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Abstract

Molecular diagnosis is an essential step of patient care. An increasing number of Copy

Number Variations (CNVs) have been identified that are involved in inherited and somatic

diseases. However, there are few existing tools to identify them among amplicon sequenc-

ing data generated by Next Generation Sequencing (NGS). We present here a new tool,

CovCopCan, that allows the rapid and easy detection of CNVs in inherited diseases, as well

as somatic data of patients with cancer, even with a low ratio of cancer cells to healthy cells.

This tool could be very useful for molecular geneticists to rapidly identify CNVs in an interac-

tive and user-friendly way.

This is a PLOS Computational Biology Software paper.

Introduction

Identifying mutations responsible for inherited or somatic diseases can be essential to define

the appropriate therapy for the efficient treatment of patients. For example, this is true for

patients presenting an amyloid neuropathy due to Transthyretin (TTR) point mutations, who

can benefit from new treatments, such as Tafamidis [1]. This is also true for cancer, for which

it is important to rapidly detect certain Copy Number Variations (CNVs), such as the 17p dele-

tion, a recurrent abnormality in Chronic Lymphocytic Leukemia (CLL), with major therapeu-

tic implications. Because this acquired chromosomal abnormality directly impairs the TP53
gene [2, 3], it is now recommended to test this CNV before each treatment for CLL [4]. Indeed,

TP53 alterations in CLL are responsible for primary resistance to fludarabine and survival of

such patients is clearly improved by new-targeted therapies, such as ibrutinib [5, 6].
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High-throughput sequencing techniques allow partial or total sequencing of a patient’s

genome. Amplicon sequencing is one of the techniques that enables the sequencing of several

thousand exons at a very low cost. Although this method is robust for the discovery of small

genetic mutations, such as single-nucleotide polymorphisms or short indels, only a few tools

are available for the detection of larger variations, such as deletions or duplications in ampli-

con sequencing data. Some of these tools require control samples to establish a reference set of

data (ONCOCNV [7]). For others (ExomeDepth [8], IonCopy [9], DeviCNV [10], Cov’Cop

[11]), control samples are not necessary. Indeed, if the CNV is rare, the other patient samples

tested in the same run can serve as controls. In this strategy, multiple patients are tested at the

same time, potentially shortening the time to diagnosis.

Most available tools based on the read depth method to detect CNVs include robust statisti-

cal methods. ExomeCopy [12] proposes a hidden Markov model to detect CNVs from raw

read count data. CONVector [13] was built on a machine-learning algorithm to associate

PCR-efficiency correlations for subsets of amplicons. Here, we propose a new tool, CovCop-

Can, based on the initial read-depth method developed in Cov’Cop, with additional statistical

methods and features that allow the rapid and easily detection of CNVs in inherited diseases,

as well as somatic data of patients with cancer, even with a low ratio of cancer cells to healthy

cells (data sets described in S1 File). CovCopCan includes heuristic methods to compare the

value of each amplicon of a patient to those of other patients sequenced in the same run. Cov-

CopCan focuses on data manipulation and results exploration for the interpretation of CNVs.

Users have access to an overview of the results for each patient through an interactive visuali-

zation, allowing, for example, the exclusion of low-quality amplification from the analysis and

quickly restarting CNV detection. In addition, several statistics methods (Loess regression,

Cumulative summary) can help in the interpretation of the results.

Design and implementation

CNV-detection algorithm

Z-score-based CNV detection: “Z-detection”. From the raw read count of each ampli-

con, CovCopCan applies the same corrections and normalization as the Cov’Cop tool [11],

resulting in a normalized read count value (NRC) for each amplicon (see S1 File). Starting

from this point, we developed a new CNV-detection algorithm, based on the z-score. The z-

score is calculated for each amplicon in each patient, according to the following formula:

z � scorep i ¼
NRCp i � mp

sp

NRCp_i is the normalized read count of the amplicon i in the patient p, μp the NRC average of

the patient p, and σ corresponds to the standard deviation of the patient p. The z-score follows a

standard normal distributionN(0;1). We fixed a threshold corresponding to a significance level of

0.01 for both deletion and duplication events by a one-tailed test. Thus, a negative z-score with a

p-value< 0.01 indicates a deleted amplicon, whereas a positive z-score with a p-value< 0.01 indi-

cates a duplicated amplicon. This algorithm automatically determines the best deletion and dupli-

cation thresholds based on the variability of a patient’s data. The users are free to determine the

minimum number of concurrent amplicons required to call a CNV. No minimum distance

between amplicons is required, but they have to be on the same chromosome. By default, a mini-

mum of three successive amplicons on the same chromosome was used for all data in this paper.

