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Abstract

Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic
effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds
with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level
measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic
indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such
similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common
target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three
independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental
measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG
inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve
as predictive surrogates of cardiotoxicity complementing existing functional assays.
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Introduction

While the single-target approach to drug discovery seeks
“silver bullets” that selectively modulate disease-related
proteins, recent work has emphasized the often promiscuous
interactions of both marketed and candidate therapeutics [1–3].
The positive impact of such polypharmacology includes the
potential to discover novel clinical uses for previously approved
medications [4–6]. However, it also suggests that drugs may
share similar and undesirable side effects despite unrelated
chemical structures or primary mechanisms-of-action (MOA).
While existing quantitative structure activity relationship
(QSAR) methods have leveraged structural features of small
molecules to predict toxicity, the difficulty of applying such
techniques to chemicals that vary substantially from the model
inputs has been described, particularly in cases where toxicity
is linked to the metabolic by-products of a compound [7,8].
Thus alternative descriptors, such as measurements of drug
effects that probe the complex physiology of the cell, may
potentially reveal commonalities aiding the prediction of toxicity
independent of chemical structure as represented, for example,

by conventional chemical fingerprints. Here, we explored
similarities in drug-induced transcriptional effects using the
Connectivity Map (CMap), a collection of Affymetrix™
microarray profiles generated by treating three independent
lineages of cancer cell lines with small molecule drugs [9]. In
previous applications, analysis of the CMap has associated
transcriptional signatures to known MOAs or disease states,
allowing the discovery of novel modulators of autophagy, small
cell lung cancer proliferation, and inflammatory bowel disease
[5,6,10]. Similarly, computational studies have identified
correlations between known drug side effects and
transcriptional responses in the CMap [11,12]. Thus, we
hypothesized that this data might also be used to predict and
verify novel toxicities, which we demonstrate by integrating the
CMap with experimentally measured inhibition data for the
human ether-à-go-go related (hERG) potassium channel and
literature annotations to identify novel antagonists of this
important anti-target of many drugs.

Promiscuous inhibition of the hERG channel by
therapeutically and structurally diverse drugs prolongs the QT
interval quantified by surface electrocardiogram (ECG) [13].
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This phenomenon, known as drug-induced Long QT (LQT)
syndrome, is a risk factor for sudden cardiac death [13]. To
date, the lack of universal chemical patterns and diversity of
primary clinical targets among known hERG inhibitors have
impeded effective risk assessment of this side effect using
computational methods, and experimental evaluation using the
“gold standard” of electrophysiology remains an important step
in therapeutic development. Such electrophysiological
recordings, utilizing recombinantly expressed hERG channels
[14–16] as well as patient-derived cardiomyocytes [17,18],
have afforded valuable experimental opportunities to study the
potential LQT side effects of small molecules. More recently,
the development of high-throughput electrophysiology
platforms has facilitated systematic evaluation of hERG
inhibition in large compound collections [19,20]. Concurrently,
potential global physiological readouts for channel function are
suggested by behavioral assays in model organisms such as
C. elegans and D. rerio [21,22], as well as reports linking
channel activity to tumor migration and volume [23,24],
indicating these phenomena may conceivably be used as ways
to probe hERG liability. Computationally, hERG inhibition has
also been correlated with the proximity of a drug’s therapeutic
target to hERG in a protein–protein interaction network [25].

Our present analysis integrates earlier results in which we
have independently profiled over 300,000 compounds
(including approximately half of the CMap compounds) in the
NIH Molecular Library Small Molecule Repository (MLSMR) for
their ability to inhibit hERG current in a high-throughput
electrophysiological assay [26]. Combining our database with
additional publicly available annotations for LQT side effect
allowed us to identify clusters of drugs with similar expression
profiles in the CMap enriched for channel inhibitors. Drugs of
unknown hERG liability within these clusters, through the
principle of ‘guilt by association’, were then experimentally
validated using an electrophysiology assay. These results
advance the hypothesis that structurally diverse hERG
inhibitors mediate similar physiological effects revealed by
transcriptional response profiles, even in cell lines not derived
from a cardiac lineage and potentially independent of hERG
expression. Thus, gene expression signatures may serve as a
proxy measurement correlated with reduction of hERG current,
and find practical application as a high-throughput platform to
complement existing electrophysiological assays. More
generally, these analyses suggest that side effect profiles as
well as primary MOAs may be predictively correlated with
similarities in drug-induced gene expression responses
independent of chemical structure.

