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Abstract

Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in
hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether a7 nAChR contributes
to the regulation of these events. In this report, an aggravating role of a7 nAChR in host defense against meningitic E. coli
infection was demonstrated by using a7-deficient (a7-/-) mouse brain microvascular endothelial cells (BMEC) and animal
model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN)
transmigration across the blood-brain barrier (BBB) were significantly reduced in a7-/- BMEC and a7-/- mice. Stimulation by
nicotine was abolished in the a7-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (a7
antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice
infected with E. coli and treated with nicotine, compared to a7-/- cells and animals. Decreased neuronal injury in the
hippocampal dentate gyrus was observed in a7-/- mice with meningitis. Proinflammatory cytokines (IL-1b, IL-6, TNFa, MCP-1,
MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids
of the a7-/- mice with E. coli meningitis. Furthermore, a7 nAChR is the major calcium channel for nicotine- and E. coli K1-
increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that a7 nAChR plays a
detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment,
calcium signaling and neuronal inflammation.
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Introduction

Pathogen penetration and polymorphonuclear neutrophil

(PMN) transmigration across the blood-brain barrier (BBB) are

the hallmark features of bacterial meningitis, which is the most

common serious infection of the central nervous system (CNS) [1-

2]. For disease to develop, blood-borne pathogens must interact

with and penetrate across brain microvascular endothelial cells

(BMEC), which form the main constituents of the BBB, and then

gain access to the brain and meninges. An overwhelming host

inflammatory response, including transendothelial migration of

PMN, is provoked upon bacterial internalization and replication

within the CNS. While various bacterial determinants and CNS

factors that contribute to pathogen invasion, neuronal inflamma-

tion and brain injury have been identified and characterized in

both in vitro and in vivo models of bacterial meningitis, little is

known about the specific contribution of a7 nAChR, an essential

regulator of inflammation, to the pathogenesis of bacterial

meningitis.

Bacterial meningitis most frequently results from the bacter-

emia, which is essential for pathogen invasion across the BBB [1].

There are two important aspects suggested in the gap between the

biology of a7 nAChR and bacterial penetration across the BBB.

On one hand, an important connection between the nervous

system and the inflammatory response to disease has been

uncovered through identification of a7 nAChR as an essential

regulator of inflammation. As reported by Wang et al., the a7

subunit is essential for inhibiting endotoxin-induced cytokine

synthesis in macrophages through the cholinergic anti-inflamma-

tory pathway [3]. Recent studies demonstrated that a7 nAChR

played a detrimental role in the host defense against E. coli

peritonitis and pneumococcal pneumonia [4–5]. The host defense

against bacterial infection is impaired by stimulation of a7 nAChR

with nicotine, which is an a7 agonist derived from tobacco smoke

with multiple effects on the vascular, immune and nervous systems

[5-6]. It is likely that nicotine is able to modulate the host defense

system through nAChRs on cells in the tissue barriers, the immune

system and the CNS similar to opiates and cannabinoids [7]. We
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have previously shown that nicotine was able to enhance

meningitic E. coli K1 invasion of human BMEC in vitro, suggesting

the involvement of a7 nAChR in the pathogenesis of bacterial

meningitis [8]. Although a number of the epidemiological studies

have shown that exposure to passive tobacco smoke significantly

increases the risk of bacteremia and bacterial meningitis [9-11],

the pathogenic mechanisms of nicotine and tobacco smoke on this

disease are largely unknown. This receptor is abundantly

expressed in hippocampus, which is the region most vulnerable

to bacterial meningitis. A coordinated response has been

demonstrated between a7 nAChR and NMDA receptor

(NMDAR) [12]. Excitotoxic neuronal injury by the activity of

NMDAR has been implicated in the pathogenesis of bacterial

meningitis [13–14]. Opposite effects on neonatal excitotoxic brain

injuries could be induced by activation or suppression of a7

nAChR in the CNS when compared to that in adults [15],

suggesting that meningitic inflammation in neonates and adults

may be differentially regulated by nAChRs. On the other hand, a7

nAChR is a member of a family of ligand-gated ion channel,

having one of the highest permeabilities to calcium [16].

Cytoplasmic calcium signals are mediated by activation of

nAChRs through three different approaches: (a) direct calcium

influx through nAChRs, (b) indirect calcium influx through

voltage-dependent calcium channels, and (c) calcium-induced

calcium release from the endoplasmic reticulum [16]. Regulation

of intracellular calcium by a7 nAChR can lead to activation of

signal transduction pathways, including extracellular signal-

regulated kinase 1/2 (ERK1/2), cAMP response element binding

(CREB), and AKT [17]. It has been shown that nicotine was able

to activate Calcium/calmodulin-dependent kinase II (CaMKII) in

rat prefrontal cortex nerve terminals through a7 nAChR [18].

The prion protein (PrPc) could bind to a7 nAChR to form a

signaling complex, which led to an increase in intracellular

calcium and activation of ERK1/2 [19].

Ca2+ signaling has been found to be important in various steps

of microbial infection, including meningitis. Bacterial pathogens

and their products can induce an increase in intracellular Ca2+ in

host cells [20]. Pneumolysin, a toxin of meningitic Pneumococcus,

was able to induce increases of intracellular Ca2+ and trigger brain

cell apoptosis [21]. Meningitic E. coli was also able to increase

cytosolic-free-calcium levels of human BMEC in a manner

dependent on calmodulin [22], suggesting that calcium signaling

contributes to the pathogenesis of E. coli meningitis. Our recent

study demonstrated that IbeA (invasion of brain endothelium) + E.

coli invasion of HBMEC was positively correlated with phosphor-

ylation of the IbeA receptor vimentin at Ser82 by CaMKII and

pathogen-induced phosphorylation of ERK1/2 [23]. Interaction

between IbeA and vimentin at HBMEC membrane rafts is

essential for ERK1/2-mediated signalling, which modulate

meningitic E. coli K1 invasion. Erk1/2 activation is also required

for nicotine-enhanced E. coli K1 invasion of HBMEC in a manner

dependent on the recruitment of a7 nAChR and related signaling

molecules, including vimentin, and Erk1/2, to caveolin-1 enriched

lipid rafts [24]. It remains to be determined, however, whether and

how a7 nAChR-mediated calcium signaling contributes to

meningitic invasion in vitro and in vivo. Therefore, it is important

to further dissect its role in the pathogenesis of bacterial meningitis

and CNS injury by defining the mechanism by which it modulates

pathogen penetration across the BBB.

The migration of leukocytes across the BBB into the CNS is

critical in the pathogenesis of bacterial meningitis [25]. It is a key

aspect of the protective response against invading pathogens, but

in recent years, evidence has accumulated that leukocytes also

contribute importantly to the deleterious effects of inflammation

on the brain in bacterial meningitis [26]. The adhesive interactions

between transmigrating leukocytes and endothelial cells are well

understood. We have recently defined E. coli K1-induced adhesive

interactions between transmigrating leukocytes and brain endothe-

lial cells in a manner dependent on the IbeA receptor vimentin [27].

ICAM-1 and CD44 play a role in the leukocyte transmigration

process during E. coli meningitis. It has been demonstrated that

leukocytes are able to transmigrate across the endothelium by using

both paracellular and transcellular pathways. Recent studies show

that blood lymphocytes and neutrophils preferentially transmigrate

across peripheral and brain endothelial cells via a transcellular route

[28]. This notion is supported by our recent findings that

transcellular migration of PMN across HBMEC is induced by

meningitic E. coli K1 [27]. It has been shown that nicotine could

induce significant dose-related increases in leukocyte rolling and

adhesion in the cerebral microcirculation of the mouse brain [29].

Endothelial cell activation and leukocyte recruitment was regulated

through the a7 nAChR cholinergic pathway during endotoxin-

induced inflammation [30]. Currently, it is unclear whether and

how the a7 nAChR cholinergic pathway contributes to PMN

transmigration across the BBB during meningitic infection. As a7

nAChR is a key regulator of inflammation [3], it is important to

examine whether this receptor on both leukocytes and the

endothelium is essential for modulation of meningitic virulence

factor-induced PMN transmigration across the BBB.

In this report, using a7-deficient mouse cell culture and animal

model systems, we examined how a7 nAChR contributed to the

modulation of pathogen invasion, PMN recruitment and neuronal

inflammation induced by E. coli K1, which is the most common

gram-negative pathogen causing neonatal bacterial meningitis. The

in vitro and in vivo models permit genetic dissection of the role of a7

nAChR in modulation of host defense against meningitic pathogen

invasion. We also sought to examine whether the a7 receptor on

both BMEC and leukocytes is required for the recruitment of PMN

into the CNS, which is associated with increased permeability of the

BBB and neuronal injury. Finally, we assessed a7 nAChR-mediated

calcium signaling and proinflammatory factors that have the

potential to affect the outcome of bacterial meningitis.

