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Abstract: The small ubiquitin-like modifier (SUMO) system regulates numerous biological processes,
including protein localization, stability and/or activity, transcription, and DNA repair. SUMO also
plays critical roles in innate immunity and antiviral defense by mediating interferon (IFN) synthesis
and signaling, as well as the expression and function of IFN-stimulated gene products. Viruses
including human immunodeficiency virus-1, Zika virus, herpesviruses, and coronaviruses have
evolved to exploit the host SUMOylation system to counteract the antiviral activities of SUMO
proteins and to modify their own proteins for viral persistence and pathogenesis. Understanding
the exploitation of SUMO is necessary for the development of effective antiviral therapies. This
review summarizes the interplay between viruses and the host SUMOylation system, with a special
emphasis on viruses with neuro-invasive properties that have pathogenic consequences on the central
nervous system.

Keywords: SUMOylation; post-translational modifications; brain; neuroinflammation; HIV; ZIKA;
cytomegalovirus; microglia; coronavirus

1. Introduction

While the central nervous system (CNS) has historically been viewed as an immune-
privileged site, it is now appreciated that a robust immune response occurs during pathogenic
or mechanical challenge [1,2]. Specialized resident CNS immune cells are responsible for
surveillance during steady-state conditions and are the first to respond to foreign pathogens
and/or cellular or tissue damage. However, viral infections can disrupt some of these cell
signaling pathways to promote viral replication, host cell survival, or immune evasion.
For example, many viruses have evolved mechanisms to regulate the activity of the host
post-translational small ubiquitin-like modifier (SUMO)ylation system to sustain viral
infection even in the presence of immune surveillance of the brain [3–8]. In this respect,
SUMOylation manipulation represents an important target for persistent viral infection,
but also a potential therapeutic target for managing or eliminating viral diseases. For
example, a better understanding of the potential role(s) of SUMOylation in chronic human
immunodeficiency virus-1 (HIV-1) infection of the brain and persistent viral latency may
lead to novel therapeutic strategies and will provide insight into the molecular and cellular
consequences of SUMO activity in healthy and infected cells. Here, we provide a review of
current studies that summarize the involvement of SUMOylation during viral infections of
the brain.

2. SUMOylation

The post-translational modification of proteins by SUMOs plays a significant role in
regulating the host proteome. In general, SUMOylation may affect protein localization,
stability, and/or activity by altering the dynamics of protein–protein interactions [9]. The
human genome encodes four SUMO proteins, SUMOs 1–4, all of which are ~10 kD in
size. SUMO2 and SUMO3 (commonly referred to as SUMO2/3) share significantly more
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sequence similarity (96%) to one another than to either SUMO1 or SUMO4, and this is re-
flected in the specificity of SUMOylated targets, as SUMO1 and SUMO2/3 can have distinct
targets from one another [10]. SUMO4 shares 87% identity with SUMO2/3, but its function
is unclear, given that it does not undergo maturation by SUMO proteases under normal
conditions [11–13]. SUMO proteins are expressed as precursors that require C-terminal
proteolytic processing by SUMO-specific proteases (SENP) to expose a diglycine motif that
is essential for conjugation to the target protein [14]. SUMO4 lacks this diglycine residue
and likely does not undergo processing and conjugation under normal conditions, acting
only in a stress-dependent manner [15,16]. There are six mammalian SENP family members
(SENP1-3 and SENP5-7), each with distinct substrate specificity and tissue distribution [17].