Results

Microarray normalization and analysis
Our analysis pipeline is outlined in Figure 1. The Connectivity

Map (CMap) (http://www.broadinstitute.org/cmap/) [9] is a
collection of Affymetrix™ microarray gene expression profiles
representing the responses of three cancer cell lines (breast
cancer: MCF7, prostate cancer: PC3, and leukemia: HL60) to
small molecule treatments in comparison to dimethyl sulfoxide
(DMSO) treated samples used as vehicle-treatment controls for

these studies because most drugs are dissolved using DMSO
as a solvent. The full dataset currently contains one or more
measurements for 1,309 unique substances at varying
concentrations. To begin our investigation, we normalized the
downloaded CMap data and corrected for batch effects
(similarity among arrays correlated with the experimental group
in which they were processed rather than biological
annotations) by centering the mean expression value per
probeset in each batch at zero, as previously proposed [27].
Thus, the resulting profiles represent changes in gene
expression dependent on drug effect rather than experimental
batch. Following this correction, we also noted a sub-
population of arrays representing replicate treatments (the
same drug tested against the same cell line at the same
concentration) that have approximately zero Pearson
correlation (as judged by the correlation of log2 fold changes
versus vehicle control). By using thresholds for minimum log2

fold gene expression change among probesets on an array, it
is possible to split this population into two groups of correlated
and uncorrelated replicates (Figure S1). We propose that these
uncorrelated replicates may represent “transcriptionally silent”
drugs where the observed response is random signal variation
and thus not preserved between repeats, and thus removed
them from our sample prior to downstream analysis. Finally, we
used the batch-corrected DMSO-treated samples to identify
probesets in each drug-induced expression profile whose fold
change lies outside the range of variation exhibited by the
same probeset in DMSO-treated control samples measured in
the same cell background. Table 1 summarizes the number of
arrays filtered and unique drug instances filtered during each
stage of this analysis, as well as the number of experimental
and annotated hERG inhibitors present in each of these
samples. The final sample of 673 unique drugs contains 1,033
drug-cell line combinations (‘Merge Replicates’ row in Table 1),
as some drugs were profiled in more than one cell background,
with 62 experimentally and 57 clinically annotated as hERG
inhibitors.

Enrichment of structurally diverse hERG inhibitors
through transcriptional response similarity

Following pre-processing, we clustered the resulting
collection of drug-induced gene expression profiles using
affinity propagation [28], an unsupervised learning algorithm
that automatically identifies the optimal number of clusters in a
dataset using an input of all pairwise similarities (here, the
pairwise Pearson correlations between expression profiles).
Each cluster generated by this procedure contains an
“exemplar”, a single member that best characterizes the
pattern shared by the members of the group. To identify higher-
level relationships between individual clusters, we further
aggregated the data by recursively re-clustering these
exemplars to attain a global view of the number of
characteristic patterns of drug-induced gene expression
changes in this collection. We integrated the gene expression
measurements with annotations for hERG inhibition derived
from two sources: a previously described dataset of
electrophysiology measurements of hERG inhibition (http://
www.hERGcentral.org) [26], and lists of drugs that have been
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clinically linked to LQT side effects (http://ww.sads.org.uk and
http://www.qtdrugs.org). Drugs with records in hERGcentral
were annotated as inhibitors if they decreased hERG current
by 50% or more at 10 µM concentration, representing an IC50

value of approximately 10 µM or less. We selected this
threshold as the dataset in hERGCentral contains inhibition
measurements at 1 µM and 10 µM, and literature data is
frequently annotated with potency (IC50) values, making these
two concentrations the most convenient thresholds. We chose
a less conservative (10 µM) threshold, as this value correctly
identifies 40/53 (76%) of torsades de pointes (TdP)-risk drugs
described in a literature survey [29]. The agreement between
the hERGcentral measurements (continuous values) and
existing LQT drug annotations (binary classifications) is
demonstrated by a Wilcoxon rank-sum test comparing the
median experimentally determined hERG inhibition values from
hERGcentral for drugs with or without previous annotation for
LQT side effects (p-value 5.7x10-12, Figure S2). Complete
experimental and clinical annotations based on the criteria
described above are given in Table S1.

The clusters generated from the drug-induced gene
expression profiles derived from the breast cancer cell line

MCF7 are displayed in a network diagram in Figure 2A, where
nodes represent individual drugs and edge weights represent
the magnitude of similarity (Pearson correlation coefficient)
between a given drug’s expression profile and the exemplar of
its cluster. We found that 2 of the 31 resulting clusters
contained an enriched fraction of hERG inhibitors compared to
randomized clusters of the same size (using a false discovery
rate threshold of 0.2). Even after correction for experimental
batch effects described above, clustering of all drug-induced
expression profiles demonstrates assortment by cell
background, suggesting the existence of cell line-specific drug
effects (Figure 2B). However, as the exemplars of these sub-
clusters are hierarchically merged, connections emerge
between hERG inhibitor-enriched clusters derived from all
three different cells lines, indicating the presence of general as
well as cell background-specific responses (Figure 2B). This
interpretation is supported by a scatterplot of average
expression changes in these five hERG inhibitor-enriched
clusters in the three cell lines, which indicates that some
differentially expressed (DE) genes are shared (Figure S3A),
as well as Venn diagrams indicating the overlap of DE genes