Results

Isolation and characterization of mouse BMEC (MBMEC)
from wildtype and a7 knockout animals

In order to establish in vitro models for examining the role of a7

nAChR in E. coli invasion and PMN transmigration, wildtype (WT)

and a7 nAChR knockout (KO) MBMEC were isolated and purified

from the brains of 10-day-old wildtype (a7+/+) and a7-deficient mice

(a7-/-) using UEA I lectin-coated beads as described in Methods and

Materials. Under the light microscope, the isolated cells showed

endothelial cell type morphology in both the WT and KO MBMEC

(Figure S1A). Then, the cells were stained with antibodies against

the mouse endothelial marker CD146 (FITC conjugate) and the

brain cell markers GGT (FITC) and S100B (FITC), respectively,

demonstrating that the cells were derived from brain microvascu-

lature (Figure S1A). The tight junction (TJ) formation was stained

with the TJ marker ZO-1 (FITC) (Figure S1A). Next, the deficiency

of a7 nAChR was confirmed by the absence of a-bungarotoxin (a-

BTX) binding sites in KO MBMEC (Figure S1A) and the KO

mouse brain tissues (Figure S1C) using the rhodamine conjugated a-

BTX binding assay [31], and the lack of a7 nAChR in KO

MBMEC by immunnoblotting with a rabbit antibody against the

mouse a7 receptor (Figure S1B). These results confirmed that the a7

nAchR was completely deleted in MBMEC derived from the

knockout mice.

Role of Alpha7 nAchR in Pathogenesis of Meningitis
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a7-deficient MBMEC are defective in E. coli K1 invasion
To determine the role of a7 nAchR in the pathogenesis of E. coli

meningitis, we examined whether KO MBMEC treated with and

without nicotine were defective in bacterial invasion. To mimic the

concentrations of nicotine measured in the serum of human active and

passive smokers [32], MBMEC (a7+/+) were exposed to low doses of

nicotine (0.1 to 10 mM) for 48 h or 10 mM of nicotine at different time

points (0–72 h). The results indicated that E. coli K1 invasion was

significantly enhanced by nicotine in a dose- and time-dependent

manner (Figure 1A-B). WT MBMEC were then incubated with or

without nicotine (10 mM) for 48 hours, and treated with the a7

antagonist methyllycaconitine (MLA). The result indicated that MLA

was able to block E. coli invasion of MBMEC treated with and without

nicotine in a dose-dependent manner (Figure 1C). The WT and KO

MBMEC treated with or without nicotine were then subjected to

bacterial invasion assays. The invasion rates of WT MBMEC were

much higher than that of KO MBMEC even without nicotine

stimulation, suggesting that a7 nAChR might play a regulatory role in

bacterial invasion in a manner independent of nicotine (Figure 1D).

Since nicotine could not increase the invasion rate in KO MBMEC

when compared to that in WT MBMEC, a7 nAChR should be the

major receptor for nicotine-induced cellular effects. Taken together,

these studies suggest that a7 nAChR contributes to bacterial invasion

in a nicotine-dependent and independent manner.

a7 nAChR in BMEC and PMN is required for leukocyte
transmigration across MBMEC

PMN recruitment into the CNS plays a crucial role in the

inflammatory response during bacterial meningitis [25]. In order to

exclude the possibility that the leukocyte migration elicited was due

to destruction of MBMEC, the integrity of the monolayer was

inspected by microscopy. WT MBMEC were exposed to low doses

of nicotine (0.1 to 10 mM) for 48 h or 10 mM of nicotine at different

time points (0–72 h), and subjected to PMN transmigration assays.

As indicated in Figure 2A and 2B, nicotine significantly increased

PMN transmigration in a dose- and time-dependent manner. MLA

was able to significantly inhibit PMN transmigration across the

wildtype MBMEC monolayer treated with and without nicotine in a

dose-dependent manner (Figure 2C). MLA-mediated blocking

effects were observed upon treatment of either cell type alone or

both (Figure 2D), suggesting that a7 nAChR expression on both

leukocytes and MBMEC is required for nicotine-enhanced PMN

transmigration in vitro. To further support this conclusion, a7+/+ and

a7-/- MBMEC and PMN were used in leukocyte adhesion and

migration assays. As shown in Figure 2E and 2F, both a7-/-

MBMEC and a7-/- PMN were significantly defective in leukocyte

adhesion and transmigration when compared to the wildtype cells.

These results were consisted with the result of chemical blockage by

MLA, suggesting that a7 nAChR on BMEC and PMN is required

for leukocyte adhesion and transmigration.

a7 knockout neonatal mice are defective in E. coli
K1-induced bacteremia, bacterial meningitis, PMN
recruitment and nicotine-mediated stimulation

To further validate the biological relevance of the in vitro assays,

the role of a7 nAChR in the pathogenesis of neonatal E. coli K1

meningitis was tested in the mouse model, as described in Methods

and Materials. We first examined the effects of the a7 antagonist

MLA on nicotine-enhanced meningitis in wildtype mice. In this

study, wildtype neonatal (10 day-old) mice were intraperitoneally

injected with E44 (26105 CFU) after treatment with nicotine or

MLA for 3 days. As shown in Figure 3, nicotine was able to

significantly increase E. coli bacteremia (P,0.01, Figure 3A),

bacterial entry into brain and CSF (meningitis) (P,0.01, Figure 3B

Figure 1. Effects of chemical and genetic blockages of a7 nAChR on E44 invasion in vitro. E44 invasion of WT MBMEC after exposure to
nicotine (NT) at different doses (0.1 to 10 mM) for 48 h (A) and 10 mM of NT at different points (0–72 h) (B). (C) Effects of different doses of MLA (1 h
incubation) on E44 invasion of WT MBMEC treated with (10 mM NT for 48h) and without NT. (D) Effect of genetic blockage of a7 on E44 invasion of
MBMEC with or without NT treatment (10 mM for 48h). In all treatments, the WT MBMEC without any treatment was taken as a control, and all results
are expressed as relative invasion compared the corresponding controls without treatments (100%). All invasion assays were performed in triplicate
wells. Bar graphs show the means 6 SD of triplicate samples. Significant differences with regard to the controls are marked by asterisks (*P,0.05;
**P,0.01).
doi:10.1371/journal.pone.0025016.g001

Role of Alpha7 nAchR in Pathogenesis of Meningitis
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and Figure S2A), and PMN transmigration across the BBB (P,0.01,

Figure 3C). MLA was able to significantly block nicotine-enhanced

pathogenicities when compared to the controls. These results suggest

that a7 nAChR could increase the host susceptibility to E. coli K1

meningitis. To further confirm this conclusion, the host susceptibility

to E. coli K1 meningitis was tested in wildtype and KO neonatal

mice. Animals of the same age were intraperitoneally injected with

E44 (26105 CFU), followed by Evans blue injection after 15h. As

shown in Figure 4A, bacteremia was significantly decreased in KO

mice as compared to wildtype animals (P,0.05), suggesting that a7

nAChR plays a role in the genesis of bacteremia. This result showed

that the magnitude of bacteremia was significantly increased by

nicotine exposure only in wildtype mice (P,0.01), but not in KO

mice, suggesting that a7 nAChR is essential for nicotine-enhanced

bacterial pathogenicities (Figure 4A). Similarly, the bacterial counts

in brain and CSF were significantly reduced in KO mice as

compared to wildtype animals (P,0.01), suggesting that a7 nAChR

also contributes to E. coli K1 penetration across the BBB (Figure 4B

and Figure S2B). E. coli K1 was also able to significantly increase

PMN transmigration across the BBB into CSF in wildtype mice as

compared to KO animals (P,0.01, Figure 4C). Nicotine was only

able to enhance PMN transmigration across the BBB in wildtype

mice as compared to corresponding controls (P,0.01), suggesting

that leukocyte transmigration across the BBB is mainly modulated by

a7 nAChR. Histologic examination of brains with hematoxylin-

eosin staining indicated that nicotine was able to significantly

enhance the recruitment of PMN into the CNS induced by E44 cells

in the wildtype mice but not in KO mice (Figure 4D), which further

confirmed the role of a7 nAChR in PMN transmigration across the

BBB. Taken together, these data suggested that a7 nAChR could

play a detrimental role in the host defense against E. coli meningitis

by increasing E. coli bacteremia, bacterial invasion, and PMN

transmigration across the BBB.

E. coli bacteremia and meningitis in heterozygous mice
To further examine whether a single allele was sufficient to

complement the role of a7 nAchR in the pathogenesis of E. coli

meningitis, the heterozygous (+/-) neonatal mice were also

subjected to i.p. injection of the same inoculum size of E44. The

wildtype and heterozygous animals did not show marked

differences in bacteremia (Figure S3A), bacterial counts in brain

tissues and CSF (Figure S3B and S3C), and the rate of PMN

transmigration across the BBB (Figure S3D). These results suggest

that a single allele could retain the full function of a7 nAChR to

increase host susceptibility to E. coli K1 meningitis.