Two-stage ratio to optimize CNV detection. The last normalization step of CovCopCan

results in a ratio of standardized patient values that gives a theoretical value of 1 for a gene

CovCopCan detects CNVs in inherited diseases and cancer
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present in two copies, 0.5 for a deletion event, and 1.5 for a duplication. In this last step, each

amplicon value is divided by the median of the same amplicon from the other samples. Once

this first ratio is calculated and the first round of CNV detection is performed, a second ratio is

calculated excluding all amplicons located inside the initially detected CNVs from each sam-

ple, and final CNV detection is achieved. This approach is used to improve standardization in

regions in which the same CNV event is present in many patients.

Merging CNVs. We provide a “merge” option to reduce the impact of false-negative

amplicons on CNV detection. If two CNV areas located on the same chromosome are dis-

jointed by only one amplicon with a z-score duplicated or deleted at a significance level of 0.05,

CovCopCan will then merge the two CNV areas to easily highlight this global CNV. In addition,

the user can also define the maximum distance value between two CNVs to be merged.

Reference amplicon selection or exclusion. For the normalization step, CovCopCan

selects a set of amplicons, consisting of those that are the most stable among the patients of a

run. These amplicons are then used to normalize the values of the other amplicons. The user

can indicate specific amplicons to use for this normalization step (see S1 File). Inversely, our

tool also provides the possibility to manually exclude some amplicon data for the last ratio step

of normalizations (see S1 File).

Control samples. Although CovCopCan works without control samples, it is possible to

exploit the presence of controls if they are available. In such a case, the median of the last stan-

dardization step is no longer calculated using all the samples but only the controls. Then for

each patient, the amplicon values are divided by the median calculated for the controls,

according to the following formula:

Ratioi patj ¼
NRCipatj

MdðNRCicontrolsÞ

NRCipatj is the normalized read count of the amplicon i in the patient j.
MdðNRCicontrolsÞ is the median of the normalized read count of the control samples.

CovCopCan can be run with only one control sample but more control samples will

improve the result.

2D interactive visualization

An interactive 2D visualization is available for each patient (Fig 1). The amplicons are repre-

sented by dots over their chromosomal positions on the x-axis and their normalized values on

the y-axis. Users can interactively zoom in on specific regions and navigate between data in an

intuitive and interactive way, allowing simple navigation. Several types of information

described below have also been added to the graphical representation.

Local regression curve. We introduced the possibility to display regression curves on the

presented chart to optimize visual CNV detection. We chose to implement the Loess local

regression algorithm [14] to easily visualize a sudden change. The Loess regression is calcu-

lated for each chromosome. By default, the bandwidth parameter is fixed to 0.25, but it is pos-

sible to interactively fine tune it to more or less smoothen the curve. The Loess regression is

represented by a green curve on the chart (see S1 File).

CUSUM charts. For data generated from cancer or mosaic samples, a sample may simulta-

neously contain “normal” and deleted/duplicated cells. The deletion/duplication detection accu-

racy depends on the proportion of deleted/duplicated cells relative to that of the normal cells

and the normalized values can be close to 1. CNVs will then be very difficult to detect. Conse-

quently, we added a visual method called CUmulative SUMmary control chart (CUSUM; [15])

CovCopCan detects CNVs in inherited diseases and cancer
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to be able to observe a slight increase or decrease in values. For each chromosome, this algo-

rithm calculates the cumulative sum of the positive deviations (values> patient’s average) for

deletions and negative deviations (values< patient’s average) for duplications. It can be useful

for detecting a slight deviation of the values due to cancer data or mosaicism, as well as small

CNVs in inherited diseases.

