins expected: 41.6; p =  0.00185). This 
network consisted of a number of molecules previously reported to be associated with depression (according to a 
PubMed search), such as CYP3A5, VAMP2, CSGALNACT1, CASP8, CRHR2, PKD2, and OXT (Fig. 3). Results of 
literature mining for the top 20 DEGs using Chilibot and manual searches are presented in the right-side columns 
of Supplementary Table S5. Four genes, ie. FKBP4, PKD2, CSGALNACT1, and VAMP2, co-occurred with the term 
“depression”, and 11 genes were reported to be associated with brain function/structure.

The top 20 DEGs were compared with those reported in 6 previous transcriptome studies of MDD patients 
as compared to control subjects14,15,17–20 (Table 2). There were no genes listed as top-ranked DEGs in any two or 
more of these 7 studies.

Candidate gene analysis. The overabundance analysis of the 183 probes showed that the number of differ-
entially expressed candidate gene probes between patients and controls exceeded not only the number expected 
by chance but also the number observed using all 28,439 probes, albeit to a slight extent (Supplementary Fig. S6). 
Similarly, the principal component analysis revealed that the separation ability seemed to be somewhat greater 
(Supplementary Fig. S7a) compared to when using the entire probe (Supplementary Fig. S2). This ability was 
increased when only the top 11 genes that met hybrid thresholds of t-test p value less than 0.05 and absolute fold 
change greater than 1.5 were used, indicating that a relatively small number of candidate genes might be useful in 
separating patients from controls (Supplementary Fig. S7b).

When case-control separation efficiency was determined by a cut-off of absolute fold change greater than 
1.5, 19 out of the 183 candidate gene probes exceeded the cutoff whereas 1,941 out of the 28,439 total probes 
did. Comparing these ratios (ie. 19/164 vs. 1,941/26,498) by chi-square test, the difference was nearly significant 
(p =  0.0575), suggesting a possible over-representation of candidate genes in depression. In contrast, when the 
cut-off was set using the t-test p value, the ability of candidate genes to discriminate patients from controls was 
almost the same as that of total genes (see Supplementary Fig. S6). Taken together, these results suggest that 
expression levels of the candidate genes were overall altered in depression, yet with marked variations within the 
patient group.

Of the candidate genes, CRHR2 showed the largest difference in the expression levels between patients and 
controls; this was the only gene that exceeded the threshold of p less than 0.01 (Supplementary Table S6) and thus 
was included in the DEG list (Supplementary Table S2). In addition, CRHR1 showed the third largest difference.

Correlational co-expression analyses among the 183 probes were performed separately for patients and controls, 
revealing that the numbers of significantly correlated probe pairs were 1,175 in patients and 2,602 in controls when 
the significance threshold was set at p <  0.01. When the threshold was set at p <  0.001, the numbers were 443 in 
patients and 1,243 in controls. These results indicated the disruption of the co-expression network in patients as 

Figure 1. Flow diagram of microarray data analyses. The left arm of this figure represents steps of the 
genome-wide analysis and the right arm represents steps of the candidate gene analysis. White boxes indicate 
types of analysis. Blue boxes indicate numbers of gene probes, which decrease after filtering and selection 
procedures.
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compared to controls. Figure 4 presents only highly significant results where two gene probes were very strongly 
correlated with each other as defined by p <  1 ×  10−8 (approximately corresponding to rho > 0.97), which revealed 
remarkable disruption of the correlational co-expression network in patients (number of nodes: 2 vs. 15; number of 
edges: 1 vs. 18). The network for healthy subjects included two hub genes with 6 edges, namely CPLX2 and NOS3. 
Two CRH receptor genes, CRHR1 and CRHR2, were also found in this network.

Discussion
In this study, we compared blood-based gene expression profiles between patients with MDD and matched healthy 
controls. We first conducted genome-wide analyses and then explored behaviours of hypothesis-driven candidate 
genes for depression. Our first main finding was that the 317 DEGs meeting the thresholds yielded a significantly 
enriched pathway and protein-protein interaction network. Importantly, this pathway and network were of consid-
erable relevance to depression and to the central nervous system. Specifically, the significant over-representation of 
the synaptic transmission pathway agrees closely with the well-established evidence that impaired neurotransmis-
sion is a hallmark of depression and with recent findings of genome-wide significant signals within voltage-gated 
calcium channel genes (mainly CACNA1C) for major psychiatric disorders including MDD29,30. Moreover, the 
protein-protein interaction network included a number of molecules previously implicated in depression. Thus, 
the hypothesis that differential gene expression in depression can be better understood as a network of a relatively 
large number of genes/molecules was supported.