Tobacco smoking increased E. coli K1-induced
bacteremia, bacterial meningitis, PMN recruitment into
the CNS of neonatal mice

Since nicotine is a major component in tobacco smoke, we

examined the effect of tobacco smoking on pathogenesis of

Figure 2. Effects of chemical and genetic blockages of a7 nAChR on NT-enhanced PMN transmigration across BBB. (A) E44-induced
PMN transmigration across WT MBMEC that were exposed to different doses of NT (0.1 to 10 mM) for 48 h. (B) E44-induced PMN transmigration across
WT MBMEC that were exposed to NT (10 mM) for 0-72h. (C) Effects of different doses of MLA (1 h incubation) PMN transmigration across WT MBMEC
treated with (10 mM NT for 48h) and without NT. (D) Effect of MLA treatment of either MBMEC or PMN on NT-enhanced PMN transmigration. WT
MBMEC were pre-exposed to 10 mM NT for 48 h, and then MBMEC and PMN were treated with MLA for 1 hr prior to the leukocyte transmigration
assay. The a7 deficiency of either MBMEC or PMN resulted in a significant suppression of E44-induced PMN binding (E) and transmigration (F) with or
without NT exposure. WT and KO MBMEC were exposed to 10 mM NT for 48 h before the PMN adhesion and transmigration assays. For the PMN
adhesion assay, results were expressed as relative adhesion compared to the WT cells (PMN and MBMEC) (100%). Values represent the means of
fifteen randomly selected fields from triplicate wells as described in Methods and Materials. For the PMN transmigration assay, values represent the
means of % transmigrating PMN of triplicate samples. Bar graphs show the means 6 SD of triplicate samples. In (D), the experimental setting without
MLA treatment was taken as a control (the first column). In (E) and (F), the WT cells (PMN and MBMEC) without any treatment served as controls. Bar
graphs showed the means 6 SD of the triplicate samples. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0025016.g002
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neonatal E. coli K1 meningitis. Side stream (95%) tobacco smoking

was performed from postnatal day 4 to day 10 with wildtype

neonatal mice as described in Methods and Materials. At day 10,

the neonatal mice with or without tobacco smoking were

intraperitoneally injected with E44 (26105 CFU). As shown in

Figure S4, tobacco smoking was able to significantly increase E.

coli bacteremia (P,0.01, S Figure S4A), bacterial entry into brain

tissues and CSF (meningitis) (P,0.01, Figure S4B and S4C), and

Figure 3. MLA-mediated inhibition of bacteremia, bacterial entry into the brain, and PMN transmigration across BBB. (A) Magnitude
of bacteremia in WT mice treated with NT or MLA. (B) Bacterial loads in the brains of WT mice treated with NT or MLA. (C) Migration of PMN into the
CSF of WT mice treated with NT or MLA. WT neonatal mice were divided into 4 groups (6–8 pups/group). Each experiment was repeated three times.
*P,0.05, **P,0.01.
doi:10.1371/journal.pone.0025016.g003

Figure 4. Effects of a7 deficiency on bacteremia, bacterial entry into brain, and PMN transmigration across BBB. (A) Magnitude of
bacteremia in WT and KO mice treated with or without NT. (B) Bacterial loads in the brains of WT and KO mice treated with or without NT. (C)
Migration of PMN into the CSF of WT and KO mice treated with or without NT. WT and KO neonatal mice were divided into 4 groups (6–8 pups/
group). Each experiment was performed three times. *P,0.05, **P,0.01. (D) The recruitment of PMN into the CNS of WT and KO mice treated with
NT and infected with E44. Brain cortex sections were stained with hematoxylin-eosin. Arrows indicate infiltrating PMN. Images are 2006.
doi:10.1371/journal.pone.0025016.g004

Role of Alpha7 nAchR in Pathogenesis of Meningitis
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PMN transmigration across the BBB (P,0.01, Figure S4D). These

data suggested that second hand tobacco smoking could be a

significant risk factor for E. coli meningitis in neonates.

a7 deficient BMEC and animals are defective in E. coli
K1- and nicotine-induced BBB disorders

As pathogen penetration and PMN transmigration across the

BBB are the most critical step in the pathogenesis of bacterial

meningitis [1-2], we tested whether the BBB permeability was

increased by a7 nAChR. BBB permeability was first examined in a

Transwell system with wildtype and KO MBMEC treated with

nicotine or E44 cells. As shown in Figure 5A, the passage of

horseradish peroxidase (HRP) through wildtype MBMEC mono-

layers was increased upon infection with E44 cells in a time-

dependent manner. The E44-mediated stimulation was amplified

by exposure to nicotine in the same manner. These results

demonstrated that nicotine could enhance the BBB permeability in

vitro. Nicotine exposure was unable to increase the E44-induced

BBB permeability in KO MBMEC as compared to the negative

control without nicotine treatment, suggesting that a7 nAChR

contributes to increased BBB permeability induced by both E. coli

K1 and nicotine. E. coli K1 translocation across the MBMEC

monolayer in the two chamber transwell system was also examined

by plating bacteria at different time points (Figure 5B). The result

indicated nicotine treatment could accelerate E. coli K1 translo-

cation across WT MBMEC, while the a7 nAChR deficiency led to

decreases in E. coli K1 translocation. These in vitro results were

consisted with the conclusion drawn from the in vivo studies using

the mouse model of neonatal E. coli meningitis. Quantitative

evaluation of the BBB damage was performed using the Evans

blue (EB) extravasation assay. As shown in Figure 5C, nicotine was

able to more significantly increase E44-induced permeability of the

BBB in wildtype mice (P,0.01) when compared to that in KO

animals (P,0.05). The enhanced permeability of the BBB induced

by E44 cells was significantly increased in wildtype mice as

compared to KO mice. These results suggest that a7 nAChR is

required for pathogen- and nicotine-increased BBB permeability.

As shown in images of mouse brains with EB staining (Figure 5D),

substantially heavier EB staining was seen in wildtype animals

treated with nicotine than in other treatment settings. Alterna-

tively, the permeability of the BBB was examined by measuring

albumin in CSF samples, as described previously [33]. Nicotine-

enhanced albumin passage across the BBB was reduced by either

chemical (MLA) (Figure S2C) or genetic (KO) (Figure S2D)

blockage of a7 nAChR. Accordingly, albumin passages across the

BBB were also increased in nicotine-treated heterozygous mice

(Figure S3E) and the WT mice with tobacco smoking (Figure S4E).

Figure 5. Effects of genetic blockage of a7 nAChR on NT-increased BBB permeability and E44 transcytosis. (A) Time-course study of
BBB permeability to HRP in WT and KO MBMEC with or without NT (10 mM) exposure for 48 hours. (B) Time-course examination of E. coli K1
penetration across WT and KO MBMEC treated with or without NT (10 mM). In both (A) and (B), values represent the means of triplicate samples from
lower chambers. (C) Evaluation of BBB permeability to Evans blue in WT and KO mice with or without NT exposure (n = 6-8). *P,0.05, **P,0.01. (D)
Images of mouse brains stained with Evans blue.
doi:10.1371/journal.pone.0025016.g005
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These results confirmed the conclusion that a7 nAChR contrib-

uted to modulation of the BBB permeability.

Effects of a7 deficiency on E. coli K1- and
nicotine-induced impairment of tight junction

To compare the integrity of the BBB in vitro and in vivo upon

stimulation with nicotine and E44, the tight junction molecules

occludin and ZO-1 were examined by immunoblotting and

immunohistochemical staining. Immunoblotting indicated that

nicotine could decrease the expressions of ZO-1 and occludin in a

dose- (0.1–10 mM) and time-dependent (0–72 h) manner in WT

MBMEC, while expression of a7 nAChR was increased in a dose-

and time-dependent fashion during the treatments (Figure S5A and

S5B). It concurred with a previous report that nicotine could

upregulate a7 nAChR through activation of nuclear transcription

factor kappa B [34]. Chemical blockage of a7 nAChR by MLA

could reverse the effects of nicotine on ZO-1 and occludin

expressions in a dose-dependent manner, while the up-regulated

expressions of a7 nAChR by nicotine were reduced to the basal level

(Figure S5C). Then, WT and KO MBMEC were treated with

nicotine and E44 alone or in a combination. A greater decrease in

expression of ZO-1 and occludin was observed in the combination

settings than either treatment alone in WT MBMEC (Figure 6A).

However, these effects were significantly reduced in KO MBMEC,

suggesting that the a7 deficiency could protect the tight junction

from nicotine- and bacteria-induced degradation. Immunohisto-

chemical staining of occludin and ZO-1 in mouse brain cortex were

consistent with the in vitro data. As shown in Figure 6C, E44 infection

significantly reduced occludin expression in the cortex. A combined

treatment with nicotine and E44 resulted in an additive or synergistic

effect of decreased occludin expression in the brain tissues, which

was much lower than that in other treatment settings in the wildtype

mice. These results showed that both E. coli K1 and nicotine could

induce BBB damage by decreasing expression of tight junction

molecules. However, E44 and nicotine only induced slight changes

in occludin expression in the brains of KO mice, suggesting that a7

nAChR is required for E44- and nicotine-induced BBB damages.

The quantification analysis of occludin fluorescence intensity was

showed in Figure 6B, confirming the detrimental role of a7 nAChR

to BBB. Similar results were obtained when examining ZO-1

expression (Figure S5D and S5E). These results suggest that a7

nAChR contributes to pathogen- and nicotine-increased BBB

permeability by decreasing protein levels of tight junction molecules.

Neuronal injury in the hippocampus is reduced in a7-/-

mice with E. coli meningitis
Bacterial meningitis causes neuronal damage that predominates in

the hippocampal dentate gyrus [35]. In light of this, we next

examined the neuronal injury in the hippocampus in the murine

model of E. coli meningitis using the TUNEL assay for detecting

Figure 6. Effects of a7 knockout on nicotine- and E44-induced disruption of tight junction (TJ). (A) Immunoblotting showed the
expression of tight junction molecules occludin and ZO-1 in WT and KO MBMEC upon treatment with nicotine (10 mM for 48 h) and E44 (106/ml for
4h) alone or in combination. b-actin was used as an internal loading control. (B) Quantification of occludin expression in WT and KO mouse (n = 5-6)
brain cortex upon treatment with or without NT and E44. The fluorescence intensities of occludin were quantified and expressed as relative
expression compared to the controls. The control (WT) without any treatment was taken as 100%. (C) Immunostaining of TJ molecules in mouse brain
cortex with or without NT exposure and E44 infection using antibodies against occludin (rhodamine-conjugated). A FITC-conjugated anti-CD146 Ab
was used to stain MBMEC, and DAPI was used to stain the structures of brain cortex in the merged pictures. CON: mice without any treatment. E44:
mice infected with E44. NT+E44: NT-treated mice infected with E44. Images are 2006.
doi:10.1371/journal.pone.0025016.g006
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apoptotic neurons and co-staining with an antibody against mature

neurons. As shown in Figure 7A and 7B, no or few TUNEL-positive

neurons were found in the dentate gyrus of the hippocampus within

untreated wildtype and KO mouse brains. E. coli infection

significantly induced TUNEL-positivity in neurons of the inner

layers of dentate gyrus in wildtype mouse brains, but not in KO

mouse brains. Nicotine dramatically enhanced E. coli virulence as

measured by the induction of neuronal apoptosis in wildtype mouse

brains; however, only a few apoptotic neurons were found in KO

mouse brains as compared to the control. The quantification analysis

of TUNEL staining fluorescence intensity was shown in Figure 7C,

confirming the detrimental role of a7 nAChR in neuronal injury.