Figure 1.  Pipeline for construction and analysis of drug transcriptional response network.  Raw microarray data for drugs
profiled in three cancer cell lines in the Connectivity Map (left) are normalized and clustered using affinity propagation (top center)
based on similarities in drug-induced gene expression profiles (nodes) to yield clusters with a characteristic “exemplar” (highlighted
by red) representing the expression profile shared by cluster members. The resulting clusters (middle center) are annotated for
experimental and clinical evidence of hERG inhibition (bottom center), and enrichment analysis conducted to find clusters with a
statistically significant fraction of hERG inhibitors. Unannotated compounds in these enriched clusters (top right) are then
experimentally assessed for hERG inhibition in a high-throughput electrophysiology assay (middle right) to yield potency values
(bottom right).
doi: 10.1371/journal.pone.0069513.g001
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between these sets (Figure S3, B & C). The clustering results
for each of the networks in Figure 2 are given in Table S2.

Further, we note that many of the exemplars of these hERG
inhibitor-enriched clusters are preserved between cell lines
(Figure 2B). The enrichment of hERG blockers with previous
experimental or clinical annotation among the five enriched
clusters identified in Figure 2B were further quantified with the
hypergeometric test, with resulting prediction statistics
summarized in Table 2. Quantification of the resulting
predictive power in Table 3 suggests an overall accuracy of
82% based on drugs for which experimental or clinical
annotation is available (e.g., excluding the grey ‘untested’
drugs in Figure 2B), which is consistent with a test of ‘good’
quality based on previously published metrics [30]. While the
pairwise gene expression profile correlations (Pearson
coefficients) within the hERG inhibitor-enriched clusters are
significantly higher than the correlations between enriched
cluster drugs and non-enriched cluster drugs (medians of 0.14
and 0.01, respectively, Wilcoxon rank-sum test p-value <
2.23x10-308) (Figure 3, A & B), the corresponding distributions of
pairwise chemical similarities (Tanimoto coefficients) are
statistically different (as judged by a Wilcoxon rank-sum test
comparing the inter-cluster chemical similarity of the hERG
inhibitor-enriched clusters versus their similarity to drugs in
other clusters, p-value 1.1510x10-288) yet possess
approximately equal medians (0.12 and 0.10, respectively)
(Figure 3C). Thus, this analysis highlights correlations in drug-
induced gene expression profiles that are not evident from
chemical similarity alone. Intriguingly, we also noted that the
MCF7 Astemizole-exemplar cluster includes Miconazole and
Mefloquine, drugs which have been previously shown to inhibit
hERG channels recombinantly expressed in cell lines [31,32],
but did not appear in our lists of clinically annotated LQT-
causing drugs and were inactive in our high-throughput

Table 1. Microarray data processing statistics.

Dataset
Arrays
(Drugs)

Unique
Drugs

Exp. Blockers
(Unique)

LQT Drugs
(Unique)

CMap Build 02
7,056
(6,100)

1,309 324 (61) 284 (54)

HT-HG-U133A
6,029
(5,242)

1,219 271 (60) 234 (52)

Batch
Correction

5,454
(4,754)

1,145 253 (60) 222 (52)

Non-Silent
Drugs

2,119
(1,419)

673 88 (37) 76 (35)

Merge
Replicates

- 673 62 (37) 57 (35)

For each step of data processing (CMap Build 02 = full dataset, HT-HG-U133A =
platform sub-selection, Batch Correction = arrays from batches of size > 25, mode
test concentration for a given drug, Non-Silent Drugs = drugs passing ‘silent’
transcription filters, Merge Replicates = average of arrays from the same drug and
cell background), the number of unique drugs, experimentally determined hERG
blockers (Exp. Blockers) with IC50 < 10 µM (parenthesis unique experimentally
determined blockers) and drugs (LQT Drugs) from LQT drugs lists not present in
the experimental blockers (parenthesis annotated LQT drugs) are listed.

electrophysiology assay. This suggests that this dataset may
contain false negatives which nevertheless cluster with other
known inhibitors based on similarity in transcriptional
responses. Conversely, compensatory block of other ionic
currents in addition to hERG may normalize hERG effects by
these drugs, leading to no observable clinical phenotype
[33,34]. Examination of the relationship between a drug’s
hERG inhibition and maximal Pearson correlation to any of the
five hERG blocker enriched cluster exemplars in Figure 2B
demonstrates a modest linear correlation which is statistically
significant compared to randomized data (Figure S4, A & B).
Further, a greater fraction of drugs with high hERG inhibition
are present in the enriched clusters of Figure 2B than those
with low hERG inhibition (Figure S4C). Evaluation of enriched
gene ontology (GO) annotations among genes up and down-
regulated in the five hERG inhibitor-enriched clusters indicated
positive effects on cholesterol biosynthesis (GO:0006695),
isoprenoid biosynthesis (GO:0008299), and the unfolded
protein response (GO:0030968), and negative effects on cell
cycle checkpoint (GO:0000075), S phase of mitotic cell cycle
(GO:0000084), and DNA replication (GO:0006260). The
physiological correlation between hERG block and these
processes remains to be investigated though intriguingly,
previous reports have linked hERG channel activities to a
variety of biological processes in addition to cardiac function
[23,24,35,36]. Functional enrichment results for all clusters are
given in Table S3.