Like ubiquitination, the conjugation of mature SUMO to protein substrates is mediated
by a pathway consisting of E1, E2, and E3 enzymes (Figure 1). However, unlike ubiqui-
tination, SUMOylation relies on a single E2-conjugating enzyme, Ubc9, which is highly
conserved from yeast to humans. SUMOylation is a dynamic and reversible process and
the removal of SUMO from conjugated proteins is mediated by the SENP family of proteins.
SUMO can be attached to substrates as a single SUMO moiety (mono-SUMOylation), or at
multiple lysine residues (multi-SUMOylation). In the case of SUMO2/3, SUMOylation can
give rise to polymeric chains, whereby SUMO–SUMO linkages occur at ΩKXE sequences in
their N-terminal extensions (poly-SUMOylation) [9,18]. These interactions are mediated by
the recruitment of binding partners that contain SUMO-interacting motifs (SIMs), which are
characterized by a stretch of acidic and/or serine residues and a hydrophobic core [19,20].
In some instances, SUMO chains are recognized by SUMO-targeted ubiquitin ligases, or
STUbLs, that catalyze the addition of ubiquitin to SUMOylated proteins. This STUbL activ-
ity results in proteins that are modified by both ubiquitin and SUMO, thereby targeting
them for proteasomal degradation. SUMOylation plays a significant role in processes such
as signal transduction, epigenetic modifications, and DNA repair [21–23]. Moreover, the
dysregulation of SUMOylation has been shown to be associated with various diseases,
including neurodegenerative diseases and some cancers [24,25].
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Figure 1. SUMOylation: the Small Ubiquitin-related Modifier (SUMO) pathway. SUMO proteins
are processed by a SUMO-specific protease at the C-terminal tail to expose a diglycine (-GG) motif,
resulting in a mature SUMO peptide. SUMO is subsequently activated in an ATP-dependent reaction,
creating an intermediate thioester bond between the active site of SUMO and the heterodimeric
E1-activating enzyme (SAE1/SAE2). Following activation, SUMO is transferred from the E1 enzyme
to Ubc9, and finally attached to a target lysine in the protein substrate, which is usually located within
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the consensus site. This final step is mediated by E3 ligase enzymes that function in substrate
recognition and specificity. SUMOylation is reversible (deconjugation), and the same SUMO proteases
involved in SUMO maturation catalyze the removal of SUMO from the target substrate. Cross-talk
exists between SUMOylation and ubiquitylation through SUMO-targeted ubiquitin ligases (STUbLs).
STUbLs are enzymes that catalyze the addition of ubiquitin to proteins that have been previously
SUMOylated with SUMO chains. STUbL activity results in target proteins that are modified by both
SUMO and ubiquitin, which can be targeted to the proteasome for degradation. AMP: adenosine
monophosphate; PPi: pyrophosphate; Ub: ubiquitin. Adapted with permission from [26] 2021,
Springer Nature. Figure was created with Biorender.

3. SUMO Responses to Viral Infections
3.1. SUMO and HIV

HIV-1 infection is marked by the progressive depletion of peripheral CD4+ T cells
and is the causative factor of acquired immunodeficiency syndrome (AIDS). People with
HIV (PWH) that take effective combination anti-retroviral therapy (cART) can live normal
life spans but may suffer from age-related disorders at an earlier age than uninfected
individuals. Despite the success of cART, HIV infection remains a major health issue
worldwide, and eradicating the virus from latent reservoirs is a significant barrier to
a functional cure. Not only can latent reservoirs in the CNS provide a source of new
viral particles capable of replenishing viral loads in the periphery, but persistent HIV
infection can also lead to the development of HIV-associated neurocognitive disorders
(HAND) [27,28]. HAND is fueled in part by the immune activation of macrophages and
microglia [29]. More severe forms of HAND, like HIV-associated dementia (HAD), are
far less prevalent in people with HIV (PWH) on cART, but asymptomatic neurocognitive
impairment (ANI) and mild neurocognitive disorder (MND) have a prevalence of up to
50% in PWH, regardless of ART status [30].

In the CNS, microglia are the main cell type infected by HIV, and are also the reservoir
for latent virus in the brain [31]. Recent evidence reports that astrocytes are also susceptible
to HIV-1 infection and can release viral particles that may egress from the brain to the pe-
riphery [32,33], but their contribution to supporting latent virus is controversial. However,
research using several methods, including transfection with proviral DNA, transduction
with vesicular stomatitis virus (VSV)-G pseudotyped viruses, or transient expression of
CD4 followed by HIV infection, demonstrated that persistent—but largely non-replicating—
infection could be established in astrocytes [32]. Notably, unlike HIV infection of CD4+
T-cells that results in cell lysis, the infection of microglia is non-lytic, thereby allowing for
the persistence of HIV-1 in the brain [34]. In this case, viral replication is not essential,
but viral DNA persists in the host genome. In HIV-infected microglia, host transcription
factors promote the establishment and persistence of latency to prevent viral replication.
Coup-TF-interacting protein-2 (CTIP2) facilitates HIV-1 latency through the formation of
heterochromatin at the viral promoter that leads to HIV-1 silencing (Figure 2) [35]. CTIP2
serves as the anchor for a chromatin remodeling complex (or viral latency complex) consist-
ing of several transcription factors, histone deacetylases/methyltransferases, and ubiquitin
ligases [35]. Further investigation of the molecular mechanisms of HIV-1 latency in glial
cells can help identify new targets to achieve a functional cure.