These data demonstrated that the deficiency of a7 nAChR was

neuroprotective for neonatal mice with E. coli meningitis.

Cerebrospinal fluid (CSF) cytokine levels are reduced by
chemical (MLA) and genetic (a7 KO) blockage of a7
nAChR during E. coli K1 meningitis

To further determine the role of a7 nAChR in the CNS

inflammation, the levels of cytokines in CSF samples were

measured using the Cytometric Beads Array (CBA) assay as

described in Methods and Materials. This technique is able to

quantify multiple proteins simultaneously with the use of the broad

dynamic range of fluorescence detection offered by flow cytometry

and antibody-coated beads to efficiently capture analytes. The

levels of cytokines in CSF, including IL-1b, IL-6, TNFa, MCP-1,

MIP-1a and RANTES were analyzed (Figure 8A-F). The data

showed that nicotine could significantly increase the levels of all of

these cytokines except MIP-1a, while the deficiency of a7 nAChR

resulted in a significant decrease of these cytokines. Nicotine was

unable to significantly upregulate these cytokines in KO mice.

Meningitic Cryptococcus neoformans was unable to up-regulate

expression of cytokines under the similar experimental settings

(data not shown), suggesting that induction of pro-inflammatory

factors is pathogen-dependent. In addition, the a7 antagonist

MLA could inhibit these cytokines in nicotine-treated mice. These

data suggested that a7 nAChR could upregulate inflammatory

cytokines in E. coli K1 meningitis.

E. coli K1- and nicotine-increased protein levels of
adhesion molecules ICAM-1 and CD44 were reduced in
a7-deficient cells and animals

As our previous study has shown that E. coli K1-increased

expression of adhesion molecules ICAM-1(CD54) and CD44(HCAM)

Figure 7. Reduced neuronal injury in the hippocampus of a7 KO mice. (A) Neuron damage in the dentate gyrus of hippocampus within WT
and KO mouse brains was examined by the TUNEL assay. Neurons were stained with an antibody against neuron nuclear protein (NeuN) (FITC-
conjugated). Apoptotic cells were stained with rhodamine after the TUNEL assay. CON: mice without any treatment. E44: mice infected with E. coli K1.
NT+E44: NT-treated mice infected with E44. Images are 1006. The squared areas in merged pictures were enlarged in (B) to show the details of
TUNEL staining. Images are 2006. (C) Quantification of TUNEL-staining in the dentate gyrus of hippocampus within WT and KO mice (n = 5-6) treated
with or without NT and E44. The fluorescence intensity of TUNEL staining was quantified with the dentate gyrus of hippocampus and expressed as
relative expression compared to the controls. The control (WT) without any treatment was taken as one fold.
doi:10.1371/journal.pone.0025016.g007
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in HBMEC is required for PMN binding and transmigration [27],

we examined their expression in a7-/- cells and mice. As shown in

Figure 9A and B, both nicotine and E44 could increase the

expression of ICAM-1 and CD44 in a7+/+ MBMEC, and the

expression was dramatically up-regulated with combination of

nicotine and E44. However, there were no significant changes in

expressions of ICAM-1 and CD44 in a7-/- MBMEC, suggesting

that a7 nAChR is required for both nicotine- and E. coli K1-

induced expression of the analyzed adhesion molecules. To

validate the relevance of the in vitro results, CSF samples taken

from neonatal mice with meningitis (positive bacterial cultures in

brain tissues) were used to examine the levels of soluble ICAM-1

and CD44. Results were consistent with the in vitro findings, which

showed that E44 infection could increase the expression of ICAM-

1 and CD44 in wildtype mice, and that nicotine could amplify

E44-induced expression of these two adhesion molecules in the

wildtype animals (Figure 9C and D). However, there is little

difference in their expression levels in KO mice treated with either

E44 or a combination of E44 and nicotine. In addition,

accumulation of soluble CD44 in the CSF was significantly

reduced in KO mice compared with wildtype animals after E. coli

infection, suggesting that a7 nAChR contributes to up-regulation

of adhesion molecules induced by both nicotine and E. coli K1.

a7 nAChR-mediated calcium signaling contributed to E.
coli K1-induced bacterial invasion and PMN
transmigration

Calcium signaling has been found to be important for the

pathogenesis of bacterial infection [20] and the biological

functions of a7 nAChR [18]. The E. coli K1 virulence factor is

able to increase intracellular transient calcium flux in human

BMEC [22], but the underlying mechanism is unknown. Based on

the above findings and the relatively high calcium permeability of

the a7 nAChR ion channel, we hypothesized that a7 nAChR-

mediated calcium signaling might be the major regulatory

pathway for the CNS inflammatory response to bacteria and

other pathogenic insults, including nicotine. To test this hypoth-

esis, we examined the role of a7 nAChR in E44- and nicotine-

induced signaling using wildtype and KO MBMEC. Fura-2 AM, a

calcium fluorescence dye, was used for measurement of intracel-

lular free calcium. Changes in the ratio of 340 nm/380 nm were

calculated as representing the strength of calcium flux. The ratio

changes occurred immediately in wildtype MBMEC upon E44

stimulation with a range of 0.5-3 fold increase (Figure 10A). Much

higher ratio changes (3-10 fold) were observed in the same cells

stimulated with E44 after exposure to nicotine for 48 hours

(Figure 10B). These results indicated that nicotine could amplify

the transient intracellular calcium flux induced by E44, which

might be the initial step of bacterial invasion. However, KO

MBMEC did not exhibit significant ratio changes upon stimula-

tion with E44 (Figure 10C), suggesting that a7 nAChR might be

the major pathway for the E. coli K1-induced calcium flux. KO

MBMEC exhibited much lower fold increase in ratio changes than

in wildtype cells under the same treatment settings (E44 plus

nicotine) (Figure 10D). These results showed that the deficiency of

a7 nAChR significantly reduced the intracellular calcium flux

upon stimulation with nicotine and E44. However, KO MBMEC

showed a slight increase in the ratio upon co-stimulation with

nicotine and E44 as compared to the same cells without nicotine

Figure 8. Decreased CSF cytokine levels in a7 KO mice. Inflammatory cytokine levels in mouse CSF after E. coli infection were examined by the
Cytometric Beads Array (CBA) as described in Methods and Materials. The values were expressed as concentrations of cytokines (pg/ml or ng/ml)
representing means of 4-5 samples for each group. WT mice served as the control (*P,0.05; **P,0.01).
doi:10.1371/journal.pone.0025016.g008
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treatment, suggesting that there might be non-a7 nAChRs that

interact with nicotine. To further confirm the role of a7 nAChR in

nicotine- and E44-induced calcium signaling, MLA-mediated

chemical blocking was also tested. The result showed that MLA

could completely abolish the E. coli K1-induced calcium flux in

wildtype MBMEC without nicotine treatment (Figure 10E), and

significantly reduce the ratio changes in wildtype MBMEC

exposed to nicotine (0-2 fold, Figure 10F), suggesting that E. coli

K1-induced calcium flux was entirely dependent on a7 nAChR.

Statistical analysis indicated that either chemical (MLA) or genetic

(KO) blockage of a7 nAChR could significantly inhibit E44-

induced intracellular calcium flux in MBMEC with or without

nicotine exposure (Figure 10G). These results were consisted with

the conclusion drawn from the studies with KO MBMEC. To

further confirm this conclusion, inhibitors of the calcium signaling

pathway, including inhibitors of calmodulin [trifluoperazine

(TFP)] and calmodulin kinase II (KN93), and the calcium

chelating agent EGTA, were tested for their ability to block

bacterial invasion and PMN transmigration. As shown in

Figure 10H and 10I, these inhibitors could significantly block E.

coli K1 invasion and PMN transmigration in wildtype MBMEC

with or without nicotine exposure. These data suggest that a7

nAChR-mediated calcium signaling contributes to nicotine-

mediated stimulation, E. coli K1 invasion and PMN transmigration

across the BBB.