As described earlier, top-ranked DEGs in previous studies have been inconsistent, and the top 20 DEGs identi-
fied in the present study did not show any overlap with the previous findings (Table 2). These inconsistencies may 
be attributable to various factors such as ethnic differences, medications, and heterogeneity of depressive disorders. 
Nonetheless, a scrutiny of our top 20 DEGs through bioinformatics analyses including literature mining revealed 
several interesting findings. First, 11 of 20 genes have been shown to be involved in the brain. For example, the 
top-hit gene LUZP131 and the third-hit UBQLN432, albeit having no reported link with depression, have been 
demonstrated to be predominantly expressed in the brain, and the second-hit UGCG has been shown to be required 
in the maintenance of healthy intracellular interactions for nervous system stability and function33 (Supplementary 
Table S5). In addition, FKBP4, PKD2, CSGALNACT1, and VAMP2 have been reported in relation to depression 
(or mood disorders). Of particular note here is that VAMP2 and CSGALNACT1 were both identified as the top-hit 
genes in genome-wide studies for depression34,35. VAMP (vesicle-associated membrane protein; synaptobrevin), 
together with syntaxin 1 and SNAP-25, forms the predominant neural SNARE (soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor) complex that is primarily involved in vesicle fusion and plays essential roles in 
the regulation of voltage-gated calcium channels and neurotransmitter release. Here, we suggest that VAMP2 is a 
key player in the pathogenesis of depression, based on the following convergent evidence. First, a microarray-based 
transcriptome study integrating animal and human data identified VAMP2 as the only gene surpassing thresholds 
for all the different datasets, in which VAMP2 was down-regulated34 (that study was not included in Table 2 because 
the primary transcriptome analysis was performed in mice). This finding is in striking agreement with the present 

Probe name GeneSymbol p
Fold 

change Description
EntrezGene 

ID
RefSeq accession 

number

A_23_P407142 LUZP1 8.44E-05 − 1.98 leucine zipper protein 1, transcript variant 1 7798 NM_033631

A_23_P123645 UGCG 2.16E-04 1.59 UDP-glucose ceramide glucosyltransferase 7357 XM_005252186

A_23_P201059 UBQLN4 2.40E-04 − 1.91 ubiquilin 4 56893 NM_020131

A_32_P902957 ARL11 4.29E-04 1.51 ADP-ribosylation factor-like 11 115761 NM_138450

A_24_P257201 MRPL30 4.83E-04 1.58 mitochondrial ribosomal protein L30, transcript variant 1 51263 NM_145212

A_23_P214944 ALDH8A1 6.65E-04 1.89 aldehyde dehydrogenase 8 family, member A1, transcript variant 1 64577 NM_022568

A_23_P128372 FKBP4 7.11E-04 − 1.99 FK506 binding protein 4, 59kDa 2288 NM_002014

A_23_P40785 ZNF445 7.82E-04 − 2.07 zinc finger protein 445 353274 NM_181489

A_23_P211619 SCUBE1 7.84E-04 − 1.67 signal peptide, CUB domain, EGF-like 1 80274 NM_173050

A_23_P167324 PKD2 7.94E-04 1.88 polycystic kidney disease 2 (autosomal dominant) 5311 NM_000297

A_24_P406525 CSGALNACT1 8.66E-04 1.71 chondroitin sulfate N-acetylgalactosaminyltransferase 1, transcript variant 2 55790 NM_018371

A_23_P65320 NEK3 0.00103 1.68 NIMA-related kinase 3, transcript variant 1 4752 NM_002498

A_32_P209148 CCDC41-AS1 0.00104 − 1.75 CCDC41 antisense RNA 1 (head to head), long non-coding RNA 144486 NR_027035

A_23_P206284 GPR56 0.00107 − 1.64 G protein-coupled receptor 56, transcript variant 3 9289 NM_201525

A_23_P158349 RABL3 0.00108 1.51 RAB, member of RAS oncogene family-like 3 285282 NM_173825

