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Abstract

What humans do when exposed to uncertainty, incomplete information, and a dynamic envi-

ronment influenced by other agents remains an open scientific challenge with important

implications in both science and engineering applications. In these contexts, humans handle

social situations by employing elaborate cognitive mechanisms such as theory of mind and

risk sensitivity. Here we resort to a novel theoretical model, showing that both mechanisms

leverage coordinated behaviors among self-regarding individuals. Particularly, we resort to

cumulative prospect theory and level-k recursions to show how biases towards optimism

and the capacity of planning ahead significantly increase coordinated, cooperative action.

These results suggest that the reason why humans are good at coordination may stem from

the fact that we are cognitively biased to do so.

Author summary

We propose a new computational model characterizing coordination among self-regard-

ing individuals under theory of mind and risk sensitivity. Theory of mind enables deci-

sion-making based on the attribution of beliefs, knowledge, or goals to others, whereas

different risk sensitivities allows one to assess the impact of different ways of valuing

uncertain returns, as captured by descriptive theories from social-economic studies.

Together they provide evidence that biases towards optimism, and the capacity for plan-

ning ahead, significantly increase coordinated, cooperative action.

Introduction

Understanding human behavior is a highly interdisciplinary endeavour—due to the complex-

ity of the decision-making processes—with promising results in both science and engineering.

Better behavioral models have been the focus of economics and psychology, often relying on

mathematical frameworks used in engineering, stochastic processes, and control theory. A par-

ticularly challenging question is that of what humans do when exposed to uncertainty, incom-

plete information, and a dynamic environment influenced by other agents. Hereafter, we focus

on studying how coordination—the process of organizing people so that they work together
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properly—emerges between any two agents as a result of complex human cognitive features

[1]. During such processes, humans employ several mechanisms such as theory of mind and

risk sensitivity [2]. Theory of mind is defined as one’s ability to attribute mental states (e.g.

beliefs, knowledge, and goals) to others and to realize those mental states may be different

from one’s own [3]. Humans are not born with this mechanism in place. Instead, we humans

develop the ability to “put ourselves in other’s shoes” at around age 3, and this has been

observed in fMRI experiments in children [4, 5]. In such enterprise, the level-kmodel is a

model of theory of mind in which agents first assume a stereotyped behavior and progressively

make use of previous behaviors to calculate more sophisticated ones in a recursive fashion [6].

Truncating the level of recursion—henceforth referred to as k—to a fixed level is one way to

simulate the so-called bounded rationality.
Nonetheless, a key ingredient is missing when making decisions under uncertainty as

humans might have different degrees of sensitivity to risk. On one hand, research in decision-

making has long since moved away from long-held theoretical assumptions of rationality—a

good example of this is the virtual bargaining model, which describes how people frame situa-

tions in terms of their worst individual outcome while attempting to evaluate what others will

do [7]. On the other hand, in other areas of science, classic paradigms of decision-making

under uncertainty such as expected utility theory are still in use which lack descriptive power

to effectively explain and replicate human behavior [8]. Cumulative prospect theory (CPT) is a

highly influential descriptive model of decision-making that attempts to model the different

degrees of sensitivity to risk [9]. Specifically, CPT describes the risk sensitivity of people by

modelling how we place value on uncertain outcomes.

Here, we propose a unified framework to study coordination between agents equipped with
both CPT and bounded rationality (up to a level-k recursion) due to the superior ability of CPT
to describe human decisions and the importance of the development of a theory of mind. Specifi-

cally, we equip agents with theory of mind and cognitive bias on risk sensitivity, and study

mathematically how they coordinate in pairwise normal-form and Markov games. This

approach is related with the broad literature on intention recognition, opponent modelling,

and models that aim at predicting the opponents’ sequence of actions through machine learn-

ing techniques [10–12]. Here, we seek to answer the following questions:

1. Can cognitive biases concerning risk promote coordination?

2. Can increasingly sophisticated levels of theory of mind promote coordination?

We show that both of these questions are answered affirmatively. To do so, we assess the

emergence of coordination with CPT, and analyze the resulting behavior with increasing k.

Our results indicate that, while these mechanisms often create sub-optimal individual behav-

ior, they greatly facilitate collective action in two-person scenarios. This suggests that the rea-

son why humans are good at coordination may stem from the fact that we are cognitively

biased to do so. Moreover, as we move towards a society where both humans and machines

need to interact with each other and achieve coordination, we do not only need to unveil such

mechanisms, but understand how to foster collective action in populations comprising

humans and artificial entities [13–17].

Results

Risk sensitivity

In decision-making related fields, agents are assumed to have a model of which outcomes they

deem valuable [18, 19]. This is done via a value function that maps outcomes to a real number,

PLOS COMPUTATIONAL BIOLOGY Risk sensitivity and theory of mind in human coordination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009167 July 15, 2021 2 / 22

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009167


the value. CPT is used to evaluate uncertain outcomes, which are represented by a discrete ran-

dom variable R, and it is a two step process described next.

First, the set of possible outcomes (i.e., the support of R) is sorted in an increasing fashion.

A reference point b is chosen such that outcomes lower than b are considered losses, while out-

comes higher than b are taken to be gains—establishing a cognitive bias known as framing
effect [20, 21].

Second, the agent attributes utility to each outcome through two different functions: a util-

ity function for gains, uþ : R! R, and another for losses, u� : R! R. The parameter called

reference point plays a key role as it is used to define what is a gain and what is a loss. Both util-

ity functions show diminishing marginal returns, but the utility function for losses is steeper,

describing humans’ tendency to overweight losses compared to gains of the same amount—

another cognitive bias known as loss aversion [22, 23]. Examples of commonly used utility

functions associated with CPT are displayed in Fig 1.