Discussion

Currently, the mechanisms responsible for the modulation of

the host response to microbial infection are incompletely

understood, but overwhelming evidence suggests that there are

active connections between the nervous, endocrine, and immune

systems during the regulation of inflammatory processes in various

types of cells and tissues [4,36]. The cholinergic a7 nAChR

pathway has recently been found to play an essential role in

regulation of host inflammatory response to microbial infection [3-

4,8]. Since the activation of the a7 receptor, the major subtype of

neuronal nAChRs, has deleterious effects on neonatal brain

injuries [15], an understanding of the early inflammatory response

to meningitic infection is important for the prevention and

treatment of neonatal bacterial meningitis. We were interested,

therefore, in dissecting the regulatory role of a7 nAChR in the

host defense against meningitic infection. In this report, we have

established that a7 nAChR plays a detrimental role in host defense

Figure 9. Decreased expression of ICAM-1 and CD44 in a7-/- MBMEC and mice. (A) and (B) Expression analysis of cell surface ICAM-1 and
CD44 in a7-/- MBMEC upon treatment with NT and E. coli K1. WT and KO MEBMC were cultured in 96-well plates, exposed to NT (10 mM) for 48 hours,
and incubated with E44 cells (106/ml) for 4 hours. Cells were fixed and subjected to ELISA for ICAM-1 and CD44 as described in Methods and
Materials. WT MBMEC without any treatment was taken as a control and set as one fold. (C) and (D) Decreased levels of soluble ICAM-1 and CD44 in
KO mouse CSF. WT and KO mouse CSF samples were subjected to ELISA assays for the expression of ICAM-1 and CD44 as described in Methods and
Materials. Values were expressed as relative expression. WT mice without any treatment severed as controls, and their means were defined as one-
fold. (*P,0.05; **P,0.01).
doi:10.1371/journal.pone.0025016.g009
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against bacterial meningitis in the mouse model. The entrance of

pathogens and leukocytes into the CNS, which is correlated with

increased BBB permeability, is significantly reduced in the a7-

deficient mice. Calcium signaling mediated by a7 nAChR is the

major regulatory pathway for the CNS inflammatory response to

meningitic E. coli infection and nicotine exposure. The resulting

neuronal inflammation, including secretion of proinflammatory

factors (IL-1b, IL-6, TNFa, MCP-1, MIP-1a, RANTES, CD44

and ICAM-1) into the CSF and inflammatory response in the

hippocampus, is significantly reduced in a7-deficient mice during

E. coli meningitis. Furthermore, these findings are consistent with

clinical observations in humans of an increased incidence of

bacterial meningitis as a consequence of exposure to second hand

tobacco smoke containing nicotine, an a7 agonist that enhances

a7 nAChR activation. These findings provide insight into an

element of host defense previously unknown to influence the

susceptibility to bacterial meningitis, and present novel opportu-

nities to improve disease outcome in humans.

The cholinergic a7 nAChR pathway-mediated inflammatory

regulation has been extensively investigated in models of

experimental sepsis, endotoxemia, ischemia/reperfusion injury,

hemorrhagic shock, arthritis, and other sterile inflammatory

disorders [37]. However, studies on its role in the innate immune

response to microbial infection are very limited. These include a

few in vitro studies on bacterial infection involving chemical

stimulation and blockage of the cholinergic pathways [8,38], and a

recent investigation on bacterial peritonitis by genetic blockage of

a7 nAChR [4]. In order to determine whether and how a7

nAChR plays a role in the pathogenesis of bacterial meningitis, we

first established the in vitro and in vivo mouse models of the BBB

Figure 10. Involvement of a7 nAChR in E. coli K1-induced intracellular calcium flux. (A–F) Elevation of intracellular calcium flux in MBMEC
stimulated with E44 cells. WT and KO MBMEC monolayers were exposed to NT (10 mM) or MLA (1 mM) for 48 hours, and then loaded with Fura-2 AM
as described in Methods and Material. The monolayer was monitored for intracellular calcium flux for 10 minutes with 4 s intervals under an
automated fluorescent microscope. Monolayer cells were stimulated with E44 cells (108 CFU) at the 120 s time point. The intensity of fluorescence at
340 nm and 380 nm was measured. The ratios of intensity of fluorescence at 340 nm and 380 nm were calculated for each time interval and depicted
as continuous lines in (A–F). The y axis represents the ratio, and x axis represents time (s). For each treatment, measurements were repeated with
nine replicates and represented with different colors. (G) The 340 nm/380 nm ratio changes in each treatment were calculated and subjected to
statistical analysis. WT MBMEC without any pre-treatment served as a control and defined as one-fold (1.0). (H) and (I) NT-enhanced E44 invasion and
PMN transmigration in WT MBMEC was blocked by inhibitors of calcium signaling, TFP, KN93, and EGTA. MBMEC were pre-incubated with or without
NT (10 mM) for 48 hours, and then treated with TFP (5 mM), KN93 (25 mM) and EGTA (100 mM) for 1 hour before the invasion or PMN transmigration
assays. For the invasion assays, results are expressed as relative invasion compared to the positive control without any treatment (100%). All invasion
assays were performed in triplicate wells. For the PMN transmigration assays, values represent the means of transmigrating PMN (%) in triplicate
samples. Bar graphs showed the means 6 SD of triplicate samples. In both invasion and PMN transmigration assays, significant differences with
regard to the controls (MBMEC without any treatment) were marked by asterisks (*P,0.05; **P,0.01).
doi:10.1371/journal.pone.0025016.g010
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with a combination of endogenous/exogenous and chemical/

genetic approaches for inhibition and stimulation of the cholin-

ergic a7 nAChR pathway. The combined approaches could

maximize their advantages and minimize their disadvantages.

Both E. coli K1 invasion and PMN transmigration were

significantly reduced in a7-/- MBMEC and a7-/- mice when

compared to that in the wildtype cells and animals. The a7 KO

cells and mice were unable to generate a response to a7 agonist

(nicotine)-mediated stimulation during bacterial infection. The a7

antagonist MLA was able to block nicotine-mediated stimulation

in WT mice upon infection with E. coli K1. These findings suggest

that a7 nAChR plays an essential role in regulation of the host

inflammatory response to meningitic E. coli K1 infection. Thus,

the present report is the first to use a7-/- cells and mice to dissect

the role of the cholinergic a7 nAChR pathway in host defense

against meningitic infection.

The most critical step in the pathogenesis of bacterial meningitis

is the penetration of the extracellular pathogens across the BBB, a

formidable defense system that normally keeps out pathogens and

toxins. It has been demonstrated that nicotine is able to modulate

the BBB permeability through the cholinergic a7 nAChR pathway

[39]. We and others have demonstrated that multiple bacterial

virulence factors, including Ibe proteins (IbeA, IbeB, IbeC and

IbeT), AslA (arylsulfatase-like gene), FimH (type 1 fimbrial tip

adhesin), TraJ (positive regulator of the F plasmid transfer (tra)

operon) and OmpA (outer membrane protein A) are able to

breach the BBB [27]. The precise mechanism responsible for the

E. coli K1-mediated increase in BBB permeability during

meningitis is largely unknown. Although it is well-known that

proinflammatory factors promote increased BBB permeability, it is

unclear how the production of these factors is regulated during this

disease. In this investigation, our results show that a7 nAChR is

able to directly or indirectly upregulate proinflammatory factors

and has a detrimental effect on the permeability of the BBB in the

early stages of meningitic infection. It is most likely that the a7

receptor-upregulated production of proinflammatory factors

results in increased BBB permeability, which facilitates the

entrance of pathogens and leukocytes into the CNS. This notion

is further supported by our finding that the a7 KO mice with

direct inoculation of E. coli K1 into the CSF show reduced

bacteremia and CNS inflammatory response (e.g., decreased PMN

recruitment and albumin leakage into CSF) when compared to

that in the wildtype animals (data not shown). This suggests that

accelerated bacterial clearance in a7 KO mice occurs.

The observation that a7-deficient BMEC were unable to

increase intracellular calcium concentrations upon stimulation

with either pathogens or the a7 agonist nicotine provides two key

pieces of information that are critical for elucidating the molecular

mechanism behind the a7 receptor-mediated suppression of the

host defense against bacterial meningitis. First, Ca2+ signaling has

been implicated in meningitic E. coli K1 infection [22]. FimH,

which is regulated by IbeA [40], can induce an increase in free

cytosolic calcium in human BMEC. Phosphorylation of the IbeA

receptor vimentin by Ca2+/CaMKII and activation of ERK1/2

are required for IbeA+ E. coli K1 invasion of human BMEC [23].

The current investigation demonstrated that nicotine and E. coli

K1 could additively or synergistically increase intracellular Ca2+

concentrations through the cholinergic a7 nAChR pathway.

Pathogen-induced calcium fluxes in MBMEC were almost

completely abolished by either chemical (a7 antagonist MLA) or

genetic (KO cells) blockage. On the other hand, the nAChRs are a

family of ligand-gated calcium channels formed by a pentameric

complex of nAChR subunits [3]. Since the a7 receptor is the

major subtype of nAChRs in the CNS, it plays an important role

in calcium signaling in neuronal and non-neuronal cells through

regulation of intracellular calcium, which leads to activation of

signal transduction pathways, including ERK1/2, CREB, and

AKT [17]. Nicotine is able to activate the Ca2+/calmodulin

signaling pathway through the a7 receptor [18]. Ca2+/CaMKII

can be activated by galantamine, a novel Alzheimer’s drug, which

is known to inhibit acetylcholinesterase activity and potentiate

nicotinic acetylcholine receptor (nAChR) in the brain [41]. Our

results demonstrate that KN93, a specific inhibitor of Ca2+/

CaMKII, is able to block nicotine-enhanced E. coli K1 penetration

across BMEC [23]. These findings suggest that the Ca2+/

calmodulin signaling pathway is commonly activated upon

meningitic infection with pathogens and stimulation of the a7

receptor. Thus, meningitic pathogens and nicotine can additively

or synergistically induce the cellular release of Ca2+ that may

expand bacterial cell signaling through the cholinergic a7 nAChR

pathway, leading to enhanced bacterial invasion and leukocyte

transmigration that are associated with the BBB disorders, and

increased host susceptibility to the invading microorganism.