A_24_P166407 HIST1H4B 0.00112 1.84 histone cluster 1, H4b 8366 NM_003544

A_24_P123768 EIF2AK1 0.00115 − 1.86 eukaryotic translation initiation factor 2-alpha kinase 1, transcript variant 1 27102 NM_014413

A_23_P328735 THAP6 0.00117 1.80 THAP domain containing 6 152815 NM_144721

A_23_P119857 TTC32 0.00122 1.64 tetratricopeptide repeat domain 32 130502 NM_001008237

A_24_P313576 VAMP2 0.00126 − 2.22 vesicle-associated membrane protein 2 (synaptobrevin 2) 6844 NM_014232

Table 1.  Top 20 differentially expressed genes in depressed patients compared with controls. Sorted by p 
value for the t-test in an ascending order. Probes without corresponding gene symbols are excluded. Positive 
and negative fold change values represent up-regulated and down-regulated expressions in depression, 
respectively.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:18776 | DOI: 10.1038/srep18776

result showing that this gene exhibited the greatest absolute fold change (down-regulation) in the top 20 DEGs 
(Table 1). Second, our pathway analysis revealed that VAMP2 was a member of both the synaptic transmission 
pathway and protein-protein interaction network, suggesting an integral role that this gene plays in the molecular 
mechanism underlying depression. CSGALNACT1 (chondroitin sulfate N-acetylgalactosaminyltransferase 1) is 
known to be involved in the synthesis of chondroitin sulfate, a major component of cartilage extracellular matrix. 
Interestingly, there is evidence that CSGALNACT1 also has a role in brain development and neuroplasticity36. A 
genome-wide association study of antidepressant response revealed that CSGALNACT1 harbours a variant most 
strongly associated with a sustained antidepressant response35. Furthermore, a genome-wide association study of 
nicotine dependence identified a genome-wide significant variant near this gene37. More recently, a reanalysis of 
microarray-based expression profiles in postmortem brain tissues from subjects with MDD identified upregula-
tion of genes in the N-acetylgalactosaminyltransferase (GALNT) family (that is, genes known to be functionally 
related to CSGALNACT138) as one of the most significant signals characterizing MDD39. These findings suggest a 
major involvement of CSGALNACT1 in psychiatric disorders including depression. FKBP4 and PKD2 may also be 
of interest in light of the relevant literature. FKBP4 (FK506 binding protein 4), together with FKBP5, participates 
in the regulation of the glucocorticoid receptor40 through which it possibly contributes to the pathophysiology 

Figure 2. Schema of the “REACT_13685: Synaptic Transmission” pathway. To identify over-represented 
pathways, the DAVID software was used to map the input genes onto BioCarta, KEGG, and Reactome pathway 
databases, separately for the up-regulated (n =  52) and down-regulated (n =  182) genes. The only significant 
pathway was “REACT_13685: Synaptic Transmission” in the Reactome pathway database (p =  0.011) for the 
down-regulated genes. Four genes in the input gene list, ie. BCHE, CACNA1B, CACNA1E, and VAMP2, were 
included in this pathway. (a) Global schema of the pathway, showing that the pathway consists of 3 encapsulated 
pathway components: “Transmission across Electrical Synapses”, “Transmission across Chemical Synapses” and 
“Potassium Channels”. (b) Schema of the “Transmission across Chemical Synapses” component, in which all the 
four input genes are included. This schema shows that this component consists of 5 subcomponents. (c) Schema 
of a part of the “Neurotransmitter Release Cycle” subcomponent, in which VAMP2 is included as “SNARE 
complex”. (d) Schema of a part of the “Depolarization of the Presynaptic Terminal Triggers the Opening of 
Calcium Channels” subcomponent, in which CACNA1B and CACNA1E are included as “Voltage Gated Ca2+ 
Channel”. (e) Schema of a part of the “Neurotransmitter Clearance in the Synaptic Cleft” subcomponent, in 
which BCHE is included as “Cholinesterase”.
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of depression41. Regarding PKD2, there is one family study reporting co-segregation of mood disorders and 
autosomal-dominant polycystic kidney disease in which this gene plays a causal role42.

