

Genome Sequence of *Novoherbaspirillum* sp. UKPF54, a Plant Growth-Promoting Rhizobacterial Strain with N2O-Mitigating Abilities, Isolated from Paddy Soil

Nan Gao, a Chaowei Zhou, a Weishou Shen, b Sayuri Ota, c Yutaka Shiratori, c Tomoyasu Nishizawa, d Kazuo Isobe, e Xinhua He, f Hanjie Ying,^a Keishi Senoo^{e,g}

a National Engineering Research Center for Biotechnology and School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China

ABSTRACT Novoherbaspirillum sp. strain UKPF54, a plant growth-promoting rhizobacterium with the ability to mitigate nitrous oxide emission from agriculture soils, has been successfully isolated from paddy soil in Kumamoto, Japan. Here, we report the whole-genome sequence of this strain.

erbaspirillum spp. are endophytic diazotrophs which can colonize sugarcane, rice, maize, sorghum, red clover, and other crops (1–3). Some Herbaspirillum sp. strains and their close relatives, such as Novoherbaspirillum sp. strains, are known to promote plant growth, suggesting that they are important resource species for the development of biofertilizers (1-3). Novoherbaspirillum sp. strain UKPF54, previously called Herbaspirillum sp. strain UKPF54, was isolated from the rhizosphere of paddy soil in Kumamoto, Japan (4). It simultaneously promotes the growth of pasture plants and mitigates nitrous oxide emissions from soils (3, 5).

Novoherbaspirillum sp. UKPF54 was grown in 5 ml NBNS culture medium (briefly, 5 g liter⁻¹ peptone and 3 g liter⁻¹ beef extract containing 0.3 mM NaNO₃ and 4 mM sodium succinate [pH 7.0]) at 28°C and 220 rpm. The genomic DNA was extracted using a DNeasy blood and tissue kit (Qiagen, Germany). A SMRTbell library with a 20-kb insert size was constructed with the template prep kit 1.0 and the BluePippin size selection system, according to the manual. The genome was sequenced with the PacBio RS II DNA sequencing system using SMRT Cell 8Pac v3 and DNA polymerase binding kit P6 reagents. To remove the PacBio short reads, the RS HGAP assembly software (v3.0) was applied, with default parameters (6). When 5' and 3' ends were connected, the contig was assembled into a single circular DNA molecule. The circular DNA molecule had a mean subread length of 8,279 bp, an N_{50} value of raw sequences of 11,260 bp, and a total of 1,453,750,364 bases and 175,579 reads. Novoherbaspirillum sp. UKPF54 contains a chromosome of 4,718,988 bp with a G+C content of 61.89%. The sequencing depth reached 198×.

Genes were predicted using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP, revision 4.8) with the best-placed reference protein set (GeneMarkS2+) (7, 8). In addition, BlastKOALA (9) against the "species_prokaryotes" database was used for functional annotation and KEGG pathway mapping. A total of 4,307 protein-coding sequences, 56 tRNAs, 9 rRNAs, 4 noncoding RNAs (ncRNAs), and 50 pseudogenes were

Citation Gao N, Zhou C, Shen W, Ota S, Shiratori Y, Nishizawa T, Isobe K, He X, Ying H, Senoo K. 2020. Genome sequence of Novoherbaspirillum sp. UKPF54, a plant growthpromoting rhizobacterial strain with N₂Omitigating abilities, isolated from paddy soil. Microbiol Resour Announc 9:e00999-19. https://doi.org/10.1128/MRA.00999-19.

Editor Jason E. Stajich, University of California,

Copyright © 2020 Gao et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Weishou Shen, wsshen@nuist.edu.cn.

Received 15 August 2019 Accepted 6 December 2019 Published 16 January 2020

bliangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

^cNiigata Agricultural Research Institute, Niigata, Japan

^dDepartment of Bioresource Science, College of Agriculture, Ibaraki University, Ibaraki, Japan

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

^fCentre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China

⁹Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan

Gao et al.

♣ Microbiologis

TABLE 1 Predicted genes associated with nitrogen metabolism and plant growth promotion in the *Novoherbaspirillum* sp. UKPF54 genome