However, the underlying molecular mechanisms that activate a7

nAChR-mediated calcium signaling and the exact nature of where

these signaling molecules are assembled and regulated remain

elusive. Research from several groups has demonstrated that lipid

rafts/caveolae can serve as microdomains of calcium signaling

through clustering of Ca2+ channels and their regulators in such

platforms [42]. We have recently shown that E. coli K1 and

nicotine could increase the recruitment of a7 nAChR and related

signaling molecules, including vimentin, and Erk1/2, to caveolin-1

enriched lipid rafts [24]. Synergistic effects were observed upon

treatment with a combination of E. coli K1 and nicotine. These

findings suggest that lipid rafts/caveolae could provide a favorable

platform for cross-talk between the cholinergic signaling pathway

(e.g., a7 nAChR/CaMKII/ERK1/2) and non-cholinergic signal-

ing pathways (e.g., vimentin/CaMKII/ERK1/2).

It is worth noting that there may be a difference between

neonatal and non-neonatal patients regarding the role of a7

nAChR in neuronal injury during bacterial meningitis. It has been

reported that activation or suppression of a7 nAChR in the CNS

has opposite effects on neonatal excitotoxic brain injuries when

compared to that in adults [15]. Activation of a7 is protective in

adult animals but deleterious in neonatal mice, whereas its

blockade, either pharmacologically (a7 antagonist) or genetically

(a7-/- mice), provides neuroprotection. However, it has been

shown that there is no difference between neonates and adults in

the deformability and volumes of leukocytes, which are essential

for PMNs emigration from the intravascular to the extravascular

space [43]. This suggests that a7 nAChR may differentially

contribute to modulation of the host inflammatory responses in

different tissues to different disease conditions. In the sterile

inflammatory disorder model used by Wang et. al. [3], a7 nAChR

plays an anti-inflammatory role in the host response against

endotoxin. However, this receptor contributes oppositely to the

host response to bacterial infections, including E. coli peritonitis [4]

and E. coli meningitis (this report). E. coli meningitis commonly

occurs in the neonatal period [1,2], but the basis of this age

dependency is largely unclear. The a7 nAChR cholinergic

pathway may be differentially regulated in an age-dependent

manner. Although a7 nAChR plays a major role in the cholinergic

anti-inflammatory pathway, the other major subtype of nAChRs

in the CNS, a4b2, partially mediate the anti-inflammatory

response, which is not dependent on calcium signaling [44],

suggesting that multi-subtypes of nAChRs may contribute to the

cholinergic regulation of inflammatory response in an elegant

manner. Nicotine, which can interact with the two major nAChRs
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(a7 and a4b2) in the CNS, is able to significantly increase the

levels of proinflammatory factors (IL-1b, IL-6, TNFa, MCP-1,

MIP-1a, RANTES) in CSF. The wildtype mice treated with

nicotine and MLA (a7 antagonist) had decreased responses

relative to the animals left untreated or treated with MLA alone,

suggesting that multi-subtypes of nAChRs may contribute to the

cholinergic regulation of proinflammatory responses. MLA may

be capable of antagonizing endogenous a7 agonists such as

acetylcholine and choline or competing with endogenous a7

inhibitors such as catestatin [36]. Considering the possible

involvement of multi-subtypes of nAChRs in meningitic infection

and the opposite effects of a7 nAChR activation/suppression on

neonatal excitotoxic brain injuries in neonates and adults, close

attention must be paid to the pathogenesis and therapeutic

manipulations of neonatal and non-neonatal bacterial meningitis.

Collectively, the major finding of the present report is that a7

nAChR deficiency is protective against meningitic infection by

down-regulation of pathogen invasion, PMN recruitment, calcium

signaling and neuronal inflammation. Further insight into how

meningitic pathogens utilize the host cholinergic a7 nAChR

pathway to augment their virulence capacity will advance our

understanding of the pathogenesis and therapeutics of bacterial

meningitis.

Methods and Materials

Ethics statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Our

protocols were approved by the Institutional Animal Care and Use

Committee (IACUC) of The Saban Research Institute of

Children’s Hospital Los Angeles (Permit number: A3276-01). All

surgery was performed under anesthesia with ketamine and

lidocaine, and all efforts were made to minimize suffering.

Chemicals and reagent. Dextran, Evans blue, nicotine

tartrate (NT), MLA, TFP, and ethylene glycol tetraacetic acid

(EGTA) were purchased from Sigma-Aldrich (St. Louis, MO).

Dynabeads M-450 Tosylactivated, a–bungarotoxin (a–BTX)

tetramethylrhodamine conjugate, Fura-2 AM, Pluronic-127 were

purchased from Invitrogen (Carlsbad, CA). Ulex europaeus I

(UEA I) lectin and mounting medium with DAPI were purchased

from Vector (Buringame, CA). KN93 was purchased from

ALEXIS Biochemicals (San Diego, CA). All primary antibodies

(Ab) were purchased from the commercial sources: a rabbit anti-

ZO-1 Ab (33-1500) and a mouse anti-occludin Ab (61-7300) from

Invitrogen; a rabbit anti-a7 nAChR Ab from Genescript

(Piscataway, NJ); a rat anti-mouse Ly-6G (Gr-1) Ab, a mouse

anti-neuron (NeuN) Ab from eBiosciences (San Diego, CA); a

mouse anti-CD44 Ab (sc-7297), a rabbit anti-b-actin (sc-7210),

and a rabbit anti-GGT Ab (sc-20638) from Santa Cruz

Biotechnology (Santa Cruz, CA); an anti-mouse CD146 Ab

FITC-conjugated from Biolegend (San Diego, CA), a rabbit anti-

S100B Ab from BD Biosciences, and a rabbit anti-CD54 Ab

(ICAM-1, 250593) from Abbiotec (San Diego, CA). The TUNEL

assay kit was purchased from Millipore (Chemicon, Billerica, MA).

Transwell filters (3 mm pore size, 6.5 mm diameter), blood plates

and CBA assay kit were purchased from BD Biosciences (San Jose,

CA).

Mice. Heterozygous (+/2) a7-deficient mice with the

C57BL/6J background (B6.129S7-Chrna7tm1Bay/J) were pur-

chased from Jackson Laboratory (Bar Harbor, ME). Genotypes

of a7 +/+ mice (WT mice), a7-/- mice (KO mice) and heterozygous

a7 +/- mice were determined according to the PCR protocol

provided by the vendor. The animals were used in transgenic

breeding at 8 weeks of age for optimum reproductive

performance. Male heterozygous (+/2) and female homozygous

(-/-) were used in breeding. The average litter size for neonatal

mice was 6–8. Age- and sex-matched mice were used in all

experiments. All experiments were approved by the Animal Care

and Use Committee of Childrens Hospital Los Angeles Saban

Research Institute.

Isolation and purification of mouse brain microvascular
endothelial cells

Isolation of mouse BMEC was performed with Ulex europaeus I

(UEA I) lectin-coated Dynabeads as described previously [45].

The beads were prepared according to the manufacturer’s

instructions (Invitrogen) and resuspended in Hanks’ balanced salt

solution (HBSS, Invitrogen Corp., Carlsbad, CA, USA) plus 5%

fetal calf serum (HBSS+5 %FCS) to a final concentration of 46l08

beads/ml. The MBMEC were prepared as described previously

[46–47]. Briefly, the mouse (10-day-old) brain specimens devoid of

large blood vessels were homogenized in HBSS and centrifuged in

12.5 % dextran (Mr,70,000, Sigma) at 8,000 g for 10 min. Pellets

containing crude microvessels were further digested in a solution

containing collagenase (0.1 U/ml), dispase (0.8 U/ml) and DNase

I (10 U/ml, Sigma). Microvascular capillaries were isolated by

absorption to Ulex-coated beads. The confluent MBMEC

monolayer displays a cobblestone appearance when grown on

collagen-coated surfaces. The cells were positive for CD146 [48],

demonstrating their endothelial origin, and also expressed S100B

[49] and GGT [46], indicating their brain origin. MBMEC

exhibited an average TEER value of 250–300 V/cm2 [50]. The

cells also exhibited the typical characteristics for brain endothelial

cells expressing tight junctions and a polarized transport of

rhodamine 123, a ligand for P-glycoprotein [51].

E. coli strain and invasion assay. E44, a rifampin-resistant

derivative of E. coli K1 strain RS218 (serotype 018:K1: H7) [1,52],

was grown for 15 h at 37uC in L broth in the presence of rifampin

(100 mg/ml). To test the effects of nicotine on E. coli invasion,

MBMEC were subcultured in tissue culture plates and 1610-5 to

1027 M of nicotine tartrate was pre-incubated with MBMEC in

RPMI-1640 medium. After exposure to nicotine, cell cultures were

examined under a microscope. E. coli invasion assays were

performed as described previously [1,8]. The released

intracellular bacteria were enumerated by plating on sheep

blood agar plates. Cell viability was routinely verified by the

trypan blue staining assay. Results were expressed as relative

invasion (percentage of invasion in comparison to that of untreated

MBMEC). The a7 antagonist MLA, Ca2+ pathway inhibitors

KN93, TFP, and EGTA were used to examine the role of a7 in

nicotine-enhanced E. coli invasion. The inhibitors were incubated

with the MBMEC monolayers for 1h at 37uC before addition of

bacteria. All inhibitors were present throughout the invasion

experiments until the medium was replaced with experimental

medium (EM) containing gentamicin. The effect of these inhibitors

on E. coli and MBMEC was examined by bacterial colony

counting and trypan blue staining methods, respectively.