Figure 3. Protein-protein interactions between the DEGs as generated by the STRING database. Of the 
input 234 DEGs (ie. only those probes with corresponding gene symbols), 199 genes (proteins) matched the 
database and were used to construct the network. The depicted network includes all proteins (nodes) that had at 
least one interaction (edge) with other protein(s). Differently coloured edges indicate different types of evidence 
used in predicting interactions. Based on the statistical enrichment analysis incorporated in STRING, this entire 
network was significantly enriched (number of proteins used: 199; number of proteins observed: 62; number of 
proteins expected: 41.6; p =  0.00185).

Present studya
Jansen et al., 

2015
Guilloux et al., 

2015
Mostafavi et al., 

2014 Liu et al., 2014a
Belzeaux et al., 

2012a
Menke et al., 

2012b

LUZP1 ↓ KLRD1 ↓ KRT1 ↑ MINOS1 ↓ SND1-IT1 ↑ CELF2 ↑ GPR114 ↓ 

UGCG ↑ IL2RB ↓ NA ↑ COPG ↑ Q9P1I9 ↑ MAT2A ↑ ICA1 ↑ 

UBQLN4 ↓ GZMB ↓ MS4A7 ↓ SYF2 ↓ LOC728093 ↑ CASKIN1 ↓ NCBP1 ↓ 

ARL11 ↑ LRRC4 ↑ AFAP1 ↑ EHMT2 ↑ Q9P194 ↑ SNORA28 ↓ P2RY2 ↓ 

MRPL30 ↑ CPEB4 ↑ UBB ↑ UBAP2L ↑ LOC100124692 ↑ POTEE ↑ TPST1 ↑ 

ALDH8A1 ↑ CALM1 ↓ GLRX5 ↑ MAFK ↓ Q6ZNT7 ↑ ARHGEF6 ↑ 

FKBP4 ↓ TGFBR3 ↓ KYNU ↓ MX1 ↑ FNDC9 ↑ TBC1D5 ↑ 

ZNF445 ↓ PVRL1 ↑ PIK3CD ↑ C1ORF101 ↑ OR52K2 ↑ ZFAND3 ↑ 

SCUBE1 ↓ SNRPD3 ↓ PNN ↓ SNRNP35 ↓ C10orf31 ↑ API5 ↑ 

PKD2 ↑ APOBEC3G ↓ FLOT1 ↑ FAM120AOS ↓ Q9UI72 ↑ LOC391334 ↑ 

CSGALNACT1 ↑ PTPN4 ↓ NA ↓ NOP2 ↑ GAFA2 ↑ XRN2 ↑ 

NEK3 ↑ KLRK1 ↓ C2orf47 ↓ SRSF5 ↓ C9orf84 ↑ ACTBL2 ↑ 

CCDC41-AS1 ↓ DYSF ↑ AGAP10 ↑ TNFRSF10B ↑ AIM2 ↑ MINPP1 ↑ 

GPR56 ↓ TNFRSF10C ↑ HDAC7 ↑ PIPOX ↑ OR52K1 ↑ POTEF ↑ 

RABL3 ↑ NCALD ↓ SYT15 ↑ OAS1 ↑ Q9P1M3 ↑ OPA3 ↑ 

HIST1H4B ↑ C14orf1 ↓ NA ↓ RABEPK ↑ IFNK ↑ ADIPOR1 ↑ 

EIF2AK1 ↓ COX18 ↓ KIAA1731 ↓ SEMA3C ↑ Q9P1I3 ↑ OSBPL9 ↑ 

THAP6 ↑ SSH2 ↑ COMMD1 ↓ CINP ↓ KY ↑ CTBP1 ↑ 

TTC32 ↑ GRAMD1A ↑ H6PD ↓ Q6UXQ5 ↑ BX095413 ↓ 

VAMP2 ↓ DNAJC13 ↑ CCNI ↓ Q6ZNS0 ↑ GSPT1 ↑ 

Table 2.  Comparisons of top-ranked differentially expressed genes between blood-based gene expression 
profiling studies for MDD. Sorted by p value in an ascending order, except for the study of Menke et al. 
(2012). Probes without corresponding gene symbols are excluded. Upward and downward arrows represent 
up-regulated and down-regulated expressions in depression, respectively. Abbreviation: MDD, major depressive 
disorder. The studies of Segman et al. (2010) and Yi et al. (2012) are not included in this table; In Segman et al. 
(2010), statistics such as p value and fold change were not provided in their differentially expressed gene list; 
In Yi et al. (2012), data on direct comparisons between MDD patients and healthy controls were not provided. 
aProbes with absolute fold change <  1.5 were excluded. bDifferentially expressed genes with p <  0.05 and 
absolute fold change > 1.15 in two independent sample sets were listed.
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With respect to the performance of hypothesis-driven, evidence-based candidate genes for depression, the 
set of analyses to examine over-representation revealed that these genes overall tended to be associated with 
depression. The co-expression analyses showed that correlations among candidate genes were generally high 
for both diagnostic groups, supporting the putative small-world properties of the gene co-expression network43. 
However, in the present study this network was markedly disrupted in depression compared to that in controls. 
Relatedly, it has been shown that such a co-expression network in depression predicts subsequent treatment 
response44. CPLX2 and NOS3 were found to play central roles in the co-expression network for controls, and 