Furthermore, in CPT, the agent exhibits a distorted view of likelihoods captured by a proba-

bility over outcomes. The probability of outcomes is non-linearly transformed by the so-called

probability weighting function, w: [0, 1]![0, 1]. Naturally, this probability plays a major role

in determining agents’ behavior under uncertainty in CPT. The probability weighting function

of proposed originally [8] (see Methods for details) shows two cognitive biases: the possibility
effect and the certainty effect. The former is an overestimation of unlikely events, while the lat-

ter is an underestimation of highly likely events. Due to numerical tractability (see Methods

for further details), we use a similar function, the Prelec probability weighting function [24],

w(p|α, δ) = exp{−α(−log(p))δ}, where α is the Prelec parameter. This choice allows us to conve-

niently study certainty and possibility effects by varying the Prelec parameter α for a fixed

value of δ. Agents adopting high values of α portray the possibility effect, whereas those using

one with low values of α show the certainty effect. Importantly, the Prelec’s function is similar

to the originally proposed probability weighting function when α = 1, demonstrating both

overweighting of low probabilities and underweighting of high probabilities, corresponding to

Fig 1. Utility and probability weighting functions used in cumulative prospect theory. (a) Utility functions for gains (u(r − b|γ) = (r − b)γ, for r> b)

and losses (u(r − b|λ, γ) = −λ|r − b|γ, for r< b) used in the calculation of value under cumulative prospect theory. These are convex for gains and

concave for losses, to mimic a diminishing marginal returns effect on relative rewards. Steeper utility function for losses shows loss aversion, by

amplifying the perception of a loss when compared to a gain of similar magnitude. (b) Prelec’s probability weighting function, w(p|α, δ) = exp{−α(−log

(p))δ}, is plotted for different values of the Prelec parameter α and for fixed δ = 0.75. The probability weighting function presented originally,

wðpjgÞ ¼ pg=ðpg þ ð1 � pÞgÞ
1
g , is represented by the black dashed line, for γ = 0.85. Notice that Prelec’s function is very similar to the originally

proposed probability weighting function when α = 1, demonstrating both overweighting of low probabilities and underweighting of high probabilities,

corresponding to the possibility and certainty effects. (c) Probability anomaly, w(p|α) − p. Blue indicates positive anomaly, whereas red indicates

negative anomaly. Here it is easy to see the effects of the probability weighting function; for low values of α, low probabilities are overweighted, causing

the so-called possibility effect—i.e. highly unlikely events are perceived as more probable than they actually are ---, and, for high values of α, high

probabilities are underweighted, demonstrating the certainty effect—i.e. highly likely events are perceived as less probable than they actually are. Notice

that both the certainty and possibility effects come into play when α� 1.

https://doi.org/10.1371/journal.pcbi.1009167.g001
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the possibility and certainty effects—see Fig 1. These effects in probability perception therefore

allow for significant deviations from optimal behavior. Translating this intuition into the

mathematical framework of CPT, we first split the support of the random variable R represent-

ing the uncertain outcome into two sets depending on the reference point b 2 R: the set of

gains O+ = {r 2 support(R):r� b}, and the set of losses O− = {r 2 support(R):r< b}. Then we

calculate the perceived likelihood of an outcome r as follows:

c
þ
ðrÞ ¼ wðPðR � rÞÞ � wðPðR > rÞÞ; if r 2 Oþ; and

c
�
ðrÞ ¼ wðPðR � rÞÞ � wðPðR < rÞÞ; if r 2 O� ;

ð1Þ

and so the value of an uncertain outcome R, under CPT, is instantiated by

VCPTðRÞ ¼
X

r2Oþ
uþðr � bÞcþðrÞ þ

X

r2O�
u� ðr � bÞc� ðrÞ: ð2Þ

This construction of value equips agents with human-like risk sensitivity by taking into

account uncertainty in decision-making. This can be seen clearly when considering the choice

between a certain amount of money and a gamble. Fig 2 describes the choices of a CPT-agent,

dependent on the reference point and probability distribution function, in 4 scenarios. These

results suggest that (i) CPT can generate both optimal and sub-optimal behaviors in all scenar-

ios, (ii) behavior is highly dependent on the reference point and perception of probability,

especially near null reference points and when α� 1, and (iii) reference point and perception

of probability can switch the way one another affect decisions—for instance, if α is high, then

increasing the reference point leads to choosing the uncertain prospect, whereas if α< 1,

increasing the reference point has the opposite effect. A similar effect reversal happens to the

Prelec parameter, when the reference point is high or low.

These different behaviors stem from the fact that CPT-agents are risk-averse by preferring

outcomes that lead to a lower reward with a higher certainty, when faced with potentially bet-

ter but uncertain outcomes. Also, the CPT-agents are risk-seeking by preferring uncertain out-

comes that lead to a higher reward, when faced with more certain outcomes with lower

reward. However, the reversal in risk attitude is highly dependent on how agents are affected

by the possibility and certainty effects in their perception of probability. In other words,

CPT-agents (like humans [9]) are risk-sensitive in the sense that they seek to minimize per-

ceived losses, and that perception is highly context-sensitive.

Theory of mind

The value of an action can be calculated as a function of the outcome that action leads to.

While the risk-sensitivity notion of value makes calculations simpler, an intuitive explanation

of decision-making is better done by viewing agents as choosing their behavior, and not the

outcome that behavior leads to directly. In value-based models, such as CPT, agents are

attempting to find the best policy π—a function that describes behavior—that maximizes their

value, i.e.,

p� ¼ argmax
p

VðpÞ: ð3Þ

In a multi-agent environment, where agents make decisions simultaneously, the value of a

policy may depend on the actions of the other agents. In a world with N agents, the value agent

i 2 {1, . . ., N} places on a behavior πi must also be a function of the joint policy π−i = (π1, . . .,

πi−1, πi+1, . . ., πN) of all the other agents in the world, which can be written as Vi(πi, π−i), where

Vi is the value function of agent i. In summary, each agent will attempt to choose the behavior
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that maximizes his value function, given the behavior of the other agents. Mathematically,

given π−i, agents perform the following optimization:

p�i ¼ argmax
pi

Viðpi; π� iÞ: ð4Þ

For instance, in a two-agent scenario, the simultaneity assumption demands that both

agents must somehow guess which behavior the other will decide upon in order to perform

Fig 2. CPT-value difference between certainties and gambles, VCertainty(b) − VGamble(b, α), for different reference points b and probability

weighting functions parameterized by Prelec’s parameter α. The CPT-value is calculated using utility functions u+(x) = x0.85 for gains (x> 0) and

u−(x) = −2|x|0.85 for losses (x< 0), and probability weighting functions are of the form w(p|α, δ) = exp{−α(−log(p))δ}, with δ = 0.75. Blue regions

indicate larger positive differences, while red regions indicate larger negative differences. The grey solid line represents the decision boundary, where

both values are equal. In (a), the agent is choosing between the certainty of gaining 900 and a gamble in which one might gain 1000 with probability