Sþn ¼ maxð0; Sþn� 1
þ xn � ð�x þ sÞÞ

S�n ¼ minð0; S
�

n� 1
þ xn � ð�x � sÞÞ

Here, xn corresponds to the value of one amplicon, �x is the mean value of all the patient’s

amplicons, and σ is the standard deviation. In the visualization of CovCopCan, a blue shape

indicates a possible deletion, whereas a pink shape indicates a potential duplication. Although

this method makes it possible to highlight potential CNVs, it does not allow precise definition

of their breakpoints (see S1 File).

Results

Two-stage ratio

We visualized the result of the two-stage ratio using sequencing data from panel 2 (see S1 File for

details). This gene panel, designed by Ion AmpliSeq designer software, includes 1,206 amplicons

on 70 genes. The run presented here was performed on an Ion Proton device and included seven

patients. A deletion on chromosome 13 was shared by three of the seven patients (verified by

karyotyping). Examples of the visualization obtained for two of the patients (patient 1 normal

and patient 2 “deleted”) are presented in Fig 2. Without the two-stage ratio, the region in non-

deleted patients was disturbed and a false positive duplication event was detected by CovCopCan

Fig 1. Visualization of CovCopCan. A. General view. Each dot corresponds to an amplicon. The amplicons are distributed on the x-axis

according to their genomic position. The y-axis corresponds to the normalized values. Grey dots indicate a “normal” value, whereas red or

orange dots indicate duplicated and deleted amplicons, respectively. The names of the gene and chromosome number are located at the

bottom of the figure. The green curve shows the Loess regression. The thick green ribbon is a noise heatmap in which green indicates a stable

amplicon in all samples (see S1 File). The red rectangle highlights a CNV region. B. Zoom on the duplicated region covered by 10 amplicons

(PMP22).

https://doi.org/10.1371/journal.pcbi.1007503.g001
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in both (highlighted by a vertical red rectangle, as for patient 1, Fig 2A). The two-stage ratio

improved the stability of the values so that no false duplication event was detected by CovCop-

Can, thus increasing the specificity (Fig 2, compare A and B). This method also improved the

detection of deletions (highlighted by a vertical orange rectangle) in the true deleted patients,

decreasing the number of false-negative amplicons (Fig 2C and 2D).

Merging CNVs

To reduce the effect of individual false negative amplicons, CovCopCan relaxes the signifi-

cance threshold when a single non-significant amplicon is flanked on both sides by significant

amplicons. For this specific amplicon, the threshold will be automatically switched to 0.05. If

this amplicon becomes significantly duplicated, it will be merged with the initial duplicated

detected areas. The grey dot in the graph will stay grey, indicating that it is a merged area.

Deletions are treated the same way. Here, we show the results of this merging option on a com-

plete chromosome X duplication. A single duplication covering the entire gene is detected by

CovCopCan, whereas six successive duplications would have been found without this merging

option (Fig 3).

Control samples

We tested this method with the Panel 2 data (Fig 4). Seven samples were simultaneously

sequenced on an Ion Proton sequencer (three controls and four patients). The four patients

share the same region q deletion on chromosome 13. Without defining controls, CovCopCan

detected a correct deletion (highlighted by the vertical orange rectangle) for one of the four

patients and only a partial deletion for another. In addition, two false-positive duplications

(highlighted by the vertical red rectangle) were detected in two controls. When the control sam-

ples were defined (here three controls without the chromosome 13q deletion), CovCopCan

Fig 2. Comparison of single-stage and two-stage ratio results. A. Without the two-stage ratio, a disturbed region

showed a false-positive duplication on chromosome 13 covered by three amplicons. B. The two-stage ratio improved

the stability of the region and the false duplication was no longer detected. C. Without the two-stage ratio, six

amplicons (grey dots in Chr13 area) were not detected as deleted throughout chromosome 13 (39 amplicons) and

three separated CNVs were detected. D. With the two-stage ratio, only three false-negative amplicons (grey dots in

chr13 area) were present among the 39 amplicons of chromosome 13 and only one amplicon split the total deletion of

the chromosome (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.g002
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efficiently detected two total q deletions on chromosome 13 and two partial deletions for the

two other positive patients. In addition, no false-positive duplications were detected in the three

controls.

Performance on germline data

Amplicon sensitivity and specificity. We first tested our algorithm on germline data. We

used several coverage files obtained after Proton sequencing of our “CMT-89” Ampliseq

library (see S1 File, panel 1).