PMN transmigration. Mouse PMNs were isolated accord-

ing to standard techniques from heparin anticoagulated venous

blood of 8-10 week-old mice for both a7 nAChR wildtype and KO

mice [27]. The isolated mouse PMN were 99% pure as indicated

by immunostaining with an antibody against the Ly-6G neutrophil

marker. Leukocyte transmigration assays were performed as

described previously [27,53–54] with modification. To test the

effects of nicotine on PMN transmigration, MBMEC were sub-

cultured on transwell filters (3.0-mm pore size, 6.5mm diameter)
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and exposed to nicotine as described above. The confluence of the

monolayer was confirmed by light microscopy before the start of

the assay. E44 (105 CFU/ml) was added to the lower chambers

and incubated for 2 h. Then, PMN (16106 cells) were added to

the upper chamber and allowed to migrate over for 4 h. At the end

of the incubation, migrated PMN cells were collected from the

lower chamber and counted as described previously [27]. All

experiments were performed with triplicate wells. For inhibitions

of PMN transmigration, cells were incubated with inhibitors for 1

h before E44 stimulation. All inhibitors were present throughout

the experiment. The BMEC monolayers on Transwell filters were

monitored before and after PMN migration by measuring trans-

endothelial electrical resistance (TEER) changes in the endothelial

cell monolayer using a Millipore ERS apparatus, according to

manufacturer’s instruction.

PMN binding. PMN adhesion assays were performed as

described previously [27,55]. Briefly, mouse BMEC monolayers

on 96-well plates were incubated with 161025 to 1027 M of

nicotine tartrate for 48 h and stimulated with E44 cells (105/ml at

the beginning) for 2 h in EM. After incubation, monolayers were

washed 4 times with PBS. Each well received 26105 PMN (0.2 ml)

and was incubated for 90 min at 37uC. Then, cells were washed 5

times and fixed with 4% paraformaldehyde in PBS. Assays were

performed in triplicate wells. Next, the mouse PMNs were stained

with a mouse PMN-specific antibody against Ly-6G (Gr-1) IgG/

FITC [56] and the numbers of PMN were counted under a

fluorescence microscope. Fifteen microscope fields were randomly

selected from 3 wells for each treatment to count the number of

adherent leukocytes.

Immunofluorescence microscopy. MBMEC were grown

in eight-well chamber slides coated with collagen. After

treatment, MBMEC were washed with PBS and fixed with

4% paraformaldehyde or 95% ethanol (vol)–5%-acetic acid (vol)

(for ZO-1) for 10-30 min at room temperature. After additional

washes with PBS, MBMEC were blocked with 5% BSA in PBS

for 30 min. Then, cells were stained with rhodamine-conjugated

a-BTX and FITC-conjugated antibodies against GGT (rabbit),

CD146 (mouse), S100B (rabbit) and ZO-1 [51]. The cells

were then mounted with mounting medium containing DAPI

(from Vector). Samples were examined under a Leica

fluorescence microscope at the Congressman Dixon Cellular

Imaging Core Facility, Children’s Hospital Los Angeles. All

pictures were taken using the same parameters to ensure that

the fluorescence strength of each treatment could be compared

and calculated.

Immunoblotting analysis. To assess protein expression in

MBMEC, WT or KO cells were grown on 60 mm plates.

Confluent MBMEC monolayers were incubated with 10 mM

nicotine for different time points or different concentrations of

nicotine (0.1–10 mM) for 48 h, stimulated with or without E44

(106 CFU/ml) for 4 h. After completion of the incubation, total

protein was extracted with SDS buffer, heated and subjected to

SDS-polyacrylamide gel electrophoresis (SDS–PAGE) as described

previously [23]. Total protein was transferred to nitrocellulose

membranes by semi-dry blotting. After blocking with 5% milk in

PBST (PBS containing 0.1% Tween20, Sigma) for 1 hour,

membranes were probed with antibodies against a7 nAChR

(rabbit Ab, 1 mg/ml, Genescript), ZO-1 (rabbit Ab, 2 mg/ml,

Invitrogen), occludin (mouse Ab, 2 mg/ml, Invitrogen), and

b-actin (rabbit Ab, 0.1 mg/ml, Santa Cruz Biotechnology,) for 2

h. The washed membranes were incubated with a HRP-

conjugated secondary antibody for 1h and then visualized using

an enhanced chemiluminescence procedure (Roche Applied

Science, Indianapolis, IN).

Transendothelial permeability assay
Transendothelial permeability assays were performed as

described previously by measuring the passage of HRP through

the confluent monolayer with transwell insert culture chambers

[57]. Confluent WT and KO MBMEC monolayers on transwell

inserts were exposed to 10 mM nicotine for 48 hours. After E44

stimulation (106/ml within 0.2 mL) in the upper wells for 2 hours,

the lower chamber was also refilled with fresh EM. Then, HRP

(3 mg/ml) was added into each well. Twenty ml of EM was

withdrawn from each lower chamber every hour. Ten ml was

transferred to a 96-well ELISA plate, and the other 10 ml was

diluted and plated on agar blood plate for bacteria number

counting. After sample collection at different time points (0, 1, 2, 3,

4, 5 and 6 h), the experimental medium was subjected to the

ELISA assay using TMB substrate (from KPL, Gaithersburg,

MA). HRP activity was determined spectrophotometrically at

450 nm after adding the stop solution.

Mouse model of E. coli meningitis. Nicotine exposure was

executed from day 8 to day 10 by feeding twice daily (free base

2.1 mg/kg body weight/day). For the study on chemical blockage

of a7 nAChR, WT mice were exposed to nicotine (6–8 mice each

group) and treated with or without the a7 antagonist MLA. MLA

treatment started from day 8 to day 10 by intraperitoneal injection

(10 mg/kg body weight) daily before the first nicotine exposure.

Homozygous (a7+/+, a7-/-) and heterozygous (a7+/-) mice were

exposed to nicotine as mentioned above. At 10 days of age, all

pups received E. coli K1 strain E44 (26105 CFU) by intra-

peritoneal injection. Fifteen hours after E. coli inoculation, Evans

blue (EB) was injected intraperitoneally (50 mg/g body weight).

Three hours after receiving EB, animals were anaesthetized with

ketamine and lidocaine, and blood samples were collected from

heart puncture for bacterial culture using sheep blood plates. After

perfusion from heart puncture with 20 ml PBS [58], the skull was

opened. CSF samples were collected by washing the brain tissues

with 100 ml of PBS, and then by washing the cerebral ventricles

and cranial cavity with another 100 ml of PBS as described

previously [27,33]. CSF samples containing more than 10

erythrocytes per ml were discarded as contaminated samples

[27,33]. The brain tissues were cut into two halves. One half of the

brain was put into a tube with 200 ml formamide to extract the EB.

Subsequently, the optical density of the extracted EB was

measured at 620 nm by spectrophotometry according to Zhang

X et al [59]. The other half of the brain was mashed and diluted for

bacterial culture with blood plates. For bacteria counting in CSF,

20 ml CSF samples were taken and diluted for bacterial culture

with blood plates. For PMN counting in CSF, 50 ml CSF samples

were stained with a FITC-conjugated rat anti-mouse Ly-6G (Gr-1)

antibody and counted under fluorescence microscopy. Albumin

concentrations in CSF samples were determined using a mouse

Albumin ELISA kit from Bethyl laboratories (Montgomery, TX)

according to the manufacturer. CSF samples were stored in

280uC for cytokine assays.

Mouse tobacco smoking exposure. Neonatal WT mice

were divided into two groups (control and treatment, 7 mice each

group). A TE-10 mouse smoke system with whole body exposure

(Teague Enterprise, Davis, CA) was used with low tar research

cigarettes (3R4F, Kentucky Tobacco Research& Development

Center) [60] The mice at the age of 4 days were exposed to a

mixture of main stream smoke (puffed smoke, 5%) and side stream

smoke (smoke emitted by burning end of a cigarette, 95%) for

2 hours per day and a total of 7 days. Smoke particle con-

centration (TSP) in the chamber was maintained at 4562 mg/m3.

At 10 days of age, E. coli meningitis was induced as described

above.
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Histology immunostaining. Mouse brains were harvested

16 h after infection, fixed in 10% buffered formalin for 24 h,

embedded in paraffin, and sections with 5 mm thickness were

prepared. Tissue sections were stained with hematoxylin and

eosin, and examined under a microscope to investigate histological

alterations in the brain. Immunofluorescence staining of tight

junction molecules occludin and ZO-1 was performed as described

by Förster et al [61]. The prepared sections were incubated with

antibodies against occludin (2 mg/ml) or ZO-1 (2 mg/ml) in 1%

BSA at 4uC overnight, followed by a rhodamine-conjugated

second antibody combined with a FITC conjugated mouse

antibody against CD146 (1 mg/ml) in 1% BSA for 1 hour.

Samples were washed with PBS and mounted with mounting

medium containing DAPI (Vector Laboratories, Burlingame, CA).

For a-BTX-staining of a7 nAChR in mouse brains, tissues sections

were incubated with rhodamine-conjugated a-BTX for 1 hour,

and mounted as described above. Photographs were taken under a

Leica fluorescence microscope as described above. To examine

neuron injury, the TUNEL assay was performed according to the

manufacturer’s protocol (Millipore, Chemicon, Billerica, MA).