Experimental validation of predicted hERG inhibitors
To determine whether our analysis could predict novel hERG

ligands among the compounds in the inhibitor-enriched
clusters, we examined drugs without existing experimental or
clinical annotation from the databases used in our analysis in
these groups. Figure 4A demonstrates that the Astemizole
cluster from the MCF7-tested drug set is the overall center of
all hERG inhibitor enriched clusters, representing the most
characteristic pattern for these five groups. The structures of
the six ‘missing-data’ drugs in the MCF7 Astemizole cluster
(Figure 4A) display limited structural similarities, and
differences in functional moieties (such as the three chloro-
groups of Sulconazole) that could reasonably alter their surface
polarities, along with variation in linker group composition (with
Fendiline, Sulconazole, and Cloperastine bearing, respectively,
a nitrogen, sulfur, and oxygen atom along their carbon
backbones). Four of these compounds (Fendiline,
Cloperastine, Ethopropazine, and Sulconazole) were untested
in our previous electrophysiology data (http://
www.hERGcentral.org) [26] and lacked annotation for drug-
induced LQT syndrome (http://ww.sads.org.uk and http://
www.qtdrugs.org). Though not included in the LQT drug lists
we utilized, we found previous literature associating Fendilene
with drug-induced LQT [37], but no evidence of its direct
inhibition of hERG current. Additionally, Sulconazole has been
previously annotated in the bioactivity records in the ChEMBL
database as inactive in a hERG binding assay using
Astemizole displacement as a functional readout [38]. The
remaining compound in the Astemizole cluster, Clomiphene,
was not in the databases used to annotate Figure 2B but has
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Figure 2.  Network analysis of drug-induced gene expression profiles.  (A) Drug-induced gene expression profiles tested in
MCF7 (breast cancer) cells (nodes) are linked by shared expression patterns to a cluster exemplar (line width proportional to
Pearson correlation) representing their characteristic response. Clusters enriched for literature or experimentally annotated hERG
inhibitors are outlined in red. (B) Drug induced gene expression profiles generated from MCF7, PC3 (prostate cancer), and HL60
(leukemia) cell lines are clustered as in (A), with cell of origin indicated by node shape.
doi: 10.1371/journal.pone.0069513.g002

Gene Expression Profiles Predict hERG Inhibitors

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69513



been previously shown to inhibit the current of recombinantly
expressed hERG channels with an IC50 of 0.18 µM [39]. We
could locate no previous data describing Hexetidine,
Cloperastine, or Ethopropazine effect on hERG or association
with LQT. We therefore evaluated several of these
unannotated compounds experimentally for inhibition of hERG
current using automated electrophysiology recordings of a
Chinese hamster ovary (CHO) stable cell line, a popular
expression system due to its low background current from
endogenous potassium channels compared to human epithelial
kidney 293 (HEK293) cells [40,41]. With the exception of
Hexetidine, which appears to disrupt the membrane seal during
recording, the remaining four were successfully tested. Figure
4B shows the measured dose–response curves, for which we
calculated IC50 values of 18.6 ± 0.8 µM (Ethopropazine, n = 4),
0.36 ± 0.05 µM (Cloperastine, n = 4), 2.6 ± 0.1 µM (Fendiline, n
= 4), and 6.1 ± 0.9 µM (Sulconazole, n = 4). Because the
Ionworks platform used in our assessment tends to
underestimate the potency of compounds [42,43], the effective
concentrations could be even lower.

To assess the statistical significance of the results, we
simulated 1,000 random sets of four compounds using the
distribution of previously recorded experimental data for 10 µM
inhibition of hERG current for the subset of MCF7-tested drugs
(those present in the network of Figure 2A) in our high-

Table 2. Statistical enrichment of hERG inhibitors in
transcriptionally determined clusters.

Dataset Drugs
Fraction of Tested (p-value
hypergeometric test)

All Clusters 602 tested  

Experimental Inhibitors 62 0.10 (-)

Annotated Inhibitors 57 0.09 (-)

Total Inhibitors 119 0.20 (-)
Enriched Clusters 80 tested  

Experimental Inhibitors 27 0.34 (3.55e-11)

Annotated Inhibitors 19 0.24 (7.24e-6)

Total Inhibitors 46 0.58 (<3.33e-16)
Non-Enriched Clusters 522 tested  

Experimental Inhibitors 35 0.07 (2.65e-10)

Annotated Inhibitors 38 0.07 (3.11e-5)

Total Inhibitors 73 0.14 (3.55e-16)

Table 3. Prediction statistics for transcriptional-signature
based hERG inhibitor enrichment.