We calculated the sensitivity of CovCopCan, by amplicon, using 22 positive controls con-

firmed by karyotype, real-time PCR, or Multiplex Ligation-dependent Probe Amplification

(MLPA). The detected CNVs were present in 22 patients, sequenced in 11 runs (Table 1). Of

the 22 CNVs, 15 are covered by more than 10 amplicons. We used a range of CNV sizes from

4 (TFG) to 98 amplicons (chromosome X duplication). CovCopCan was used with the default

settings, with all options active. Raw read values of less than 20 were deleted.

The 22 CNVs are covered by a total of 461 amplicons. CovCopCan correctly detected 403 of

461 deleted/duplicated amplicons, giving an amplicon sensitivity of 0.87. If considering CNV

detection, CovCopCan was able to detect 22 of the 22 CNVs tested, leading to a sensitivity of 1.

In addition, we analyzed the PMP22 gene to calculate the specificity of CovCopCan by

amplicon. Indeed, the PMP22 duplication is the most frequent known mutation responsible

Fig 3. Example of CNV merging on a chromosome X duplication. A. Entire duplication of chromosome X.

CovCopCan detects six CNV areas without the merging CNV algorithm. B. By using the merging CNV algorithm, the

duplication detected includes all of chromosome X, although some amplicons appear as neutral (grey dots). C. The

exported CNV in the VCF format contains only one line corresponding to the duplication of chromosome X (partial

screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.g003

CovCopCan detects CNVs in inherited diseases and cancer
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Fig 4. Visualization of chromosome 13 in seven samples. Each dot corresponds to an amplicon. Orange and red rectangles

correspond to deletions and duplications, respectively. The green curve shows the Loess regression. Patients 1 to 4 share a q arm

deletion. Samples 5 to 7 do not present this deletion. Without defining samples 5 to 7 as controls, only one deletion was correctly

detected in patient 4. A partial deletion was detected in patient 1. False-positive deletions were detected in two of the three controls. By

defining samples 5 to 7 as controls, two deletions were correctly detected in patients 1 and 4. Two partial deletions were found in both

patients 3 and 4. No duplication was found in the controls (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.g004

Table 1. Details of the 22 positive-control CNVs used for germline analysis, with chromosomal locations of the CNVs. a: Number of amplicons covering the CNVs.

b: Number of amplicons correctly detected as duplicated or deleted by CovCovCan.

Sample Gene Chrom. Start End Length (pb) Ampsa Positives Ampsb Type

R1_S3 PMP22 chr17 14593353 15167670 574318 10 8 Gain

R1_S8 KIF1A chr2 241656712 241709233 52522 58 43 Gain

R1_S9 - chrX 24483480 129299679 104816200 98 94 Gain

R2_S2 AARS chr16 70286552 70316749 30198 25 22 Gain

R2_S15 DHTKD1 chr10 12110948 12162941 51994 25 25 Loss

R3_S3 KIF1A chr2 241656712 241709233 52522 58 45 Gain

R4_S4 TFG chr3 100432328 100439067 6740 4 4 Gain

R4_S12 KIF1A chr2 241656712 241709233 52522 58 45 Gain

R5_S3 AARS chr16 70286552 70316749 30198 25 23 Gain

R5_S15 PMP22 chr17 14593353 15167670 574318 10 10 Gain

R5_S16 PMP22 chr17 14593353 15167670 574318 10 10 Loss

R6_S2 PMP22 chr17 14593353 15167670 574318 10 10 Gain

R6_S9 TFG chr3 100432328 100439067 6740 4 4 Gain

R7_S2 TFG chr3 100432328 100439067 6740 4 4 Gain

R7_S6 PMP22 chr17 14593353 15167670 574318 10 8 Gain

R8_S8 PMP22 chr17 14593353 15167670 574318 10 10 Loss

R9_S6 PMP22 chr17 14593353 15167670 574318 10 10 Loss

R10_S10 REEP1 chr2 86444070 86509447 65378 7 7 Gain

R10_S16 TFG chr3 100432328 100439067 6740 4 4 Gain

R11_S8 PMP22 chr17 14593353 15167670 574318 10 10 Gain

R11_S14 TFG chr3 100432328 100439067 6740 4 3 Gain

R11_S15 REEP1 chr2 86444070 86509447 65378 7 6 Gain

https://doi.org/10.1371/journal.pcbi.1007503.t001
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for CMT disease and all patients were initially screened by MLPA to detect this gene duplica-

tion. The PMP22 region was covered by 10 amplicons and the entire design contains 2,394

amplicons. We used 456 patients who had no CNV on PMP22 to estimate the specificity of the