	Gene		Protein	Inference amino acid
Gene function	name	Product ^a	accession no.	sequence ID ^b
Nitrogen fixation	fdx	ISC system 2Fe-2S type ferredoxin	QDZ27364	WP_012079114
	fdxH	Formate dehydrogenase subunit beta	QDZ27883	WP_018604908
	fixA	Electron transfer flavoprotein subunit beta/FixA family protein	QDZ26876	WP_015436355
	fixB	Electron transfer flavoprotein subunit alpha/FixB family protein	QDZ26877	WP_008445988
	nifU	SUF system NifU family Fe-S cluster assembly protein	QDZ29484	WP_018310943
Nitrate utilization	napA	Nitrate reductase catalytic subunit NapA	QDZ28521	YP_006896445
	napE	Nitrate reductase	QDZ28519	WP_006394233
	narG	Nitrate reductase subunit alpha	QDZ28003	WP_018151853
	narH	Nitrate reductase subunit beta	QDZ28002	WP_011871146
	narl	Respiratory nitrate reductase subunit gamma	QDZ28000	WP_011871144
	narJ	Nitrate reductase molybdenum cofactor assembly chaperone	QDZ28001	WP_008953006
Nitrite utilization	nirB	Nitrite reductase large subunit	QDZ29679	WP_017876120
	nirD	Nitrite reductase small subunit NirD	QDZ26547	WP_011829911
	nirK	Nitrite reductase, copper containing	QDZ28940	WP_013213801
Nitrous oxide reduction	nosD	Nitrous oxide reductase family maturation protein NosD	QDZ30537	WP_017879062
	nosL	Nitrous oxide reductase accessory protein NosL	QDZ30535	WP_018077130
	nosZ	Nitrous oxide reductase	QDZ28019	WP_019898632
Nitrogen regulation	fnr	Fumarate/nitrate reduction transcriptional regulator Fnr	QDZ27979	WP_011871123
	ntrC	Nitrogen regulation protein NR(I)	QDZ28461	WP_019141540
Indole acetic acid synthesis	trpC	Indole-3-glycerol phosphate synthase TrpC	QDZ30261	WP_005671473
Phosphate solubilization	радВ	Pyrroloquinoline quinone biosynthesis protein	QDZ26968	WP_013691667
Acetolactate synthesis	ilvB	Acetolactate synthase 3 catalytic subunit	QDZ28257	WP_016832326
	ilvC	Ketol-acid reductoisomerase	QDZ28255	WP_003261913
	ilvD	Dihydroxy-acid dehydratase	QDZ28620	WP_007877043
	ilvN	Acetolactate synthase small subunit	QDZ28256	WP_004630835

^a ISC, iron-sulfur cluster; SUF, sulfur assimilation.

discovered. The predicted functional genes consisted of 11 genes of the ABC transporters, 10 genes of the two-component system, and 5 genes of bacterial chemotaxis. The functional genes contained candidate genes associated with nitrogen metabolism and plant growth promotion (Table 1).

We analyzed the secondary metabolism cluster of the complete genome with antiSMASH v5.0.0 (10). The results showed that four secondary metabolite gene clusters relevant to the production of active substances were predicted. Moreover, two nonribosomal peptide synthetase (NRPS)-like fragment gene clusters and one beta-lactone-containing protease inhibitor (betalactone) gene cluster were predicted.

Overall, the whole-genome sequence is of critical importance to reveal the molecular mechanisms for the promotion of plant growth and the mitigation of nitrous oxide from agricultural soils by *Novoherbaspirillum* sp. UKPF54, thereby providing fundamental support to develop biofertilizer applications with this strain.

Data availability. The whole-genome sequence of *Novoherbaspirillum* sp. UKPF54 has been deposited in GenBank under the accession number CP040128. The raw reads have been deposited in the Sequence Read Archive (SRA) under the accession number SRR8943564.

ACKNOWLEDGMENTS

This study was financially supported by the National Natural Science Foundation of China (grants 41771291 and 31972503), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (grant 18KJB210007), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (grant XTE1828), China, and

Volume 9 Issue 3 e00999-19 mra.asm.org **2**

^b NCBI accession number of most similar protein sequence from which function is inferred. ID, identification.

the Japan Society for the Promotion of Science through a postdoctoral fellowship (grant 14F04390), JSPS KAKENHI (grant JP15KT0024), the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (grant 26037B), and the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry (grant 27004C), Japan.

REFERENCES

- Choudhury ATMA, Kennedy IR. 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fert Soils 39:219–227. https://doi.org/10.1007/s00374-003-0706-2.
- Chubatsu LS, Monteiro RA, de Souza EM, de Oliveira MAS, Yates MG, Wassem R, Bonatto AC, Huergo LF, Steffens MBR, Rigo LU, Pedrosa FD. 2012. Nitrogen fixation control in *Herbaspirillum seropedicae*. Plant Soil 356:197–207. https://doi.org/10.1007/s11104-011-0819-6.
- Gao N, Shen W, Kakuta H, Tanaka N, Fujiwara T, Nishizawa T, Takaya N, Nagamine T, Isobe K, Otsuka S, Senoo K. 2016. Inoculation with nitrous oxide (N₂O)-reducing denitrifier strains simultaneously mitigates N₂O emission from pasture soil and promotes growth of pasture plants. Soil Biol Biochem 97:83–91. https://doi.org/10.1016/j.soilbio.2016.03.004.
- Ashida N, Ishii S, Hayano S, Tago K, Tsuji T, Yoshimura Y, Otsuka S, Senoo K. 2010. Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. Appl Microbiol Biotechnol 85:1211–1217. https://doi.org/10.1007/s00253-009-2330-7
- Gao N, Shen WS, Camargo E, Shiratori Y, Nishizawa T, Isobe K, He XH, Senoo K. 2017. Nitrous oxide (N₂O)-reducing denitrifier-inoculated organic fertilizer mitigates N₂O emissions from agricultural soils. Biol Fertil Soils 53:885–898. https://doi.org/10.1007/s00374-017-1231-z.
- 6. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,

- Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Non-hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44: 6614–6624. https://doi.org/10.1093/nar/gkw569.
- Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068.
- Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015 .11.006.
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi .org/10.1093/nar/gkz310.

Volume 9 Issue 3 e00999-19 mra.asm.org **3**