Then, the tissue sections were stained with a FITC-conjugated

mouse antibody against neuron-specific nuclear protein (NeuN)

(eBiosciences), and counterstained with DAPI. Image fluorescence

quantification analysis was performed with program MetaMorph

(Version 7.7.3.0) for tight junction molecules (ZO-1 and occludin)

and TUNEL assays. For each treatment, 5-6 mouse brains were

sectioned and stained.

Cytometric Bead Array (CBA) assay. The levels of cyto-

kines in CSF, including IL-1b, IL-6, TNF-a, MCP-1 (CCL2),

MIP-1a (CCL3), and RANTES (CCL5), were examined using the

CBA assay (BD Biosciences, San Diego, CA) according to the

manufacturer’s protocol. Lyophilized protein (analyte) standards

were multiplexed to contain a mixture of predetermined amounts

of all analytes, and were used to prepare 9 serial dilutions,

providing a range of concentrations from 10 to 2,500 pg/ml.

Aliquots (50 ml each) of the analyte standards or experimental

samples were mixed with 50 ml of premixed capture beads and

incubated at room temperature (RT) for 1 h. Each set of capture

beads is coated with a monoclonal antibody against a single

analyte, and a mixture of 6 bead sets was combined to capture the

6 different analytes per sample. Next, we combined 6 PE-labeled

detection antibodies against epitopes distinct from those recog-

nized by the antibody-coated beads. Fifty microlitter of the mixed

PE-labeled detection reagent was added to each sample and

incubated for 2 h at RT in the dark. PE-conjugated detection

antibodies stain beads proportionally to the amount of bound

cytokine. Excess detection antibodies were removed by washing.

The data were collected on an LSRII flow cytometer using DIVA

software (BD Biosciences). FCAP software (BD Biosciences) was

used to fit standard curves to the data obtained from the analyte

standards and to calculate absolute concentration values for each

of the 6 measured analytes from their respective standard curves.

Analysis of adhesion molecule expression in vitro and in

vivo. To assess the surface expression of adhesion molecules in

vitro, a7+/+ and a7-/- MBMEC were grown in 96-well plate,

incubated with or without 10 mM nicotine for 48 h, and then

stimulated with or without E44 (106 CFU/ml) for 4 h. At the

completion of incubation, cells were washed twice with PBS, fixed

with 4% paraformaldehyde, and then blocked with PBS containing

5% BSA for 30 min. Cells were incubated with primary antibodies

against ICAM-1 (rabbit Ab, 1 mg/ml, Abbiotec) and CD44 (mouse

Ab, 1 mg/ml, Santa Cruz Biotechnology) at 4uC overnight. After

washing, the cells were incubated with a HRP-conjugated

secondary antibody for 1 h at room temperature. Liquid TMB

substrate (KPL) was used for ELISA. For each assay, an isotype-

matched control antibody was used in place of the primary antibody

in three wells, and this background was subtracted from the signal.

Analysis of adhesion molecules in CSF samples was performed by

the same method using 96-well ELISA plates.

Measurements of intracellular [Ca2+]. To examine the

role of a7 nAChR in E. coli induced calcium signaling, intracellular

calcium flux in MBMEC was evaluated according to Kim KV et al.

and Sukumaran SK et al [22,62] with modifications. Briefly,

MBMEC were cultured in Glass Bottom Culture Dishes (MatTek,

Ashland, MA) in culture medium to 80% confluence with or

without nicotine exposure (10 mM) and MLA incubation (1 mM)

for 48 hours. Monolayers were washed with phenol-red-free

HBSS and then incubated for 60 min with 4 mM Fura-2 AM

and 0.04% Pluronic-127. Cells were then washed with phenol-red-

free HBSS 2 times and incubated in this buffer for an additional

20 min. Then, cells were monitored for 10 min at 4 seconds

intervals while recording the intensities of fluorescence at 340 nm

and 380 nm. At the 2 min time point, E44 (16108 CFU) were

added to stimulate MBMEC, and changes in intensities at 340 nm

and 380 nm were measured. These Fura-2 AM experiments were

performed on a Nikon Instrument Diaphot TMD 300 inverted

microscope (Melville, NY), using a Nikon Fluor 406/1.3 NA

Ph4DL oil immersion objective lens. A Hamamatsu Corp.

(Bridgewater, NJ) ORCA-100 (C4742–95-12NR) 12-bit digital

camera was operated in 464 binning mode, with typical exposure

times of 100–200 ms/channel. The microscope was equipped with

a Ludl Electronics Products Ltd. (Hawthorne, NY) Mac2000 XYZ

stage and a focus controller. The imaging rig was controlled by

MetaMorph 4.5 (Universal Imaging Corp., Downingtown, PA).

Changes in [Ca2+] were expressed as the F340:F380 ratio, where

F340 and F380 were Fura-2 fluorescence intensities obtained at

340 nm and 380 nm excitation wavelengths, respectively.

Statistical analysis. For the analysis of the in vitro data,

ANOVA and covariates followed by a multiple comparison test

such as the Newmann-Keuls test were used to determine the

statistical significance between the control and treatment groups.

Software GraphPad Prsim 5.0 was used for analysis of data from

animal experiments. P,0.05 was considered to be significant.

Database
The protein access codes in Swissprot database are listed as

follows: a7 nAChR, Mus muscularus, Q9JHD6; ZO-1, Mus

muscularus, P39447; occludin, Mus muscularus, Q61146; CD44,

Mus muscularus, P15379; ICAM-1, Mus muscularus, P13597; CD146,

Mus muscularus, Q8R2Y2; S100B, Mus muscularus, P50114; GGT,

Mus muscularus, Q60928; TNFa, Mus muscularus, P06804; IL-1b,

Mus muscularus, P10749; IL-6, Mus muscularus, P08505; MCP-1,

Mus muscularus, P10148; MIP-1a, Mus muscularus, P10855;

RANTES, Mus muscularus, P30882.

Supporting Information

Figure S1 Isolation and characterization of WT and KO
MBMEC. (A) Images of MBMEC after isolation and purification

using UEA-coated beads under light microscope (DIC). These

cells (a7+/+ and a7-/-) were at passage 3. The WT and KO

MBMEC were stained with FITC-conjugated antibodies against

mouse CD146, GGT, S100B, and rhodamine-conjugated-a-BTX,

respectively. The WT and KO MBMEC were also stained with a

rabbit anti-ZO-1 Ab (FITC-conjugated) to show the formation of

tight junctions. All bars are 25 mm. (B) Immunoblotting analysis

of a7 nAChR from MBMEC (WT and KO). b-actin was used as

an internal loading control. (C) WT and KO mouse brain cortex
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sections were stained with DAPI and rhodamine-conjugated a-

BTX. Images are 1006. The squared areas were enlarged to show

the details of a-BTX staining. Images are 2006.

(TIF)

Figure S2 Effects of chemical and genetic blockages of
a7 nAChR on pathogenicities of E. coli K1. (A-B) Bacterial

loads in the CSF of mice under different settings: (A) WT:

Treatment with NT or MLA; and (B) WT and KO: Exposure to

NT. (C-D) Flux of albumin into CSF of mice under different

settings: (C) WT: Treatment with NT or MLA; and (D) WT and

KO: Exposure to NT (n = 6–8). WT mice without treatment (NT

or MLA) served as the controls *P,0.05, **P,0.01.

(TIF)

Figure S3 Nicotine increased pathogenicities of E. coli
K1 in WT and heterozygous (HZ) (+/-) mice. E. coli

meningitis was induced in neonatal mice under 4 different settings

(n = 6–7) (I: WT; II: WT+NT; III: HZ; IV: HZ+NT). (A)
Bacteremia; (B) Bacterial loads in the brains; (C) Bacterial loads

in the CSF; (D) Recruitment of PMN into the CSF; and (E) Flux

of albumin into the CNS. *P,0.05, **P,0.01.

(TIF)

Figure S4 Tobacco smoking (TS) increased pathogenic-
ities of E. coli K1 in the neonatal meningitis model. E. coli

meningitis was induced in neonatal mice under two different

settings (n = 7) [I: WT (Control); II: WT+TS]. (A) Bacteremia; (B)
Bacterial loads in the brains; (C) Bacterial loads in the CSF; (D)
Recruitment of PMN into the CSF; and (E) Flux of albumin into

the CNS. *P,0.05, **P,0.01.

(TIF)

Figure S5 Effects of blockages of a7 nAChR on NT- and
E44-induced tight junction (TJ) disruption. (A-C) Immu-

noblotting analysis of occludin, ZO-1 and a7 nAChR under

different experimental settings: (A) WT MBMEC +NT (0.1–

10 mM for 48 h); (B) WT MBMEC+NT (10 mM for 0-72h); (C)
WT MBMEC+NT (10 mM for 48h)+MLA (0–10 mM for 48 h). In

(A-C), b-actin was used as an internal loading control. (D)
Fluorescence-based quantification of ZO-1 expression in WT and

KO mouse brain cortex with or without NT exposure upon E44

infection (n = 5–6). The WT mouse control without any treatment

was taken as one fold. (E) Immunostaining of TJ molecules in

mouse brain cortex with or without NT exposure under different

settings (I: CON: No treatment; II. E44; III: E44+NT). The tissue

section was stained with antibodies against ZO-1 (rhodamine-

conjugated) and CD146 (FITC-conjugated). DAPI staining was

used to show the structures of brain cortex. Images are 2006.

(TIF)
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