95%, where the optimal choice is ‘Gamble’ since 1000 × 95% = 950> 900. In (b), the agent is choosing between the certainty of losing 900 and a

gamble in which one might lose 1000 with probability 95%, where the optimal choice is Certainty since −1000 × 95% = −950< −900. In (c), the agent

is choosing between the certainty of gaining 55 and a gamble in which one might gain 1000 with probability 5%, where the optimal choice is ‘Certainty’

since 1000 × 5% = 50< 55. In (d), the agent is choosing between the certainty of losing 55 and a gamble in which one might lose 1000 with probability

5%, where the optimal choice is Gamble since −1000 × 5% = −50> −55. In all four cases, the reference point and probability perception influence

behavior in significant ways. In a) and d), an optimal choice is attained when the agent either has an optimistic view of outcomes (i.e., low reference

point b) and overestimates low probabilities (i.e., low Prelec parameter α), or when the agent underestimates high probabilities (i.e., high α) and is

pessimistic (i.e., high reference point b). The opposite happens in b) and c). In cases where both certainty and possibility effects are present (i.e., α�
1), behavior becomes extremely non-monotonous as a function of both parameters.

https://doi.org/10.1371/journal.pcbi.1009167.g002
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the maximization of value. The level-k bounded rationality model [6] provides a description of

the way humans do this, by assuming that each agent holds a stereotypical belief about the

behavior of the other agent, which allows them to maximize value under that assumption. By

also assuming each agent also maintains a stereotyped behavior of itself—as seen by others—

this allows them to create a tower of increasingly sophisticated policies, up to some level-k as

follows:

p
ð0Þ

2 p
ð0Þ

1

# #

argmax
p1

V1ðp1; p
ð0Þ

2 Þ ¼ p
ð1Þ

1 p
ð1Þ

2 ¼ argmax
p2

V2ðp
ð0Þ

1 ; p2Þ;

..

. ..
.

argmax
p1

V1ðp1; p
ðk� 1Þ

2 Þ ¼ p
ðkÞ
1 p

ðkÞ
2 ¼ argmax

p2

V2ðp
ðk� 1Þ

1 ; p2Þ:

ð5Þ

The diagram above depicts the recursive reasoning in the level-k bounded rationality

model. Starting from the top, both agents assume level-0 policies p
ð0Þ

1 and p
ð0Þ

2 —called stereo-

typed policies. With these, both agents can calculate their level-1 policies and, by assuming the

stereotyped policies are common knowledge—or, perhaps more reasonably, both agents are

similar in such a way that they regard others as if they were themselves—they can calculate

each other’s level-1 policies. The process can repeat itself up to some level-k. Note that it may

be the case that the stereotyped policies are wrong, or that p
ð0Þ

1 is different for agent 1 and for

agent 2 (i.e., what agent 1 believes agent 2 believes agent 1 will do is not the same as what agent

2 believes agent 1 is doing). Although these are interesting questions to pose, we will not dis-

cuss these cases here, and focus instead on the effects this hierarchy of behaviors has on coordi-

nation among agents with theory of mind.

In what follows, we analyze the stag-hunt game that describes the interaction between indi-

viduals when they are given a choice between a safe but low payoff outcome and a risky but

high payoff outcome [25]. Specifically, we consider both the normal-form and the Markov

game versions played by agents that measure value using CPT and that are equipped with

level-k bounded rationality.

Hunting stags with risk-sensitive hunters and the emergence of

coordination

The stag-hunt game is a well-known two-agent coordination game in which two agents (hunt-

ers) must choose between a safe option with low payoff outcome (hunting a hare), and a risky

alternative with high payoff outcome (hunting a stag). The stag-hunt game has been one of the

most studied coordination games due to the strong analogy between the theoretical setting

and real-world conflicts [25]. The stag-hunt game is a symmetric normal-form game with two

agents N = {1, 2}, each with two actions A1 = A2 = {S,H}, where S stands for Stag andH stands

forHare—see Section 2 of S1 Text for a brief review of normal-form games. Throughout this

paper, we shall consider the utility functions presented in Table 1.

The Nash equilibrium of a stag-hunt game between CPT-agents is a useful tool to analyze

the effects of risk sensitivity in social settings. In the stag-hunt, there exist two pure Nash equi-

libria: both hunters choose to hunt stags, or both hunters choose to hunt hares. However, no
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notion of value has to be conjured to obtain this result and, to identify the effects of risk sensi-

tivity on social decision-making, the mixed Nash equilibrium offers an alternative route.

If both hunters use CPT to evaluate their actions, then a mixed equilibrium can be found by

identifying the probability of choosing to hunt the stag, p�, that makes the value of either

action be equal, i.e.,

VCPTðSjp�; a; b; l; gÞ ¼ VCPTðHjp�; a; b; l; gÞ; ð6Þ

where α is the Prelec parameter [24] that describes the perception of probability, b is the refer-

ence point that describes how outcomes are framed, λ describes the hunter’s aversion to loss,

and γ describes concavity of the utility function, leading to diminishing marginal utility effects.

Notice that we are assuming both agents have an equal perception of probability, utility, and

reference point. This simplifies the analysis to a manageable number of degrees of freedom

while still allowing for complex behavior to be studied.

Fig 3 shows the probability of choosing to hunt the stag for different Prelec parameters (i.e.,

α, reference points b, loss aversions λ, and utility concavity γ). It is worth noting that while we

call γ the utility concavity, we have also analyzed the behavior of the hunters for γ> 1, mean-

ing that the utility function is actually convex in that interval. However, this inclusion of con-

vex utility functions should not speak to the validity of increasing marginal utility hypotheses.

In Fig 3a, we observe a high dependence on perception of probability, in line with the previ-

ous analysis of a simple gamble. However, here we see how this risk-related cognitive bias

affects coordination and, hence, collective welfare. When hunters value their actions according

to CPT, coordination is successful either when low probabilities are overestimated (i.e., low α),

or when high probabilities are underestimated (i.e., high α). These correspond to regions

where the probability of hunting Stag is higher than the standard mixed Nash equilibrium of

pNash = 1/3, which corresponds to an expected collective reward of RNash = 2. The apparent

irrelevance of the reference point in this analysis does not mean the reference point does not

affect coordination, as illustrated by Fig 3d and 3e.