Like DNA and RNA viruses, HIV has evolved multifaceted measures to evade host
immune responses and achieve productive infection that include taking advantage of the
host cellular SUMOylation machinery. HIV can achieve productive infection in host cells
by modifying its viral proteins or redirecting essential ligases of the SUMO pathway to
regulate global cellular SUMOylation levels (reviewed in: [26,36]. Several studies highlight
the role of SUMO in HIV-infected cells. For example, the SUMOylation of HIV-1 integrase
(IN) abrogates proper HIV function. While SUMOylation has no effect on HIV’s ability
to infect the host cell, the SUMOylation of HIV IN renders virus replication deficient [37].
Moreover, the ubiquitination of the p6 domain of the HIV-1 Gag polyprotein is important
for the recruitment of cellular factors that mediate the trafficking of endocytic vesicles
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and virion release, but the interaction of p6 with SUMO-1 blocks its ubiquitination [38].
Interestingly, the overexpression of SUMO-1 does not reduce virion release, but instead
decreases the infectivity of the released virions in HEK293 cells [38]. Together, these in vitro
studies suggest that SUMOylation may counteract HIV in the brain by targeting both
replication and virion infectivity.
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Figure 2. CTIP2 promotes the establishment of HIV-1 latency in microglia. CTIP2 participates in the
establishment of HIV-1 latency in microglia by recruiting a chromatin modifying complex (or viral
latency complex) to the viral promoter (HIV-1 LTR). This complex consists of: Sp1, which anchors
CTIP2 to the viral promoter and acts as a scaffold for the recruitment of chromatin modifying proteins;
HDAC1 and HDAC2, which are responsible for deacetylation of Nuc-1, one of the nucleosomes
positioned immediately downstream of the transcriptional start site of the HIV-1 LTR; and the histone
methyltransferase Suv39H1, which contributes to HIV-1 silencing through methylation of Nuc-1.
CTIP2 also recruits the demethylase, LSD1, and the SUMO E3 ligase, TRIM28, which, in association
with CTIP2, contributes to HIV-1 gene silencing. Several of the CTIP2-associated proteins in the viral
latency complex interact with the host SUMOylation system. Accordingly, determining the role of
the SUMOylation in the establishment and/or persistence of HIV-1 latency in microglia could aid in
the design of new pharmacological agents that target HIV-1 viral reservoirs. Sp1: specificity protein 1;
COUP-TF: chicken ovalbumin upstream promoter transcription factor; CTIP2: COUP-TF interacting
protein 2; HDAC1/2: histone deacetylase 1/2; TRIM28: tripartite motif containing 28; SUMO: small
ubiquitin-related modifier. Figure was created with Biorender.

As mentioned above, there are several transcription factors and ubiquitin ligases
involved in the establishment and persistence of latency in microglia. Importantly, sev-
eral of these players are SUMO substrates, SUMO E3 ligases, or SIMS. The transcrip-
tional regulator, CTIP2, is responsible for recruiting the multi-enzyme chromatin modi-
fying complex at the HIV-1 promoter and contains two SUMOylation sites (Lys-679 and
Lys-877) [39]. CTIP2 also associates and cooperates with the histone methyltransferase,
Suv39h1, to repress HIV-1 gene transcription [35]. Suv39h1 is a SUMO1-interacting pro-
tein that directly interacts with Ubc9, a characteristic of SUMO E3 ligases [40]. Notably,
Suv39h1 can promote heterochromatin protein-1 (HP1a) SUMOylation in vivo, which is
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consistent with SUMO E3 ligase activity [40]. Similarly, more recent work demonstrated
that tripartite motif containing-28 (TRIM28) (also known as KAP1) cooperates with CTIP2
to repress HIV-1 gene transcription in microglial cells. TRIM28 acts as a SUMO E3 ligase for
itself, and for other proteins including the interferon regulatory factor-7 (IRF7), vacuolar
protein sorting-34 (Vps34), and the DNA replication factor proliferating cell nuclear antigen
(PCNA) [41–44]. Whether TRIM28 utilizes SUMO E3 ligase activity in cooperation with
CTIP2 to potently suppress HIV-1 expression remains unclear. The transcription factor
specificity protein-1 (Sp1) is responsible for the recruitment of CTIP2 to the viral promoter
and is differentially regulated by SUMOs 1 and 2 [45,46]. Mechanistically, SUMO1 promotes
interactions between Sp1 and the histone acetyltransferase, p300, while SUMO2 interferes
with this interaction and decreases Sp1 protein stability [45]. Interestingly, SUMOylation
has not been assessed in the establishment and/or persistence of HIV latency in microglia.
A deeper understanding of how SUMOylation regulates both viral proteins and cellular
antiviral components in the context of latency in microglia can lead to the development of
effective antiviral therapies.