the result for CPLX2 may be intriguing in the context of the finding for VAMP2. CPLXs (complexins) are small, 
SNARE-associated proteins that interact with the core SNARE complex to regulate calcium-triggered vesicle 
fusion45 (see Fig. 2c). In the present study, CPLX2 was down-regulated in patients with the t-test p value less than 
0.1 and with an approximately 2-fold change (Supplementary Table S5). Consistent with this observation, a mouse 
study showed that down-regulation of CPLX2 leads to changes in neurotransmitter release that cause significant 
behavioural abnormalities mimicking depression46. Concerning the genes showing differential expression, the two 
CRH receptor genes, CRHR2 and CRHR1, were the first and third strongest signals (respectively). The observed 
lower expression of CRHR2 in depression is consistent with a microarray study in rats in which down-regulation 
of CRHR2 was observed after chronic immobilization stress47. Furthermore, CRHR2 and CRHR1 participated in 
the co-expression network for healthy controls only, indicating their decreased connectivity with other genes in 
depression (Fig. 4). These results agree with the well-documented evidence for the pivotal role of HPA axis dys-
function in the pathophysiology of depression. Our results also suggest that expression levels of candidate genes 
vary markedly within the patient sample, potentially pointing to the existence of different subtypes of MDD. In 
line with this, there are several studies that have successfully subtyped depression based on microarray-based 
genome-wide gene expression profiles16,34,48. Such an approach might lead to more sophisticated diagnosis of 
MDD and ultimately open a new avenue for tailor-made treatment strategies for each patient. Taken together, our 
results indicate that candidate genes for depression—which, if excessively stringent statistical thresholds are used, 
will be mostly discarded due to their moderate effect sizes (as was the case with the present study) —are indeed a 
promising target for depression research.

The current study has several limitations. Firstly, confirmation of the present results was not performed using an 
independent replication sample, which means that some of the identified DEGs may merely represent false-positive 
results. This absence of confirmation data is due to the difficulty of sampling non-medicated MDD patients with at 
least moderate depression severity. Still, it may be worth noting that this study itself had a confirmatory nature, in 
that we inspected the obtained results using multiple lines of evidence and, most notably, replicated the associations 
of depression with genome-wide supported VAMP2 and CSGALNACT1 as well as the evidence-based candidate 
genes. Perhaps relatedly, our sample was well defined since the MDD patients were all outpatients, medication-free, 
at least moderately ill, and matched pairwise with control subjects for age and sex. Secondly, this study was 
cross-sectional, which precluded inferences about whether the differential expression pattern observed in patients 
represents a preexisting vulnerability or is a consequence of depressive illness. Thirdly, we should mention that 
methodological advances in sequencing and bioinformatics have enabled next-generation whole-transcriptome 
sequencing technology, ie. RNA-seq. Still, microarray data have been demonstrated to show high concordance 
with RNA-seq data49, particularly when weakly expressed genes are excluded50. As described below, we utilized 
the Agilent microarray platform with a wide dynamic range of 5 orders of magnitude, and moreover, filtered out 
those genes with low expression values.