Statistic Value
Sensitivity TP/(TP+FN) 46/(46+73) = 39%

Specificity TN/(TN+FP) 449/(449+34) = 93%

Overall Accuracy (Predictivity) (TP+TN)/(TP
+TN+FP+FN)

(46+449)/(46+449+34+73) = 82%

Data are derived from values for True Positive (TP) (46 drugs), True Negative (TN)
(449 drugs), False Positive (FP) (34 drugs), and False Negative (FN) (73 drugs) in

Table 2.

throughput electrophysiology assay (Figure S5A), finding that
the average percent inhibition of the tested compounds (67%,
or a hERG activity of 33%) was greater than any random group
(an empirical p-value of <0.001) (Figure S5B). Therefore, our
clustering analysis significantly enriches for hERG inhibition
among previously unannotated compounds.

Discussion

In this study we identified commonalities in the transcriptional
responses of structurally diverse hERG inhibitors, suggesting
microarrays as a novel proxy measurement correlated with
conduction of potassium currents by hERG and hence liability
of channel block. Perhaps as remarkably, the observed change
in gene expression is not necessarily a direct result of hERG
inhibition. While hERG inhibitor-enriched clusters were
observed for profiles generated in all three cell lines, functional
evidence for hERG expression has been reported only for
MCF7 and HL60 [23,24], indicating that channel expression
may not be strictly required for the observed pattern. Indeed,
there are also reports that channels including hERG have
activities in addition to ion conductance [44–46], indicating that
independent molecular targets might converge on common
signaling pathways or processes also modulated by hERG and
leading to the observed correlation. For example, there is a
tendency that hERG inhibitors or LQT-causing drugs are also
antagonists of the multidrug resistance transporter (MDR) [47].
Alternatively, hERG may be co-expressed with other channels
correlated with oncogenesis which possess similar
pharmacological profiles, such as hEAG [48], thus confounding
causal inference of the relationship between hERG activity and
gene expression response.

We also note that the presence of inhibitors in the CMap
outside the enriched clusters highlighted in our analysis
indicates that this “hERG signature” is not necessarily
“dominant” over other expression pattern(s), implying that other
such patterns might perturb or mask the signature from being
identified for some compounds. In this interpretation, the
subset of clustered inhibitors highlighted in our analysis
represent drugs for which this signature is dominant over or of
equal strength with other expression responses of the
compounds. Additionally, we note that a large portion of the
compounds in this dataset exhibit silent or weak transcriptional
response which prevents profiling for hERG inhibition using the
proposed approach. As the signatures in CMap are uniformly
generated at a 6 hour time point, it is possible that some
compounds may display chronic transcriptional effects at a
later time point, and thus be profiled by modifications in the
original screening protocol. Indeed, previous studies of time
course data from drug-induced gene expression responses
have indicated that distinct expression patterns may be
detected at different time points [49–51], even for frequent
measurements such as 3, 6, and 9 hours. We thus hypothesize
that some of the ‘silent compounds’ in our study might have
detectable signatures at later time points, while the hERG
inhibitors outside of enriched clusters may exhibit a dominant
‘hERG signature’ at earlier time points. Taken together, these
results suggest that improved sensitivity for this assay might be
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Figure 3.  Expression and structural similarity of hERG inhibitor-enriched clusters.  (A) Chemical similarity (Tanimoto
coefficient = TC) computed from FCFP_6 circular fingerprints versus expression similarity (Pearson coefficient = PC) computed from
drug-induced transcriptional response for selected hERG inhibitor-enriched clusters for MCF7 (top) PC3 (middle) and HL60
(bottom). Cluster in drug expression networks are highlighted, with example compounds outlined in black in inset (left column).
Chemical structures are illustrated with corresponding chemical and expression similarity values. (B) Distribution of pairwise
expression response similarities within hERG inhibitor-enriched clusters and between drugs in enriched and non-enriched clusters
from Figure 2B. (C) As (B), comparing distribution of chemical similarities.
doi: 10.1371/journal.pone.0069513.g003
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Figure 4.  Experimental validation of novel hERG inhibitors.  (A) (Left) Exemplars of hERG inhibitor enriched clusters from
Figure 2B converge at the MCF7-derived Astemizole cluster (red arrows, inset), which contains six unannotated drugs (black
highlights in inset) (Right). Chemical structures of the six unannotated drugs in the highlighted cluster. (B) Dose response curves for
hERG inhibition measured for four unannotated drugs using the Ionworks automated patch clamp system (n = 4, mean +/- s.e.m. for
each data point).
doi: 10.1371/journal.pone.0069513.g004
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achieved by using time course instead of single point
expression data. Additionally, we note that the sensitivity of our
assay may be effected by our choice of a 10 µM IC50 threshold.
While this threshold has been used in previous hERG
predictive models [52], previous studies have also reported
greater accuracy with a lower threshold (e.g., IC50 40 µM) [53].
Thus it may also be possible to improve the sensitivity of our
method using inhibition measurements derived from higher
drug concentrations.