3.2. SUMO and Coronaviruses

Coronaviruses (CoVs) are a diverse family of enveloped positive-sense single-stranded
RNA viruses that can infect a wide variety of avian species and mammals, including
humans. Human coronaviruses circulate in the population and cause seasonal, mild
respiratory infections. Conversely, emerging Middle East respiratory syndrome coronavirus
(MERS-CoV) and severe acute respiratory coronavirus (SARS-CoV) are highly pathogenic
and can develop into life-threatening respiratory diseases [47–49]. SARS-CoV-2, which is
responsible for the ongoing pandemic, marked the third introduction of a highly-pathogenic
coronavirus into the human population [50,51]. Although there is still a great deal that
we do not understand about SARS-CoV-2, our knowledge of viral and host factors that
contribute to COVID-19, the disease induced by SARS-CoV-2 infection, is accumulating
at an unprecedented rate. Mechanistically, SARS-CoV-2 infection of a human host cell
involves multiple, coordinated processes, including viral protein (S-gp) binding to host
receptors, angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease-2
(TMPRSS2); and the triggering of host immunological and inflammatory responses (also
known as a cytokine storm) [52–54]. Cytokine storms associated with COVID-19 appear to
be a leading cause of mortality [55].

The neuro-invasive potential of coronaviruses in both human and other animal brains
is documented [56,57]. Given the similarity between SARS-CoV and SARS-CoV-2, it was
hypothesized that SARS-CoV-2 enters the CNS. In fact, increasing evidence indicates that
SARS-CoV-2 uses several mechanisms to enter the CNS and that viral interaction with the
cardiorespiratory brainstem center is a contributing factor to the death of infected mice and
humans [58,59]. While the consequences of SARS-CoV-2 on cells of the CNS remain unclear,
a major focus has been placed on understanding the interaction between SARS-CoV-2
and glial cells. Glial cells, including astrocytes and microglia, are critical for maintaining
the integrity of the blood-brain barrier (BBB) and overall brain health, so understanding
the relationship between SARS-CoV-2 and glial cells will offer insight into the local and
systemic pathogenesis of COVID-19. There is evidence of reactive astrogliosis in COVID-19,
accompanied by a significant increase in the plasma levels of the astrocyte-specific protein,
glial fibrillary acidic protein (GFAP), in patients with moderate to severe COVID-19 [60].
Much less is known about microglia in SARS-CoV-2 but considering that microglia are
highly motile and are in a constant “immunologically alert” state, they may contribute to the
neurological complications and neuro-inflammation observed in COVID-19 patients [61]
(Figure 3). For example, in Figure 3 from Thakur et al., microglial nodules are apparent and
surround neurons with aberrant morphology associated with degeneration [61].
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viruses. A limited number of studies have identified an interaction with the SUMO ma-
chinery and the nucleocapsid (N) protein of SARS-CoV. The coronavirus N protein is a 
multifunctional protein essential for proper nucleocapsid assembly and genomic RNA 
replication [62]. Importantly, the SUMO E2 enzyme, Ubc9, was identified as an interacting 

Figure 3. Inflammatory pathology in COVID-19 brains. (A) Section of the hypoglossal nucleus shows
several motor neurons and a microglial nodule (arrow). (B) An adjacent section immunolabeled for
CD68 (brown) shows clustered microglia within the nodule. Inset: Microglia in close apposition
to a hypoglossal neuron (CD68+). (E) The locus coeruleus contains a microglial nodule with a
degenerating neuron in the center, identified by its residual neuromelanin (arrow). (F,G) Neurons of
the dorsal motor nucleus of the vagus surrounded by CD68+ microglia. (H,I) Microglial nodules in
the dentate nucleus (arrows in (H)), neuron in the middle of a nodule (arrow in (I)), CD68. Scale bar
in (A,B) = 200µm; (E) = 10µm; (F,G) = 50µm; (H) = 100µm; (I) = 50µm. Adapted with permission
from [61] 2021, Oxford University Press. Panels C, D, J, K from the original publication are not shown.