CovCopCan algorithm. Of the 4,560 PMP22 amplicons tested, 4,375 were indeed tagged as

“normal” and only 185 were false positives, leading to a specificity of 0.96.

Comparison with other tools. We compared CovCopCan with three other tools: IonCopy,

DeviCNV, and ExomeDepth. IonCopy and DeviCNV are designed to analyze amplicon

sequencing data without a control set. ExomeDepth uses a robust model for the read count

data and to build an optimized reference set.

We used the shiny version of the software IonCopy (v. 2.1.1), with the gene-wise analysis

mode and default parameters. DeviCNV (v. 1.5.1) was launched with the recommended

parameters, detailed in the manual. ExomeDepth (v.0.1) was also launched with the default

parameters. We tested these tools on the same dataset, already described, containing the 22

CNVs. We only considered CNVs supported by at least three amplicons for all the tools. The

results are presented in Table 2 as the number of CNVs detected.

CovCopCan, IonCopy, DeviCNV, and ExomeDepth each detected 22, 20, 18, and 19

CNVs, respectively (Table 2). Only CovCopCan detected all CNVs for a sensitivity of 1. Ion-

Copy, DeviCNV, and ExomeDepth showed sensitivity of 0.91, 0.82, and 0.86, respectively. It

was impossible to verify all the other CNVs found by the various tools. Thus, we could not cal-

culate specificity based on these data. However, a small number of CNVs would be expected,

since the data correspond to germline samples. Thus, with only seven CNVs detected in addi-

tion to the 22 controls, CovCopCan must have had the best specificity for this dataset.

Performance on cancer data

Low cell fraction. CovCopCan can also process cancer data. The main difference between

germline and somatic data is that a cancer tissue sample may simultaneously contain both

healthy cells and cancer cells. A low proportion of cancer cells may interfere with the detection

of CNVs. We estimated the minimum proportion of cancer cells required for CNV detection

by simulating the complete deletion of a gene covered by 80 amplicons using panel 1 (2,394

amplicons). We used a coverage matrix containing the data of 16 patients sequenced by an Ion

Proton Sequencer. The deletion of the entire gene was simulated following this method:

SRCi ¼ RRCi � 1 � CancerCellProportionð Þ þ RRCi=
2
� CancerCellProportion

SRCi is the simulated value of the amplicon i, RRCi the Raw Read Count of the amplicon i,

and CancerCellProportion the proportion of cancer cells (0 < values< 1). We simulated a pro-

portion of cancer cells ranging from 0 to 1, in steps of 0.05. The first CNV was detected by the

cumulative summary chart for 15% of cancer cells and clearly identifiable for 20%. Using only

“Z-detection”, the CNV was detected when 40% of the cells contained the deletion, whereas

Table 2. Comparison of the performance of CovCopCan and other CNV callers for 22 positive-control CNVs

from 22 samples.

True positives (total = 22) Other CNVs Total

CovCopCan 22 7 29

IonCopy 20 3914 3934

DeviCNV 18 117 135

ExomeDepth 19 218 237

https://doi.org/10.1371/journal.pcbi.1007503.t002
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almost the entire gene (67/80 amplicons) was detected by “Z-detection” as deleted for 60% of

cancer cells (Fig 5).

We confirmed the results obtained from these simulated data using real data. We sequenced

five patient samples harboring various amounts of positive cancer cells carrying the same

ATM gene deletion and previously explored with conventional cytogenetics (karyotype and

FISH). The data were obtained using panel 2 without control samples. The cumulative algo-

rithm first detected the deletion from 19.5% cancer cells (Fig 6). These results show that Cov-

CopCan can detect CNVs within a heterogeneous sample if the cancer cells make up at least 15

to 20%.