Fig 3b and 3c show how coordination changes with loss aversion and the diminishing of

marginal utility, when paired with changes in the perception of probability. In both cases, a

high Prelec parameter α leads to increased coordination. However, high loss aversion pro-

motes this effect by perceiving the hare solution as worse than it actually is, whereas utility

function concavity does the opposite by decreasing the perceived utility of the stag more than

it does with the hare. In fact, Fig 3f shows that utility concavity and loss aversion have clear

opposite effects on coordination.

Similarly, in Fig 3d, we observe that coordination is highly dependent on the reference

point, and that increased loss aversion can improve coordination when the reference point is

close to zero. It is important to note that the differences outside this range seems not very sig-

nificant since the probability of hunting stags is very close to the Nash equilibrium—noticed

by the close-to-uniform colors of the plot.

Table 1. Payoff matrix underlying the utility functions of the 2-player stag hunt game with two actions—Hare (H)

and stag (S). Specifically, agent 1’s choices are cast in rows and agent 2’s choices are cast in columns. The utility given

to agent 1 and agent 2 are the first and second numbers, respectively, of a given cell.

Agent 2

S H
Agent 1 S 5, 5 −1, 1

H 1, −1 1, 1

https://doi.org/10.1371/journal.pcbi.1009167.t001
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Fig 3e shows the effects of the reference point and utility concavity on coordination. For

concave utility functions γ< 1, there is a region of positive reference points which makes it dif-

ficult for hunters to coordinate. On the other hand, when the utility function is convex γ> 1,

the region is (mostly) is mostly in the negative part of the reference point, and is larger than its

concave counterpart.

Henceforth, it readily follows that CPT can generate a wide range of two-agent coordinating

behaviors that can be studied under the light of game theory with a sufficiently low number of

degrees of freedom while allowing for their visualization, and capturing representative behav-

iors from real-life scenarios.

Notwithstanding, humans are rarely faced with scenarios where only a single decision is

available. Dealing with decisions over time, dynamic environments, other people, and limited

information, are what humans excel at throughout their lifetimes. To study risk sensitivity and

how humans model other humans (i.e., theory of mind), we set up a Markov game [26] based

on the stag-hunt game—similar to the stag-hunt in [27]. Here, two agents can be in one of 16

states (S1 ¼ S2 ¼ f0; :::; 15g, such that the joint state space is S ¼ S1 � S2), starting in one of

them at random. These 16 states represent areas within a hunting region, on the bottom of a

long canyon.

Each agent i = 1, 2 can move around in this canyon, by choosing an action ai from their

action set Ai (with A1 ¼ A2 ¼ fLeft; Stay;Rightg). These actions have some probability to

fail, in which case they may still go to in the desired direction, but can also stay at the current

location, or go in the opposite direction—see Fig 4. In this canyon, only two of the 16 states

Fig 3. Probability of hunting stags in a normal-form stag hunt game. Cumulative prospect theory can explain a wide range of coordinating behaviors

in a simple game such as the stag hunt, depending on how probabilities are perceived and how outcomes are framed. The panels show the probability of

choosing Stag in the stag hunt normal-form game, for pairs of parameters of prospect theory—i.e., reference point b, Prelec parameter α, loss aversion

λ, and utility concavity γ. For each pair of parameters, the remaining ones were left at default values: b = 0, α = 1, λ = 1, and γ = 1. Lighter colors indicate

higher probability of hunting stag. White line represents the mixed Nash equilibrium of 1/3.

https://doi.org/10.1371/journal.pcbi.1009167.g003
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have prey. Specifically, in state 3 there are hares and in state 11 there are stags. A single hunter

can hunt hares alone, but coordination between the hunters is required in order to hunt

stags—see Fig 5 for a summary.

Solving a Markov game results in finding the joint policy resultant from each agent mini-

mizing their value. The notion of value here is defined as the discounted sum of rewards which

can be rewritten recursively as a Bellman equation [28]. This sum occurs over the temporal tra-

jectory of the agent, which is here assumed to be infinite. To make sure this sum stays finite, a

parameter called discount factor, denoted by β 2 (0, 1), describes how an agent values a

short-term reward over a long-term one. Specifically, increasing β increases the perceived

“goodness” of long-term rewards over short-term outcomes, while decreasing βmakes the

agent more hedonistic by concerning itself less with long-term outcomes. A Bellman equation

[28] for the CPT-value has been studied before [29, 30]. Here, we generalize this notion to the

multi-agent setting of a Markov game—see Section 3 of S1 Text for a detailed summary of the

Fig 4. Markov stag-hunt transition probabilities of an individual agent. Darker colors indicate higher probability.

Shown are 5 different colors, which, from lightest to darkest, have probabilities of 0% (white), 20%, 40% (corners),

60%, and 80% (corners). Black does not appear because there are no degenerate transitions which would make agents

get stuck. Each agent chooses one of three actions (Left, Stay, or Right) and, depending on their current state, move to

another state according to the respective transition probabilities. The state of an agent does not change the transition

probabilities of the other agent, e.g. an agent cannot block the other agent.

https://doi.org/10.1371/journal.pcbi.1009167.g004

Fig 5. Markov stag-hunt reward functions. Darker colors indicate larger rewards. Agents receive a reward at each

time step depending on their state and the state of the other agent. The hare state (state 3) can be obtained regardless of

where the other agent is. This also allows us to model situations in which an agent can only obtain a big reward if the

other agent is willing to coordinate with him. In our case, the stag state (i.e., state 11) has one such big, but difficult to

obtain reward.

https://doi.org/10.1371/journal.pcbi.1009167.g005
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Markov game framework, the calculation of CPT-value, and the level-k bounded rationality

model. In the following experiments, both agents assume uniform stereotyped policies. In

other words, it is common knowledge to both agents that, at the sophistication level k = 0, each

action is equally likely to be chosen by either agent in any of the 16 × 16 joint states.