While protein SUMOylation has been recognized as a critical component of viral patho-
genesis, little is known about the relationship between SUMOylation and coronaviruses.
A limited number of studies have identified an interaction with the SUMO machinery and
the nucleocapsid (N) protein of SARS-CoV. The coronavirus N protein is a multifunctional
protein essential for proper nucleocapsid assembly and genomic RNA replication [62].
Importantly, the SUMO E2 enzyme, Ubc9, was identified as an interacting partner of the
N protein [63,64]. Biochemical analyses also revealed that SUMO1 modification at K62
of the N protein induces homo-oligomerization [64], which is required for the formation
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of the viral capsid to protect the viral genome. Given that homo-oligomerization of the
N protein is essential for a stable conformation, SUMOylation may play a key role in the
SARS-CoV replication cycle. Whether the N protein of SARS-CoV-2 is also SUMOylated
is not known; however, given the significant sequence similarity of the N protein among
the coronaviruses, it is possible that the SARS-CoV-2 N protein is modified by SUMO
as well [65,66].

3.3. SUMO and Zika Virus

Zika virus (ZIKV) is a positive-sense single-stranded RNA flavivirus that is transmit-
ted predominantly by mosquitoes. However, sexual and maternal–fetal transmission have
been reported as other mechanisms of transmission [67]. Although the majority of ZIKV
infections are asymptomatic, symptomatic ZIKV infections manifest through joint and
muscle pain, as well as a rash and low-grade fever [67]. More severe neurological manifes-
tations such as hydrocephalus and ZIKV-associated Guillain–Barré syndrome (GBS) may
occur in some infected individuals, both of which are associated with high morbidity [68].
GBS is an autoimmune disease that attacks the peripheral nerves, and hydrocephalus is
a well-documented, but rare, complication in individuals with the disorder [69,70]. Hy-
drocephalus has also been associated with congenital Zika syndrome, a group of birth
defects associated with prenatal exposure to ZIKV [71]. ZIKV has also been shown to
infect and replicate in mature neurons and glial cells, induce neuroinflammatory processes,
and has been linked to myelitis, peripheral neuropathy, and reduced gray matter volume
in motor-associated cortical regions [72,73]. However, the exact mechanisms underlying
ZIKV-induced neurological disorders have yet to be fully elucidated.

SUMO proteins have been shown to interact with ZIKV, particularly the non-structural-5
(NS5) viral protein [74]. NS5 encodes both viral methyltransferase and RNA-dependent
RNA polymerase. This protein is important in viral replication and to ensure viral survival
and replication by inhibiting the host’s innate immune system [75]. Despite flaviviruses
replicating in the cytoplasm, NS5 proteins of ZIKV are predominantly located in the nuclei
of infected cells [74]. Multiple sequence alignments of over 400 pre-epidemic and epidemic
ZIKV strains revealed a putative SUMO-interacting motif (SIM) at the N-terminal domain of
NS5 [74]. NS5 is stabilized by SUMOylation and is critical for the persistent ZIKV infection
of human brain microvascular endothelial cells (hBMECs) [76]. Specifically, during ZIKV
infection, SUMOylation of NS5 decreases its ubiquitin-mediated degradation and promotes
its interaction with the signal transducer and activator of transcription-2 (STAT2) protein,
which disrupts the host antiviral promyelocytic leukemia (PML)-STAT2 nuclear bodies
(NBs) and leads to the degradation of PML [76]. In fact, as previously reported by Conde
et al., NS5 forms SUMO-1-co-localized and SUMO-1-independent nuclear speckles during
ZIKV replication in human brain microvascular endothelial cells (Figure 4). Following
ZIKV infection, distinct nuclear speckles of NS5 were observed in the nucleus of hBMECs
that co-localized with SUMO1 (Figure 4A). Importantly, ZIKV infection reduced the asso-
ciation of SUMO1 with PML and reduced PML expression levels (Figure 4B). Given that
PML promotes the transcription of interferon-stimulated genes (ISGs), PML degradation
leads to a disruption in type-I interferon signaling, fostering a favorable environment for
viral persistence and pathogenesis [77].