Fig 5. Gene deletion simulation (gene visualized in red), with various proportions of cells containing this deletion.

The cumulative summary chart (blue shading) first detected the deletion with 15 to 20% of the cells containing the

deletion (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.g005

Fig 6. Detection of the entire ATM gene deletion in patients DNA, in which the percentage of cancer cells was

estimated based on 200 FISH metaphases per patient. The Cumulative summary detected the deletion starting from

19.5% estimated cancer cells (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.g006

CovCopCan detects CNVs in inherited diseases and cancer
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Comparison with other tools. We compared the performance of CovCopCan against

IonCopy, DeviCNV, and ONCOCNV. First, we used these three tools on the deletion of the

ATM gene described above. Like CovCopCan, both IonCopy, and ONCOCNV correctly

detected the CNV with 19.5% of cancer cells, but not DeviCNV (Table 3).

In addition, we used another dataset obtained using panel 2. We sequenced the DNA of 54

patients in eight runs. Eighteen patients had a partial deletion of a chromosome arm, whereas

two had a complete deletion of this same chromosome arm. The partial deletion was covered

by 21 amplicons, whereas the entire deletion involved 39. In this study, we did not consider

the percentage of cells presenting the CNVs. CovCopCan was used with the default settings,

with all options active. Raw read values of less than 20 were deleted. IonCopy was used in the

gene-wise mode with the default parameters. DeviCNV was used with the recommended set-

tings. ONCOCNV (v 6.9) was used with the default settings. As with the germline data, we set

the minimum number of amplicons to detect CNVs to three for each tool. DeviCNV failed to

analyze a run due to a low number of samples (5) and detected four CNVs from the other

Table 3. Detection of a CNV according to the proportion of cancer cells. “No” indicates no detection of the CNV, whereas “Yes” indicates correct detection of the

CNV.

Cancer cell fraction CovCopCan IonCopy DeviCNV ONCOCNV

0% No No No No

19.5% Yes Yes No Yes

27.5% Yes Yes No Yes

82% Yes Yes Yes Yes

100% Yes Yes No Yes

https://doi.org/10.1371/journal.pcbi.1007503.t003

Fig 7. Deletion of the arm of chromosome 13 detected by CovCopCan using the Cumulative Summary Chart. The

deletion is highlighted in the blue area.

https://doi.org/10.1371/journal.pcbi.1007503.g007
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patients. IonCopy detected nine CNVs. ONCOCNV correctly detected the 20 CNVs but

required at least three controls in a run to call them. CovCopCan was able to detect CNVs,

with or without controls. Without defining control samples, CovCopCan automatically

detected 13 of 20 CNVs. When defining controls, the number of correct CNVs increased to 15

and using the interactive visualization option, such as the CUSUM chart, CovCopCan clearly

indicated the presence of a deletion in at least four of the five additional samples (Fig 7).

Availability and future directions

CovCopCan sources are available on GitHub: https://git.unilim.fr/merilp02/CovCopCan/tree/

master. Pre-complied binaries can be downloaded from this page of the GitHub repository:

https://git.unilim.fr/merilp02/CovCopCan/tree/master.

CovCopCan offers a wide range of features to interpret data from amplicon sequencing to

detect CNVs. This tool works on data generated from Ion Designer (Life Technologies, CA,

USA) as well as that from Illumina DesignStudio (Illumina Inc., San Diego, CA, USA). The

user-friendly interface associated with our 2D visualization facilitates data exploration and

manipulation allowing complex analyses such as those from cancer data. CovCopCan also

offers the possibility to export the results in VCF format [16] or graphical output for publica-

tions. It can also be used in command-line mode to be integrated into various pipelines (see S1

File).

Future development of CovCopCan will involve the possibility to exploit the variant allele

fraction (VAF) to improve the statistical detection of CNVs.

We will also improve memory consumption and parallelism to ensure that CovCopCan can

work on a minimal configuration.

Supporting information

S1 File. Supplementary information of this article. The supplementary document provides

information on the panels used in this article, a guideline to create an optimized panel to call

CNVs, the workflow of CovCopCan algorithm, information on the possibility to define manu-

ally reference amplicons, details on graphical visualization elements and command line inter-

face data.
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