Analysis of value and policy. Fig 6 shows the value and policy of a hunter in a Markov

game with two hunters using CPT. In this scenario, with reference point at zero, CPT-agents

place increasingly more value on the stag state as the common sophistication level increases.

The corresponding policies also prescribe a behavior which tends to increasingly move toward

the stag state as sophistication increases. For example, from k = 1 to k = 2, hunters will choose

to stay on the stag state even if the other agent is very far away from the stag. In addition, as the

sophistication level increases, the number of neighboring joint states that attract hunters

toward the stag state increases. Hence, theory of mind has a positive effect on coordination

and steers hunters to the best outcome, something which could not be possible in the classical

setup without an additional mechanism.

Analysis of stationary distribution. We can further study human behavior, at some

sophistication level k, by capitalizing on the stationary distribution of the Markov chain that

results from conditioning the Markov game’s transition probability function on a joint policy.

The stationary distribution ρ(k) indicates the likelihood (in the long-run) of finding the agents

in a certain state—when agents use p
ðkÞ
1 and p

ðkÞ
2 (i.e., the same policy at k-level of bounded

rationality)—see Methods for a more detailed explanation of the stationary distribution. Fig 7

shows the stationary distribution for two CPT-agents playing the Markov stag-hunt game. Our

Fig 6. Effect of sophistication in value and policies in the Markov stag hunt game. (a) CPT values of the agent

states, for sophistication levels k = 1, 2, 3 and 4. Joint states with redder colors have higher value. (b) Policies for

sophistication levels k = 1, 2, 3 and 4. Joint states with darker color indicate higher probability. The value of the stag

state grows with the sophistication level. We assumed reference points b1 = b2 = 0, discount factors β1 = β2 = 0.9, utility

function u(x) = x and probability weighting wðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 .

https://doi.org/10.1371/journal.pcbi.1009167.g006
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results suggest that, with increasing sophistication level k, CPT-agents are able to coordinate
(i.e., choose the optimal stag state) with increasing sophistication level, when assuming uniform

stereotype policies. Remarkably, it seems that there is no need for a high sophistication level

for coordination to emerge; in fact, coordination is at its maximum when only one of the two

agents has sophistication level equal to k1 = 2 (or higher), while the other has a simpler sophis-

tication level of k2 = 1. Recall that k = 0 means the agent has a uniform policy, and therefore, it

cannot be expected to coordinate effectively at that sophistication level. Furthermore, note that

when k2 = 1 and k1 > 2, agent 1 is overestimating the sophistication level of agent 2. Increasing

k1 further increases the “error” in its assumption about agent 2. For this reason, it is surprising

that coordination is not only attained, but even more so. One possible reason for this is that

the assumption “error” for large k1 induces a policy of agent 2 which prefers stags with higher

and higher likelihood than the previous sophistication level (i.e., k1 − 1), leading to an ever-

increasing preference to hunt stags.

Analysis of reference point. The reference point in cumulative prospect theory models

the perception of losses and gains with respect to some predefined state of the agent which

may be determined, in general, by its economical, social or psychological context. Agents with

a high reference point tend to have a bleak perception of reality by perceiving most outcomes

as losses, whereas agents with low reference point are optimistic and consider most outcomes

Fig 7. Role of sophistication level of CPT-agents in the stationary distributions of the Markov stag hunt game. Darker

colors indicate higher probability. We assumed equal agent parameters (i.e., discount factors β1 = β2 = 0.9, reference point b1

= b2 = 0, utility functions u1(x) = u2(x) = x, and weighting function w1ðxÞ ¼ w2ðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 ).

https://doi.org/10.1371/journal.pcbi.1009167.g007
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as gains. In the case of the two hunters, evidence that theory of mind promotes coordination

can be seen in the stationary distribution. Specifically, a high reference point steers hunters

into the safety of hare hunting, whereas a low reference point steers them into the risky pros-

pect of stag hunting. Since hunting stags is more uncertain—due to the need for both agents to

coordinate their efforts—hunters with a high reference point will attempt to minimize their

losses by playing it safe, a clear sign of CPT-induced risk-aversion. However, this effect is

reversed when the reference point is below b = 1, where hunting stags is a more preferable

option in the long-term—see Fig 8. Furthermore, the preference for hare hunting (i.e., the sub-

optimal choice) can sometimes be overcome by more sophisticated theory of mind, since

hunters can escape their risk sensitivity by changing their perception of what their partner is

going to do. Specifically, at reference point b = 1, the equilibrium shifts from both agents pre-

ferring the safety of hares to both of them mostly hunting stags. This further suggests the

importance of theory of mind in collective decision-making dilemmas.

Discussion

Theories of value

Expected utility theory (EUT) is likely the most adopted theory of value that provides a simple

and parsimonious model to determine expected payoffs of uncertain outcomes but it is

Fig 8. Role of the reference point of CPT-agents in the stationary distributions of the Markov stag hunt game for

several sophistication levels. Stationary distributions of the resulting Markov chains obtained by conditioning the

Markov game to increasingly sophisticated policies, k = 1, 2, 3 and 4, for CPT-agents with several reference points b =

−1, 0, 1, 2. Darker colors indicate higher probability. We assumed discount factors β1 = β2 = 0.9, utility function u(x) =

x, and weighting function wðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 .

https://doi.org/10.1371/journal.pcbi.1009167.g008
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regarded as a prescriptive model of decision-making and is not viewed as a good descriptor of

how humans assign value to uncertain outcomes [8]. In social situations, agents must make

assumptions to be able to “predict” what the other agents will choose in order to be able to cal-

culate the payoff of their actions. This axiomatic of rational choice [31] forms basis of EUT

and has been observed not to be a very good descriptor of how people make decisions. The

Allais paradox [32] and the Ellsberg paradox [33] are examples of how people break these axi-

oms on a regular basis. In general settings, CPT offers a risk-sensitive generalization of EUT.

In other words, EUT can be seen as particular cases of the framework proposed here, where

the reference point is zero, and the utility functions (for gains and losses) and the probability

weighting function are the identity.

CPT has been used to explain human behavior in many scenarios [34–42]. CPT is a power-

ful behavioral alternative to EUT, and empirical evidence suggests that CPT is a better model

of human decision-making than EUT. Decision-making models achieved state of the art per-

formance on human judgment datasets by creating neural networks with human-like infer-

ence bias by pre-training them with synthetic data generated by CPT [43].