Recent studies exploring therapeutic strategies for the treatment of flavivirus infections
showed that the SUMO inhibitor, 2-D08, significantly reduced ZIKV replication and pro-
tected cells from ZIKV-induced cytotoxicity in vitro [74]. The same study also reported that
SIM-mutated ZIKV NS5 failed to suppress type-I interferon signaling [74]. In studies with
acute myeloid leukemia cells, 2-D08 induced apoptosis by de-SUMOylating the NAPDH
oxidase 2 (NOX2), thereby activating NOX2-mediated ROS production [78]. Although
NOX2 signaling in ZIKV has not been described, similar mechanisms may be involved in
the 2-D08 inhibition of ZIKV replication, since binding between the SUMO1 protein and
the ZIKV putative NS5 SIM peptide is predicted (Figure 5). The amino acid sequence of the
putative SIM of NS5 is conserved between flaviviruses (Figure 5A) and a molecular docking
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model revealed that the VIDL segment (SIM core sequence) of NS5 forms interactions with
the active site of SUMO1 (Figure 5B,C). Together, these studies suggest that flaviviruses
have an evolutionarily conserved mechanism that enhances virus proliferation while sup-
pressing host antiviral responses through SUMO modification of the viral NS5 protein. The
findings from these studies highlight potential therapeutic uses for SUMO inhibitors along
with antiviral treatments for infections caused by ZIKV or other flaviviruses.
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SUMO-interacting motifs of flaviviruses and the SUMO1 protein. (A) Top panel: multiple sequence
alignment of the amino acid sequences of the putative NS5 protein SUMO-interacting motifs (SIM)
of Zika virus (ZIKV), dengue virus (DENV) (serotype 3), Japanese encephalitis virus (JEV), West
Nile virus (WNV), and yellow fever virus (YFV). Bottom panel: Stick representation of the struc-
tural similarities among the five flaviviruses’ putative NS5 SIM peptides. (B) Schematic repre-
sentation of the binding between the SUMO1 protein and the five flaviviruses’ putative NS5 SIM
peptides. The SUMO1 protein is shown in tan and the NS5 SIM peptides are shown in different colors.
(C) Ribbon representation showing the interacting amino acid residues of the putative ZIKV NS5 SIM
peptide and the active sites of the SUMO1 protein. The putative ZIKV NS5 SIM peptide and SUMO1
protein are displayed in magenta and blue, respectively. The interacting residues are shown as
sticks with hydrogen bonds represented by yellow dashed lines. Adapted with permission from [74].
2019, MDPI.

3.4. SUMO and HCMV

Human cytomegalovirus (HCMV) is a beta-herpesvirus that causes lifelong infection
in humans. An infected person can spread viral particles through bodily fluids such as
saliva, urine, blood, tears, semen, and breast milk. It has an incredibly high prevalence of
over 75% in adults, however, for many, the infection remains latent [79]. Primary infection
in healthy adults can include symptoms such as fever, fatigue, sore throat, and swollen
lymph nodes. HCMV can also infrequently lead to mononucleosis or hepatitis. HCMV
is an opportunistic pathogen and HCMV symptoms may become more severe in people
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with weakened immune systems [80]. Several antiviral medications including ganciclovir,
valganciclovir, foscarnet, and cidofovir are often prescribed for treatment, but success is
extremely poor with recurrence usually within a year; the emergence of drug-resistant
HCMV has been reported for all antivirals listed [81].

Studies of HCMV infection in the brain are currently limited due to the absence of
an animal model that accurately mimics human infection. Murine CMV (MCMV) has
considerable sequence homology to HCMV, so mouse models are often used to study
congenital HCMV infection [82]. However, the neuro-invasive potential of MCMV is
dependent on immune deficiency [83]. Thus, what is currently known of the pathogenesis
of HCMV in the CNS is based largely on clinical features and post-mortem studies. The
histopathological analysis of brains from infants with severe congenital HCMV infection
suggested that ependymal cells and neural stem/progenitor cells (NSPC), a neuroepithelial
precursor, are prime targets for HCMV [84]. While HCMV also infects neurons and
oligodendrocytes, astrocytes are the primary target [85,86]. There is currently no evidence
that microglia are productively infected with HCMV or that there are any major cytopathic
presentations [85,87]. HCMV eventually becomes latent in infected T-cells, lymphocytes,
and macrophages [88].