Research has also suggested that the duration of action
potentials at 90% repolarization (APD90), a correlate of clinical
LQT which is elongated by hERG inhibition, may be dependent
upon multi-channel drugs effects [33,34], and thus the ability of
our approach to forecast clinical endpoints may be aided by
future integration of high-throughput recording data for other
cardiac channels such as Nav1.5. Furthermore, despite the

current lack of causal evidence linking the gene-expression
profiles of the clustered hERG inhibitors in the CMap with
functional modulation of the channel, this analysis does
suggest an intriguing possibility that some hERG inhibitors
induce a downstream signaling cascade as a consequence of
current reduction that is visible as a global change in gene
expression. Alternatively, these observations may indicate
signaling pathways downstream of potassium channels that are
not directly related to their role in conduction [44]. A selection
of these hypotheses is diagrammed in Figure 5. Certainly,
profiling selective inhibitors of hERG such as E4031 which are
not present in the CMap might help clarify these hypotheses,
though the large number of transcriptionally silent compounds
in the dataset suggests these selective inhibitors may not
exhibit a detectable signature at 6 hour time points.

Figure 5.  Mechanistic hypotheses for hERG-inhibition correlated gene expression signatures.  (A) Schematic of drug-
induced gene expression response directly controlled by blockade of potassium conductance by the hERG channel. (B) Parallel
direct (straight repression line) or indirect (bent repression line) modulation of hERG and alternative molecular targets on the cell
membrane (blue) or in the cytoplasm (red) may lead to convergent transcriptional responses. (C) Perfect confounding, in which
drugs simultaneously inhibit channel function and independently modulate downstream transcriptional response through alternative
molecular targets.
doi: 10.1371/journal.pone.0069513.g005
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From a practical standpoint, the observed similarity of
microarray profiles among electrophysiologically confirmed but
structurally diverse inhibitors argues for the potential of using
such a surrogate as an informative descriptor for hERG liability
complementing existing electrophysiological assays. The utility
of such a platform is suggested by compounds such as the
antidepressant Amoxapine [54] which display slow on-rates
beyond the temporal resolution of high throughput
electrophysiological systems (which is typically less than 5
minutes), and thus appear as ‘negatives’ in our acute
experimental electrophysiology data. In contrast, the
microarray data utilized in this study were generated 6 hours
following drug treatment, suggesting gene expression
measurements may offer complementary temporal resolution
not readily accessible by automated electrophysiology data,
allowing high-throughput assessment of hERG inhibition in
compounds with slow on-rates which have previously required
manual patch clamp recordings to resolve. Furthermore,
transcriptional signatures may identify false negatives from
other assays, such as Sulconazole, which was labeled as
inactive in ChemblDB from binding data. Because binding
experiments often utilize displacement of a known ligand, they
will not identify compounds binding at alternative sites(s) of
action.

Gene expression measurements have additional attractive
properties compared to other high-throughput technologies.
Because microarray profiles represent an integrated output of
multiple signaling pathways in the cell, they are potentially
more sensitive than biochemical or cellular assays which are
commonly designed to test one or a limited number of
physiological parameters. Such expression profiles are also
certainly more general in terms of measuring diverse signaling
pathways and integrated biological events. Thus, assessment
of hERG liability may be effectively evaluated in parallel with
other endpoints of biological interest, such as inflammatory
signaling, oxidative damage response, or metabolic
perturbations. Additionally, the fact that our signature utilizes
measurements in cancer cells derived from different tissues of
origin suggests the attractive possibility of assaying the effects
of hERG activity in these oncogenesis models, as previous
research has linked hERG expression to tumor migration and
cell volume [24,55]. Admittedly, cells with cardiac lineage may
be equally or more informative. Indeed, patient-derived induced
pluripotent stem cell (iPSC) models of cardiac disease have
proven to be attractive disease models in electrophysiology
studies [17,18,56], with additional evidence suggesting the
potential for cardiac-specific transcriptional activity that may
find utility in genomic drug-activity profiles [57–59]. Combined
with cost savings generated by custom arrays that measure
only the subset of differentially expressed genes correlated
with hERG risk, these aspects suggest the potential for a novel
genetic platform to assess ion channel activity.

More generally, our analysis contributes to growing evidence
that systems-level measurements of drug effect reveal
connections and similarities often invisible from the perspective
of single molecular descriptors or activity measurements
[6,9,18,60,61]. These links suggest not only the possibility of
mining such connections for predictive purposes, but also that

the full pharmacological complexity of even long-standing
medications may not yet be appreciated. Integrated analyses
are thus poised to illuminate these patterns and suggest
possibly novel indications or, as in our study, liabilities of
existing drugs.