Theory of mind and risk sensitivity improve coordination

Our results suggest that CPT-agents, in a two-agent normal-form stag hunt game, can coordi-

nate (hunt the stag) more effectively than EUT-agents using the simpler mixed Nash equilib-

rium. In other words, risk sensitivity can steer collective action, as hunting stag requires

cooperation with the other individual in order to succeed [25]. This result, as expected, is sen-

sitive to the way agents frame outcomes as either gains or losses, as well as how agents perceive

the probability of success. Specifically, coordinated action is increased either when both hunt-

ers frame the game as a loss while overestimating low probabilities, or when hunters frame the

game as a gain while underestimating high probabilities—see Fig 3.

Importantly, the conflict between short- and long-term rewards is a dilemma of particular

interest in domains where time is a relevant factor in the most important collective problems

humans face [44], from climate action to the impact of technology. Concurrently, it is also in

these domains where a theory of mind may prove useful. We studied how agents coordinate in

a Markov game version of two-player stag-hunt, where both agents were equipped with a

level-k bounded rationality model, allowing them to predict several (increasingly sophisti-

cated) behaviors in the form of policies.

In particular, our results provide evidence that increasingly sophisticated theory of mind

promotes coordination in two-player games, but highly sophisticated theory of mind is not

required for successful coordination, something that has been previously studied in evolution-

ary settings [45]. Our conclusions are valid for a wide range of parametric choices in our set-

ting, namely in what concerns the reference point b (Fig 8) and the discount factor β (S3 Fig).

Furthermore, when compared to the commonly used EUT-agents, CPT-agents coordinate

faster, whereas the former fail to do so—see S4 Fig. In fact, we observe that even if only one

hunter uses CPT while the other uses EUT to evaluate their actions, coordination is also

increased compared to both hunters using EUT—see S5 Fig. These results show how risk sen-

sitivity (using CPT) may help explain seemingly irrational but more realistic behaviors that

cannot be explained using the more parsimonious EUT.

Optimism increases coordination

Our results also suggest that hunters shift to hunting hares when the reference point is

increased. It readily follows that using a higher reference point decreases the total reward. In

other words, hunting stags is perceived as a not-so-good solution when both agents have a
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negative skewed view of the rewards; notice that CPT-agents with a higher reference point

have a more bleak perception of rewards. However this effect can be mitigated (and sometimes

nullified), since hunters may still switch to hunting stags if their sophistication level is high

enough (cf. Fig 8 at b = 1). Additionally, higher sophistication levels (i.e., higher than k = 3) do

not change the outcome of the two-agent setting in the long run. Thus, this provides further

evidence that unbounded rationality is not only practically unfeasible, but also unnecessary for

coordination. This suggests that the framing of gains and losses also plays an important role in

the emergence of human coordination.

Discounting future rewards decreases coordination

As mentioned in the Results section, the discount factor describes the hedonism of an agent

and, as such, plays an important role in dynamic games. In our particular case, agent hedonism

affects coordination and it is, therefore, worth studying. S3 Fig shows the stationary distribu-

tion of agents (EUT-agents and CPT-agents) for two different discount factors (i.e., β = 0.85

and β = 0.95), illustrating the effects of short-term versus long-term reward perception affect

two-player coordination. Specifically, for β = 0.85, both agents prefer the hare state over the

stag state, whereas for β = 0.95 the opposite is true and coordination is achieved. These results

provide evidence that increasing the discount factor (i.e., increasing the perceived “goodness”

of long-term rewards) also increases coordination of both EUT- and CPT-agents, and that the

latter still generate more coordination than EUT. Furthermore, we observed that more sophis-

ticated policies in the theory of mind help agents coordinate, even if the long-term reward con-

sideration makes it unlikely at first.

Diminishing marginal utility decreases coordination

S6 and S7 Figs show the equilibrium distributions when agents display a diminishing marginal

utility when evaluating their actions. Specifically, agents use a concave utility function u(x) =

xλ with λ = 0.99 and λ = 0.95, respectively. These results suggest that a small change to the con-

cavity of the utility function will render coordination difficult to attain, even with increased

theory of mind sophistication. However, it was expected since the concave nature of the utility

function makes smaller the difference between the utility of the stag state and that of the hare

state, ergo making agents regard the stag state as less appealing relative to the hare state.

Conclusion

Cognitive biases and theory of mind are a fundamental part of being human. We merged risk

sensitivity and theory of mind into a novel theoretical framework and provided evidence that

we are able to steer the behavior of individuals towards coordination among any two humans.

Specifically, we studied the stag-hunt game in both its normal-form and Markov game ver-

sions and provided evidence that, by including cognitive biases and theory of mind in the

dynamics of a two-player coordination game, agents are able to coordinate much more easily.

Therefore, equipping agents with cumulative prospect theory helps coordination compared to

the (standard) expected utility theory. This is a remarkable finding given that most multi-agent

systems (MAS) use expected utility theory—likely due to the parsimonious mathematical

framework it provides—and may be missing out on naturally occurring coordinating behav-

iors due to their focus on optimality. For example, in line with a recent work [46], prospect

theory (a prequel of its cumulative counterpart studied here) has been used to study how fear

of punishment can steer a population of individuals towards cooperation, even when punish-

ment occurs very rarely. This is because the low probability of a very bad outcome is perceived
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(using prospect theory) to be more likely that what it is in reality, leading individuals toward

more cooperative behaviors.

As shown here, behavioral agent models provide significantly different system dynamics

compared to prescriptive agent models and, therefore, several interesting research directions

naturally arise. For instance, multi-agent systems where agents represent people should use a

descriptive behavioral model instead of a prescriptive model. Upon realizing this, one can start

to develop and study human-based models such as idealized forms of democracy (e.g., liquid

democracy [47]), video-game artificial intelligence with human-like behavior (or that is able to

understand human-like behavior) and policy-making, or even revisiting already known social

conflict problems such as the tragedy of the commons and the diffusion of responsibility.

It would also prove interesting to create an inference model to obtain the optimal parame-

ters of this model, similar to [27] and [45]. For instance, a Bayesian method to infer the refer-

ence point, discount factor, utility and weighting function parameters, and policy

sophistication level would enable machines to learn to act in a more personalized manner.