Notably, the HCMV immediate–early-1 (IE1) protein was the first viral protein to be
identified as a SUMO substrate (Figure 6) [89]. However, the interaction between the host
SUMOylation system and other HCMV proteins remained largely unknown until a group
described the role of HCMV viral protein, pp71, in the SUMOylation of the host protein,
Daxx [90]. HCMV pp71 is delivered immediately upon infection of host cells by HCMV
virions and promotes the SUMOylation of its cellular substrate, Daxx, though the role that
this modification plays in regulating Daxx activity is unknown. The DNA polymerase
processivity factor, UL44, was later identified as a binding partner of the SUMO-conjugating
enzyme, Ubc9 [91]. Data indicated that the overexpression of SUMO altered the intranuclear
localization of UL44 in HCMV-infected cells, resulting in increased viral replication [91].
However, a more recent study reported that the removal of lysine 410 (K410) within the
SUMO consensus motif located in the C-terminus of UL44 enhanced viral DNA synthesis
and viral production in HCMV-infected cells [92]. Further analyses of the interactions
between HCMV proteins and SUMOylation is necessary to reconcile these contradictory
experimental observations. The latency-associated gene product (LUNA) was recently
revealed to encode a conserved deSUMOylase motif (Asp-Cys-Gly), which is responsible
for promoting PML deSUMOylation and priming the cell for viral reactivation [93]. These
studies illustrate the role for the host SUMOylation system during HCMV infections and
the importance of understanding the role of SUMOylation in the innate immune response.

3.5. SUMO and Herpes Simplex Virus

Herpes simplex virus, commonly referred to as herpes, is a linear dsDNA enveloped
virus. Herpes is divided into two types: HSV-1 and HSV-2. HSV-1 is typically transmitted
by oral-to-oral contact and usually causes an infection in or around the mouth (oral herpes).
HSV-2 is mainly sexually transmitted and leads to genital herpes. Neurons, epithelial cells,
and keratinocytes are targets for HSV infection [94]. Both oral and genital herpes range in
symptom severity—from asymptomatic to painful ulcers and blisters at the site of infection.
HSV is a lifelong disease once infected, with periods of latency (HSV-1 in the trigeminal
ganglia and HSV-2 in the sacral nerve root ganglia) and reactivation [95]. Antiviral medica-
tions such as acyclovir, famciclovir, and valacyclovir are the most effective treatment for
people with HSV. These antivirals work to reduce the severity and frequency of symptom
flare-ups. In immunocompromised patients, HSV can cause more severe symptoms. For
example, complications of HSV1/2 and HIV-1 co-infection include encephalitis, keratitis,
and disseminated infection [96].
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Figure 6. Interactions between human cytomegalovirus (HCMV) and SUMO. HCMV entry to the
central nervous system (CNS) is secondary to peripheral organ infection. Passage across the blood-
brain barrier is thought to be mediated by monocytes. Upon crossing the BBB, HCMV infects
resident cells and has been shown to interact with the host SUMOylation system. Immediate–early
protein-1 (IE1) was the first viral protein identified as a SUMO interactor and has been shown to
inhibit the SUMOylation of promyelocytic leukemia (PML) bodies, which suppresses innate immune
responses. Similarly, the HCMV latency-associated protein, LUNA, functions as a de-SUMOylase to
promote PML de-SUMOylation. The HCMV pp71 protein promotes the SUMOylation of its cellular
substrate, Daxx, though the functional consequence of this interaction is unknown. pp71 has also
been shown to mediate Daxx degradation through a ubiquitin-independent pathway. Figure was
created with Biorender.

HSV can utilize multiple mechanisms for host cell entry. In some instances, HSV
attachment and fusion with host cells is facilitated by the association of the viral glyco-
protein(s) (gB, gC, gD, and/or the gH/gL complex) and herpes simplex proteoglycans
(HSPGs) present on the cell surface [97]. Similarly, Nectin-1, a calcium independent im-
munoglobulin cell–cell adhesion molecule, interacts with HSV gD to allow for HSV entry
into host cells. Nectin-1 is implicated in the development of conjunctivitis and epithelial
keratitis due to HSV-1 infection and in acute retinal necrosis due to both viral subtypes [98].
Herpes virus entry mediator (HVEM), a member of the tumor necrosis factor receptor
superfamily involved in inflammatory regulation, also interacts with HSV gD to promote
cell entry [99]. A modified form of heparan sulfate (3-OS HS) produces a receptor that
can bind HSV gD, thereby providing another mechanism of entry and is implicated in
stromal keratitis and conjunctivitis [100]. Recent studies have shown that the co-receptor
immunoglobulin-like-2 (PILR) α, associates with gB and is involved in HSV-1 fusion to
host cells, however the importance of this interaction is unknown [101]. Filopodia, which
are thin actin-rich plasma membrane protrusions, are also implicated in viral spread from
cell to cell [102]. HSV-1 can also use endocytosis as a mechanism of cellular entry. The
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standard clatherin-coated pit-mediated endocytosis has been observed as well as a more
unique pH-dependent phagocytosis-like mechanism in which protrusions of the plasma
membranes with no clatherin coats engulfed the enveloped virions [103].