Methods

Gene expression and drug property/activity data
All raw data comprising the Connectivity Map (CMap) build

02 were downloaded as CEL files from the Broad Institute
(http://www.broadinstitute.org/cmap/). We annotated
compounds for percentage of hERG inhibition using data from
a previously described database of high-throughput
electrophysiology measurements [26], and obtained LQT-risk
data from online references at www.sads.org.uk and
www.qtdrugs.org. Simplified molecular input line entry system
(SMILES) strings representing the chemical structures of all
compounds were downloaded from PubChem and ChemBank.
Computational filtering of salts, standardization of charge and
coordinates, and calculation of functional circular fingerprints
(FCFP_6) were performed with Pipeline Pilot Student Edition v
6.1 (Scitegic).

Microarray pre-processing
Our analysis of the Connectivity Map Build 02 data consisted

of four steps:
Platform selection and probeset normalization.  From the

7,056 cell files in the CMap build 02, we selected 6,029 files
generated from HT-HG-U133A arrays, consisting of 5,242 drug
treatment instances and 967 DMSO-treated vehicle controls
tested on three tumor cell lines of human origin. This selection
is performed because unlike the non-parametric processing
used in the original analysis [9], the probeset normalization
algorithms we employed require a homogenous platform. All
selected CEL files were probeset-normalized using GC robust
multi-array average (GCRMA) background correction as
implemented in the aroma. affymetrix R package [62,63] in R
2.14.2 [64].

Batch correction.  Following pre-processing, we sought to
remove correlations between arrays due to experimental batch
(date of data acquisition) rather than biological similarity by
mean-centering probesets across all drugs in each batch,
following a previously described pipeline [27]. Since this
correction assumes that on average a probeset should not be
differentially expressed among an experimental batch of
otherwise unrelated drugs, we retained only batches with
sufficient numbers (>25) for this assumption to reasonably
hold. To provide the most consistent comparison between
replicates of the same drug in the same cell background, we
retained only arrays representing the single concentration with
the most examples for a given drug (the mode). However, we
also note that the variation of test concentrations across CMap
instances for a given drug is not often large, and thus this
source of variability is likely minor. Applying these two criteria
left 4,754 drug treatment and 700 control instances.

Filtering Transcriptionally Inactive Drugs.  It has
previously been reported that some drugs in the CMap are
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“inactive”, as judged by lack of correlation among replicates
(arrays representing transcriptional response to the same drug
in the same cell background at the same concentration), but
only pairs of drugs tested more than once were considered in
previous analysis [65]. We sought a universal filter to apply to
all the data to filter these “transcriptionally silent” drugs. In
order to filter these “transcriptionally silent” treatment profiles,
drug treatment instances without at least 10 probesets
exceeding 2 log2 fold units expression change (increase or
decrease) compared to batch mean (representing vehicle
treated control) and at least 1 probeset exceeding 3 log2 fold
units expression change compared to batch mean (increase)
were removed, a heuristic criterion that generated the bimodal
distribution displayed in Figure S1. This yielded a final set of
1,419 drug treatment arrays representing 673 unique
compounds tested on three cancer cells lines. Probeset values
for replicate measurements of a given drug-cell line pair were
averaged, yielding 1,033 unique combinations of drug and cell
background.

Identifying Differentially Expressed Genes.  Differentially
expressed probesets were determined by calculating the 2.5
and 97.5 percentiles of log2 expression ranges for a given
probeset among the DMSO-treated vehicle controls for a given
cell line, and setting to 0 all probeset values in drug treatment
instances that were not outside this range.

Clustering and enrichment analysis
Statistical analysis of the resulting drug-induced gene

expression profiles was performed in MATLAB R2012a (The
Mathworks). The similarity between drug treatment profiles in
each cell line were quantified using Pearson correlation, and
clustered using affinity propagation, a message-passing
algorithm that automatically splits datasets into clusters defined
by a set of distinct exemplars (centroids) [28], with the
probability of each drug becoming a cluster exemplar being set
to the median of pairwise Pearson correlations. To aggregate
the data further, the exemplars identified in the initial clustering
were also grouped using affinity propagation (with the initial
probability of being a cluster exemplar held to the original
group median used in the first round of clustering), and this
process was repeated hierarchically until the resulting clusters
could not be further merged, in a manner similar to previous
analysis of the CMap [6]. Chemical similarity between
compounds was computed using the Tanimoto coefficient
(Jaccard coefficient) using FCFP_6 circular fingerprints
calculated in Pipeline Pilot (Scitegic).