In summary, the present microarray-based gene expression profiling for depression provided evidence for an 
altered molecular network along with key molecules and supported that the candidate genes are worthwhile targets 

Figure 4. Correlational expression networks of evidence-based candidate genes for depression. Co-
expression networks were examined separately for patients with MDD and healthy controls, using the 183 
evidence-based candidate gene probes. Two genes were considered to be co-expressed if their Spearman’s rank 
order correlation was highly significant as defined by p <  1 ×  10−8 (approximately corresponding to rho > 0.97). 
There were 15 nodes (genes) and 18 edges (interactions) that exceeded this threshold (significant correlations 
between two probes representing the same gene are omitted). Edges in black indicate co-expression network in 
controls. The edge in red indicates common co-expression between patients and controls, which was the only 
co-expression exceeding the threshold in patients (that is, there were no co-expression networks specific to 
patients).
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for depression research. Findings from the present and previous studies converge on several genes considered 
to play integral roles in depression, particularly VAMP2, CSGALNACT1, and CRHR2, which might be followed 
by LUZP1, UGCG, UBQLN4, FKBP4, PKD2, CPLX2, and CRHR1. Future well-designed transcriptome studies, 
integrated functional genomics studies51, and reanalysis/meta-analysis of expression data deposited in the public 
domain52 should help to further understand gene expression signatures of depression and to establish genes useful 
in its prediction, diagnosis and treatment.

Methods
Participants. Supplementary Table S1 shows the characteristics of each sample. The sample size was deter-
mined based on previous microarray-based genome-wide expression studies on depression13–17.

Fourteen outpatients with current MDD (mean age 41.6 [standard deviation 11.3] years, ranging from 26 to 
57 years; 7 women) were recruited from the outpatient clinic of the National Center of Neurology and Psychiatry 
(NCNP) Hospital, Tokyo, Japan, or through an advertisement in a free local magazine and our website announce-
ment. Consensus diagnoses were based on clinical interviews, observations and case notes by at least two experi-
enced psychiatrists. The clinical diagnosis was confirmed using either the Structured Clinical Interview for DSM-IV 
Axis-I disorders53 or the Mini-International Neuropsychiatric Interview (MINI)54 by a trained research psychiatrist. 
All patients were free of psychotropic medication for at least 1 month at the time of blood sampling. Only those 
patients whose depression severity was at least moderate, as defined by the total score on the Hamilton Depression 
Rating Scale 21-item version (HAM-D)55 of 18 or more56, were enrolled (mean HAM-D total score 25.2 [standard 
deviation 5.8], ranging from 18 to 37; Supplementary Table S1). Patients with bipolar disorders were excluded.

Fourteen healthy control participants, matched pairwise for sex and age (age difference within a given matched 
pair needed to be 3 years or less), were recruited from the same geographical area via a free local magazine and 
website announcement (Supplementary Table S1). They were interviewed using the MINI by a research psychi-
atrist, and only those without current Axis-I psychiatric disorders were enrolled. A non-structured interview 
was also conducted by an experienced psychiatrist to exclude individuals who demonstrated one or more of the 
following conditions: having past or current regular contact to psychiatric services, having a history of regular use 
of psychotropics, and presenting other obvious self-reported signs of past primary psychotic and mood disorders.

Additional common exclusion criteria were having a history of central nervous system disease, severe head 
injury and substance abuse/dependence. The present study was approved by the ethics committee of the NCNP, 
Tokyo, Japan, and was conducted in accordance with the Declaration of Helsinki. After description of the study, 
written informed consent was obtained from every participant.

mRNA extraction and processing. Venous blood was collected in PAXgene Blood RNA Tubes (Becton, 
Dickinson and Company, Tokyo Japan) between 11 a.m. and 12 a.m. from each participant and was incubated 
at room temperature for 24 hours for RNA stabilization. RNA was extracted from whole blood according to 
the manufacturer’s guidelines using the PAXgene Blood RNA System Kit (Qiagen, Tokyo, Japan). Quality and 
quantity of the RNA samples were determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Inc., Wilmington, DE, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Tokyo, Japan).