HSV-1 establishes latency in both peripheral nerve ganglia and the central nervous sys-
tem (CNS). In rare cases, HSV-1 can replicate in the CNS, triggering an acute infection and
inflammatory response leading to herpes simplex encephalitis (HSE). In vivo experimental
models have identified microglial cells as the source of pro-inflammatory cytokines and
chemokines in response to HSV-1, through the recruitment of circulating lymphocytes [104].
HSV-1-infected microglial cells also produce reactive oxygen species (ROS) that exacerbate
disease progression [105].

Like the other viruses discussed in this review, SUMOylation and SUMO-mediated
interactions play important roles in HSV-1 infection. Similar to ZIKV, certain components of
PML nuclear bodies have been identified as major contributors to intrinsic resistance to viral
infections. PML nuclear bodies are heavily modified by the SUMO proteins and are key
factors for their assembly [106]. The HSV-1 regulatory protein-infected cell polypeptide-0
(ICP0) counteracts the intrinsic anti-HSV properties of PML through its ubiquitin E3 ligase
activity [107,108]. ICP0 not only targets PML more efficiently than SUMO, but induces PML
degradation through SUMO-targeted ubiquitin ligase (STUbL)-like activities [5,108]. An
analysis of the SUMO2 sub-proteome in HeparRG hepatocytes revealed several proteins
whose unSUMOylated forms are also degraded during HSV-1 infection, though whether
these are also substrates of ICP0 remain unclear [109].

4. Conclusions

The interplay among post-translational modifications like SUMOylation and CNS
viral infections is multifaceted (Table 1). Recent studies have underscored the importance
of SUMO proteins in antiviral responses and how these same proteins can be manipulated
by viruses to achieve viral replication and persistence. Several viruses have evolved to
exploit SUMOylation processes of the host cell either by targeting different steps of the
SUMOylation system (i.e., the SUMO enzymes) or through covalent modification of specific
viral and cellular proteins (Table 1). As outlined here, several of these viruses have neuro-
invasive properties. For example, inhibiting the SUMOylation of the SARS-CoV NP, which
functions to encapsulate the viral genome, could attenuate virus propagation. Similarly,
inhibiting SUMO1 conjugation of the ZIKV NS5 protein could drastically limit the survival
and infectivity of ZIKV. Given that some viral infections in the CNS can be fatal or result in
a lasting deficit, due in part to immune-mediated inflammation in the brain, an increased
understanding of SUMOylation as a potential therapeutic target for viral infections of the
CNS is warranted. Elucidating how viruses exploit the host’s SUMOylation pathway may
reveal new targets for antiviral therapies.

Table 1. Examples of cross-talk between neuro-invasive viruses and the host SUMOylation system.

Virus Protein SUMO Protein SUMOylation Interactions References

HIV
Integrase (IN) SUMO1 and SUMO2/3 Inhibits viral genome integration [37]

P6 SUMO1 Reduces infectivity of released virions [38]

SARS-CoV-1 NP SUMO1 Promotes homo-oligomerization [64]

HCMV

IE1 SUMO1 Abrogates interaction of SUMO1 with PML [89]

pp71 SUMO1 Promotes SUMOylation of Daxx [90]

UL44
SUMO1 and SUMO2/3 Enhances virus production and DNA replication [91]

SUMO1 and SUMO2/3 Attenuates virus production [92]

LUNA N/A DeSUMOylates PML [93]

Zika NS5 SUMO1 SUMO1 conjugation stabilizes NS5 [76]

HSV-1 ICP0 N/A DeSUMOylates PML and induces it degradation [108]
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