One caveat of obtaining bounded rationality using a level-kmodel is the assumption that

stereotype policies are uniform, which may be rather unrealistic. Therefore, a way of creating

more realistic stereotyped policies would be an interesting problem to tackle. One such way is

self-play, a reinforcement learning method to train agents by pitting them against themselves

and, in an evolutionary manner, preserving winners and discarding losers [48]. Furthermore,

it is known that people represent their own mental states more distinctly than those of others

[49], something to take into account when determining prior policies using the level-k
bounded rationality model.

In the two-agent level-kmodel, it is known that humans, in general, do not use more

sophistication than level-3 [50]. This creates a finite hypothesis space for the policy levels (i.e.,

with k = 0, 1, 2 and 3). However, when multiple interacting agents are a part of the environ-

ment, it is not enough to specify policy levels as a single number because each agent may have

a policy which is a best response against several other policies of different levels. Therefore,

there exists a problem of finding a behaviorally plausible hypothesis space for the inferred

orders of each agent, which, if solved, would allow inference to be done on a collective level.

Specifically, we would like reasoning such as “what you think about what he thinks that she

thinks. . .” to be described in a simple, yet well-structured manner. This is crucial to under-

standing more general social dynamics because conclusions about two-player games do not

often generalize to more players [51–54]. The team theory of mind model proposed in [55] is

an interesting setting that tackles some of the problems but its solution is computationally

costly.

Last but not least, verification of the proposed framework could be tested through behav-

ioral experiments, which may also generate interesting data to further validate and expand the

proposed model. These and other related research paths may lead to new models capable of

capturing the the dynamics of systems comprised of people and, in turn, unlock the knowledge

we lack to build artificial entities capable of understanding or fostering cooperation among

humans and machines [13–17]. The present modeling approach can be further applied in the

context of evolutionary models, potentially highlighting the impact and evolution of cognitive

biases under the different classes of dilemmas humans faced throughout evolution.

Methods

CPT-value of a gamble with two outcomes

Cumulative prospect theory (CPT) provides a way to encode cognitive biases into the deci-

sion-making processes of cognitive agents. As we will see, these biases will significantly change
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the outcome of fairly simple decision scenarios. Suppose a CPT-agent is deciding between a

certainty and gamble with two potential outcomes. The value of the certainty is straightfor-

ward, calculated as

VCertaintyðbÞ ¼ uðr � bÞ; ð7Þ

where b is the reference point, r is the certain outcome, and u is the following utility function:

uðxÞ ¼

( x0:85 if x � 0;

� 2jxj0:85 if x < 0:
ð8Þ

The value of the gamble with two outcomes, r+ with probability p and r− with probability

1 − p (r+ > r−) is calculated as follows:

VGambleðb; aÞ ¼ uðrþ � bÞcðrþ � bÞ þ uðr� � bÞcðr� � bÞ; ð9Þ

where α is the Prelec parameter, r+ (r−) is the highest (lowest) outcome, and ψ(x) is the per-

ceived likelihood of outcome x computed as follows:

cðrþ � bÞ ¼

(wðpÞ if rþ � b � 0;

1 � wð1 � pÞ otherwise;

cðr� � bÞ ¼

( 1 � wðpÞ if r� � b � 0;

wð1 � pÞ otherwise;

ð10Þ

where w(p) = exp{−α(−log(p))δ} is Prelec’s probability weighting function [24]. A more general

formulation is provided to the reader in Section 1 of S1 Text.

CPT-value in symmetric 2-player 2-actions normal-form games

In a symmetric normal-form game with two players (1 and 2) and two actions—cooperate (C)

and defect (D)—the payoff matrix can be written as in Table 2.

A Nash equilibrium prescribes the situation where each player acts to make the other play-

er’s decisions have equal value. Therefore, player 1 calculates the value of player 2’s actions, as

follows:

V2ðCÞ ¼ uðR � bÞcðR � bÞ þ uðS � bÞcðS � bÞ;

V2ðDÞ ¼ uðT � bÞcðT � bÞ þ uðP � bÞcðP � bÞ;

V2ðCÞ ¼ V2ðDÞ;

ð11Þ

where the likelihoods ψ are calculated as in CPT. In other words, player 1 will then rewrite the

last equality of Eq 11 to obtain the probability of his actions which make player 2 indifferent

between his actions. Since the game is symmetric, player 2 will have the same policy. A brief

Table 2. Payoff matrix of a symmetric 2-player, 2-action normal-form game.

Player 2

C D
Player 1 C R, R S, T

D T, S P, P

https://doi.org/10.1371/journal.pcbi.1009167.t002
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introduction to normal-form games and its CPT formulation can be found in Section 2 of S1

Text.

Infinite horizon CPT-value in Markov games

A Markov game is a multiplayer generalization of a Markov Decision Process (MDP). Section

3 of S1 Text provides a brief introduction to MDPs and Markov games in the context of CPT,

as well as how agents decide in the context of theory of mind applied to Markov games. Briefly,

the CPT-value that agent i places on a joint state ðs1; :::; snÞ ¼ s 2 S, given a joint policy π =

(πi, π−i), can be obtained by generalizing the MDP CPT-value to the Markov game via succes-

sive iterations of

Vpi ;π� i
i ðsÞ ¼

Z 1

0

wþi
X

ai2Ai

Pai;π� ii;s;þ ð�ÞpiðaijsÞ

 !

d�

�

Z 1

0

w�i
X

ai2Ai

Pai ;π� ii;s;� ð�ÞpiðaijsÞ

 !

d�;

ð12Þ

where

Pai ;π� ii;s;þ ð�Þ ¼
X

a� i2A� iðsÞ

Pai;a� ii;s;þ ð�Þπ� iða� ijsÞ;

Pai ;π� ii;s;� ð�Þ ¼
X

a� i2A� iðsÞ

Pai;a� ii;s;� ð�Þπ� iða� ijsÞ;

Pai ;a� ii;s;þ ð�Þ ¼ Pa
s ðu

þ
i ððriðsÞ þ biV

pi ;π� i
i ðSÞ � biÞþÞ > �Þ; and

Pai ;a� ii;s;� ð�Þ ¼ Pa
s ðu

�
i ððriðsÞ þ biV

pi ;π� i
i ðSÞ � biÞ� Þ > �Þ:

Each agent i tries to maximize his value Vi by choosing the optimal policy πi given the joint

policy of every other agent π−i, i.e.,

p�i ðsÞ ¼ argmax
pi

Vpi ;π� i
i ðsÞ;8s 2 S: ð13Þ

Creating simultaneous markov games from individual Markov decisions

processes

To create a simultaneous decision-making scenario, the dynamics in the joint state space and

the individual transition probabilities must be combined in a proper manner, i.e.,

Pa1 ;a2 ¼
I � Pa1 þ Pa2 � I

2
; ð14Þ

where the Kronecker product� ensures an action from agent 1 does not change the state of

agent 2 and vice-versa. The average of this transformed agent transition probability function

ensures the joint state space dynamics is independent of who acts first.