Gene expression analysis was performed on Agilent Whole Human Genome 4 ×  44 K arrays (Agilent 
Technologies). Cy3-labelled cRNA was synthesized from 250 ng of total RNA using an Agilent Quick Amp Labeling 
Kit (Agilent Technologies). The Agilent one-color microarray platform is demonstrated to have high (approximately 
90%) concordance with TaqMan qPCR assays57. Raw signal data were analysed using the GeneSpring GX software, 
version 13.0 (Agilent Technologies). The raw signal values were thresholded to 1.0, and log base 2-transformation 
was performed. The 75th percentile shift normalization and baseline transformation with the median of all samples 
were then conducted, as per recommendations in the GeneSpring manual. The normalized data were used for all 
analyses. To enhance reproducibility of measurements, quality control was applied by an expression filter with 20th 
percentile threshold to remove genes with low signal intensity values, followed by filtering on flags based on the 
default settings. These steps resulted in 28,439 probes, for which all subsequent analyses were performed (Fig. 1).

Microarray data analysis: genome-wide analysis. Steps of the data-driven genome-wide gene expres-
sion analysis are shown in the left arm of Fig. 1. The 28,439 probes after filtering were first evaluated by over-
abundance and principal component analyses in order to assess the performance of the entire expression dataset 
with respect to the separation of the samples into patients and controls. Next we compared expression levels of 
these probes between patients and controls and determined DEGs by hybrid thresholds of p-value for moderated 
t-test less than 0.01 combined with absolute fold change greater than 1.5. In this analysis, conservative correction 
methods for multiple testing such as false discovery rate were left out because they were found to be too stringent 
for the present purpose of selecting a relatively large number (eg. some hundreds) of DEGs with which to make 
subsequent analyses more pertinent. The identified DEGs were then used for all downstream analyses unless 
otherwise specified.

To assess case-control separation efficiency of the DEGs, principal component analysis was performed. 
Unsupervised hierarchical clustering analysis, with Euclidean distance as a measure of similarity coupled with 
the average linkage method, was applied to stratify samples based on expression levels of the DEGs, as this algo-
rithm has been shown to produce relatively stable and accurate clusters58. The principal component analysis and 
clustering analysis were performed using the GeneSpring software. The DEGs were then evaluated by a sequence 
of bioinformatics analyses comprising GO analysis, pathway/network analysis, protein-protein interaction, and 
literature mining (see Supplementary Method for details). These informatics analyses were conducted using 
publicly available databases. To understand the biological significance and evaluate the statistical enrichment 
(over-representation) of the DEGs, we first conducted GO term enrichment analysis using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) v6.7 functional enrichment tool59. DAVID was 



www.nature.com/scientificreports/

9Scientific RepoRts | 6:18776 | DOI: 10.1038/srep18776

then used to identify over-represented pathways. Specifically, the DEGs uploaded to DAVID were mapped onto 
BioCarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway databases, separately for 
the up-regulated and down-regulated genes. To construct a protein-protein interaction network and analyse its 
enrichment, the DEGs were submitted to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
v9.1 software60. Finally, literature mining was performed to scrutinize the top 20 genes of the DEG list in terms of 
their relevance to depression and the central nervous system. To this end, a literature analysis software was used to 
identify co-occurrence of names of a given gene (or genes) and a given keyword. The search term “depression” or 
“central nervous system” was used as the keyword. In addition, manual PubMed literature searches were conducted 
on the same 20 genes to check for other important evidence for their involvement in the brain.

Microarray data analysis: evidence-based candidate gene analysis. For the candidate gene anal-
ysis, we decided to include 169 genes as depression candidate genes, based on the study of Kao et al.27. In that 
study, candidate genes for MDD were prioritized using multiple lines of evidence-based datasets consisting of 
association, linkage, gene expression (including both human and animal studies), regulatory pathway, and liter-
ature searches. The number of genes (ie. 169) as well as the content of this list was therefore considered adequate 
for the present study.

The procedure for the candidate gene analysis is illustrated in the right arm of Fig. 1. Of the 169 genes, 113 
genes corresponding to 183 probes survived the initial filters of expression levels and flag status. Similar to the 
genome-wide analysis, overabundance and principal component analyses were used to assess the performance 
of the 183 probes.

To test if the correlational co-expression network among candidate genes is disrupted in MDD, correlations 
between expression levels of the 183 probes (ie. 183C2 =  16,653 combinations) were assessed in each diagnostic 
group by the Spearman’s rank order correlation using IBM SPSS Statistics version 21.0 (IBM Corp., Tokyo, Japan). 
The nonparametric analysis was used because assumptions of normality as determined by the Shapiro-Wilk test 
were violated in 26 of the 183 probes in at least one diagnostic group (ie. patients or controls).
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