To calculate cluster enrichment for hERG inhibitors (>50%
reduction of activity at 10 µM or LQT side effect) through
permutation testing, labels among compounds experimentally
or clinically annotated in our databases were randomized 1000
times and the number of times the resulting cluster
enrichments (fraction of hERG inhibitors or LQT drugs among
all annotated compounds in a cluster) exceeded the observed
number of hERG inhibitors and LQT drugs in the clusters in
Figure 2B was computed. This count yielded an empirical p-
value (number of times out of 1000 permutations that the
enrichment of a randomized cluster exceeded the observed
enrichment in the clusters of Figure 2B) which was adjusted

using the Benjamini–Hochberg procedure [60] to control for
multiple hypothesis testing employing a false discovery rate of
0.2. Clusters were visualized using Cytoscape 2.8.2. Gene
Ontology (GO) analysis was performed using the topGO
package in bioconductor [66], using the Fisher’s exact test and
the elim method for the Biological Process ontology. For each
cluster, the set of genes that were up or down-regulated in at
least half of the cluster members (median greater or less than
0) were tested for GO term enrichment.

Experimental validation of hERG inhibitors
Ethopropazine, Cloperastine, Fendiline, and Sulconazole

(Sigma Aldrich) were prepared at 30 µM stock concentration
and serially diluted 3-fold for eight-point dose response
measurements. Inhibition of hERG current was experimentally
assessed using a previously described protocol [19]. Briefly,
Chinese hamster ovary (CHO) cells stably expressing the
hERG channel were dislodged from tissue culture flasks and
dispensed into PPC plates. Background leak currents were
estimated by initiating a 100 ms step to -80 mV from an initial
holding potential of -70 mV and subtracted from the
subsequent current measurement. For each drug
concentration, sequential voltage pulses were applied, each
using a 100 ms step to -30 mV from a holding potential of -70
mV, a 2 s conditioning step to +45 mV, and a 2 s test step to
-30 mV. Small molecule effects on hERG current density were
quantified by measuring the peak tail current prior to compound
application and dividing by the amplitude following application
of each test concentration. Recordings with peak tail current
amplitude pre-compound > 0.2 nA, seal resistance > 30
MOhms, and seal resistance drop rate < 25% were retained for
subsequent analysis. Data were fit to a sigmoidal dose
response curve using Origin 6.0 (Microcal). To assess the
statistical enrichment of this result, we simulated 1000 random
sets of four compounds drawn from our experimental data for
10 µM hERG inhibition for the MCF7-tested drugs (red or white
nodes in Figure 2A) and compared the mean inhibition of these
random sets to that observed for the tested compounds.

Supporting Information

Figure S1.  Distribution of pairwise correlations among
transcriptionally active and silent drugs.  Replicate drug
treatments (duplicate microarray instances for the same
concentration, cell line, and drug) may be divided into
populations of transcriptionally active (red) and silent (black)
drugs based on filters for the magnitude of log2 fold expression
change compared to batch average (representing vehicle
treated control) among probesets of a given drug.
(TIF)

Figure S2.  LQT-annotated drugs have statistically
enriched hERG inhibition.  Boxplot of distributional difference
in experimentally recorded hERG inhibition values for LQT
annotated and unannotated drugs.
(TIF)
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Figure S3.  Cell line dependent and independent
expression changes in hERG-inhibitor enriched
clusters.  (A) X, Y, and Z (color gradient of scatterplot points)
axes denote average log2 fold gene expression changes versus
DMSO treated controls for drugs in hERG-inhibitor enriched
clusters highlighted in Figure 2 for drugs profiled in PC3 (x
axis) HL60 (y axis) and MCF7 cells (z axis, color gradient of
scatterplot points). Purple, red, and blue dashed boxes denote
regions of cell-line specific transcriptional modulation. Red or
blue shaded points within orange dashed box denote genes
with cell line-independent transcriptional changes upon drug
treatment. (B) Overlap of differentially expressed (DE) genes
with average change in expression greater than 0 versus
DMSO treated controls for drugs in the hERG-inhibitor-
enriched clusters highlighted in Figure 2B profiled in the three
cancer cell lines utilized in the CMap. (C) As in (B), for genes
with average fold change less than 0 in the highlighted clusters.
(TIF)

Figure S4.  Correlation between hERG activity and
transcriptional similarity.  (A) Measured hERG activity (%) is
plotted for all assayed drugs versus the maximum correlation
(Pearson coefficient) judged by gene expression microarray to
one of the five drug expression profiles at the centers of the
five enriched cluster exemplars in Figure 2B. (B) Comparison
of the correlation in (A) to that in 1,000 sets in which drug
activities have been randomly permuted. (C) Fraction of drugs
in enriched clusters (red) in Figure 2B for all drugs within a
given range (window of activity values with width 10) of
measured hERG activity (%).

(TIF)

Figure S5.  Statistical evaluation of hERG inhibition among
validated compounds.  (A) Distribution of experimentally
measured hERG inhibition for all compounds tested on the
MCF7 cell line in Figure 2A. (B) Mean hERG activity of random
sets of 4 drugs selected from the distribution of (A), compared
to the set of validated inhibitors in Figure 4.
(TIF)

Table S1.  Drug annotations, SMILES strings.  (XLSX)

Table S2.  Drug network for MCF7, all cells.  (XLSX)

Table S3.  GO annotations for drug network
clusters.  (XLSX)
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