Stationary distribution

Agent behavior can be summarized by the stationary distribution of a Markov game, when

this is conditioned on a joint policy—effectively turning a Markov game into a Markov chain.
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This stationary distribution conveys information about the joint states the two-agent system

will most likely be in (in the long-run).

When agent 1 uses policy p
ðk1Þ

1 and agent 2 uses policy p
ðk2Þ

2 , the resulting conditioned transi-

tion probability function can be obtained as

Pp1 ;p2

s;s0 ¼
X

a1 ;a2

Pa1 ;a2

s;s0 p1ða1jsÞp2ða2jsÞ:

From this, the stationary distribution ρ(k) when agents use p
ðkÞ
1 and p

ðkÞ
2 —that is, the same

policy at k-level of bounded rationality—can be obtained via

rðkÞ ¼ rðkÞPp
ðkÞ
1
;p
ðkÞ
2 :

Limitations

Prospect theory and its cumulative extension propose an original probability weighting function

[8, 9] which is different from the Prelec probability weighting function [24] used here—see Fig

1 for a comparison between the two. We have considered the Prelec probability weighting func-

tion for two main reasons. First, it generalizes the original probability weighting function used

in the CPT context such that both the certainty and possibility effects are still present, while

allowing us to control (by changing α) which of these two effects dominated probability percep-

tion. Second, when computing the CPT value of the Markov game, it leads to highly unstable

numerical issues that ultimately results in failure to converge for a wide range of constrained

non-linear optimization methods. This, however, is an effect that persisted even when attempt-

ing to approximate Prelec’s probability weighting function—see details in Section 4 of S1 Text.

Supporting information

The various sections of S1 Text provide detailed information about the proposed model. In

Section 1 of S1 Text, we show how agents determine value of outcomes—or, equivalently,

actions—using expected utility theory (EUT) and cumulative prospect theory (CPT). This is fol-

lowed by a brief introduction to normal-form games, in Section 2 of S1 Text, and Markov

games, with a technical overview of how to calculate CPT-value in Markov games and how the

level-kmodel plays a role in this calculation, in Section 3 of S1 Text. Lastly, in Section 4 of S1

Text, we discuss some limitations of this model.

S1 Text. Detailed information about the proposed model.

(PDF)

S1 Fig. EUT and CPT values as functions of the agent states, for sophistication levels

k = 1, 2, 3, 4. Joint states with redder colors have higher value. We assumed reference points

b1 = b2 = 0, discount factors β1 = β2 = 0.9, utility function u(x) = x and weighting function

w(x) = x for EUT, and wðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 for CPT.

(TIF)

S2 Fig. Stationary distributions of the resulting Markov chains obtained by conditioning

the Markov game to increasingly sophisticated policies (k = 1, 2, 3, 4) for EUT- and CPT-

agents. Joint states with darker color indicate larger probability. We assumed reference points

b1 = b2 = 0, discount factors β1 = β2 = 0.9, utility function u(x) = x, and weighting function

w(x) = x for EUT, and wðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 for CPT.

(TIF)
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S3 Fig. Role of discount factor β on the stationary distributions of the resulting Markov

chains obtained by conditioning the Markov game to increasingly sophisticated policies

(k = 1, 2, 3, 4) for EUT-agents and CPT-agents. Joint states with darker color indicate larger

probability. We assumed reference points b1 = b2 = 0, utility function u(x) = x and weighting

function w(x) = x for EUT and wðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 for CPT. (Left) Stationary distribution for

EUT- and CPT-agents using discount factor β = 0.85. (Right) Stationary distribution for EUT-

and CPT-agents using discount factor β = 0.95.

(TIF)

S4 Fig. Role of sophistication level of two EUT-agents on the stationary distributions of

the Markov stag hunt game. Joint states with darker color indicate larger probability. We

assumed equal agent parameters: discount factors β1 = β2 = 0.9, reference point b1 = b2 = 0,

utility functions u1(x) = u2(x) = x, and weighting function w1(x) = w2(x) = x).

(TIF)

S5 Fig. Role of sophistication level of one EUT-agent (agent 1) and one CPT-agent (agent

2) on the stationary distributions of the Markov stag hunt game. Joint states with darker

color indicate larger probability. Here, agent parameters are fixed at: discount factors β1 = β2 =

0.9, reference point b1 = b2 = 0, utility functions u1(x) = u2(x) = x, and weighting functions

w1(x) = x, and w2ðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 .

(TIF)

S6 Fig. Stationary distributions of the Markov stag hunt game for asymmetric sophistica-

tion levels of CPT-agents with utility function concavity parameter at 0.99. Joint states with

darker color indicate larger probability. We assumed equal agent parameters (i.e., discount fac-

tors β1 = β2 = 0.9, reference point b1 = b2 = 0, utility functions u1(x) = u2(x) = x0.99, and weight-

ing function w1ðxÞ ¼ w2ðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 ).

(TIF)

S7 Fig. Stationary distributions of the Markov stag hunt game for asymmetric sophistica-

tion levels of CPT-agents with utility function concavity parameter at 0.95. Joint states with

darker color indicate larger probability. We assumed equal agent parameters (i.e., discount fac-

tors β1 = β2 = 0.9, reference point b1 = b2 = 0, utility functions u1(x) = u2(x) = x0.95, and weight-

ing function w1ðxÞ ¼ w2ðxÞ ¼ e� 0:5ð� logðxÞÞ0:9 ).

(TIF)
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