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Abstract.
Background: In assessing the levels of clinical impairment in dementia, a summary index of neuropsychological batteries
has been widely used in describing the overall functional status.
Objective: It remains unexamined how complex patterns of the test performances can be utilized to have specific predictive
meaning when the machine learning approach is applied.
Methods: In this study, the neuropsychological battery (CERAD-K) and assessment of functioning level (Clinical Dementia
Rating scale and Instrumental Activities of Daily Living) were administered to 2,642 older adults with no impairment
(n = 285), mild cognitive impairment (n = 1,057), and Alzheimer’s disease (n = 1,300). Predictive accuracy on functional
impairment level with the linear models of the single total score or multiple subtest scores (Model 1, 2) and support vector
regression with low or high complexity (Model 3, 4) were compared across different sample sizes.
Results: The linear models (Model 1, 2) showed superior performance with relatively smaller sample size, while nonlinear
models with low and high complexity (Model 3, 4) showed an improved accuracy with a larger dataset. Unlike linear models,
the nonlinear models showed a gradual increase in the predictive accuracy with a larger sample size (n > 500), especially
when the model training is allowed to exploit complex patterns of the dataset.
Conclusion: Our finding suggests that nonlinear models can predict levels of functional impairment with a sufficient dataset.
The summary index of the neuropsychological battery can be augmented for specific purposes, especially in estimating the
functional status of dementia.
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INTRODUCTION

Neuropsychological tests provide useful infor-
mation in assessing current and future functional
abilities in dementia [1, 2]. Accurate assessment of
daily functional abilities is crucial in depicting the

ISSN 1387-2877 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:benji@snu.ac.kr
https://creativecommons.org/licenses/by-nc/4.0/


1358 S. Kwak et al. / Machine Learning Utility in Predicting Functional Impairment

clinical significance of dementia and distinguish-
ing Alzheimer’s disease (AD) from mild cognitive
impairment (MCI) [3]. As biomarkers of dementia
became widely available, the ecological validity and
real-world utility are becoming more highlighted in
the practice of neuropsychological assessment [4,
5]. Although functional disturbances or a loss of
independence are defined as a critical boundary in dis-
tinguishing the significance of cognitive impairment,
a formal model in how multiple neurocognitive func-
tions buttress normal daily functioning has not been
clear [6–8]. Due to a weak foundation of formal tools
for assessing functional ability, clinical characteriza-
tion of AD requires further improvement [9].

Levels of functional impairment in dementia
generally correspond with overall cognitive test per-
formances. The neuropsychological battery consists
of multiple scores of subtests and the scores. The
battery typically provides a summary index by sum-
ming the individual scores into a composite of the
total score. This approach has been widely used in
representing one’s global cognitive function, specifi-
cally in the neuropsychological battery for dementia
assessment [10, 11]. The total scores as a global
cognitive function have shown utility in assessing
multiple clinical signatures of dementia, including
early detection, prognostic trajectory, daily functional
disturbances, differential diagnosis, and neurodegen-
eration [12–16]. Though the diagnosis of dementia
can be made based on a deficit in a single cogni-
tive domain, a combination of multiple test scores
may provide a more reliable estimate of a cognitive
construct than any single measure in characterizing
cognitive impairment [17–19].

Despite the utility of the total scores of neuropsy-
chological batteries, a single summary may overly
simplify complex features of the test elements. The
summarized score typically sums the “no-hold” tests
sensitive to the brain pathological changes. However,
the construction of a summary score is mostly con-
firmed based on theoretical analysis rather than an
empirical comparison of the multiple possible sum-
mary approaches. Thus, each subtest may differ in its
metric properties, leading to suboptimal weighting to
the total score, and summing the raw scores may fail
to reflect the differential importance of each subtest
score. Previous studies have shown that a set of sub-
tests can be selectively augmented based on specific
clinical purposes [20].

Another issue in the total score method is the
use of linear summation. This method summarizes
multiple tests by adding each score with predefined

weights without additive effects (e.g., interaction
effect, higher-order effect). Based on this linear mod-
eling approach, the decrease in a specific subtest will
lead to a corresponding change in the total score as a
function of the given weight. However, in the levels
of clinician’s intuition, the neuropsychological test
performances may not always be linearly informa-
tive in explaining the real-world impairment [21]. The
complex nature of cognitive impairment implies that
the nonlinear combination of multiple cognitive tests
characterizes a meaningful clinical state. While some
tests are interpreted as clinically significant with the
presence of a complete task failure, other tests indi-
cate clinical risk with subtle variabilities within the
normal range [22]. In some cases, subtests signal
cognitive impairment of dementia only when com-
bined with a deficit in other domains [23, 24]. These
qualitative patterns that clinicians often read from
the neuropsychological test profile may not be fully
summarized with the current method of total scor-
ing, and a more fine-tuned summary with profound
complexity needs to be developed.

With the goal of personalized medicine, the
machine learning approach has prompted the devel-
opment of clinical and behavioral models with higher
complexity [25, 26]. One of the fundamental concepts
in machine learning is finding an optimal balance
between flexibility and robustness in predicting the
target of interest. Machine learning algorithms effec-
tively stretch a model into higher complexity and
generate various models that explain a given dataset.
In addition, the cross-validating procedure effectively
rules out the overfitted models by highlighting the
predictability in a novel dataset.

Especially the machine learning approach can
explore how complex a model should be in predicting
a meaningful dementia outcome and the prerequi-
sites for achieving such predictive performance. If
the predictability of the nonlinear model outperforms
standard linear summation models, for example, there
may be additional higher-order nonlinearity and inter-
action effects that a high dimensional model can
capture but a standard linear model does not [27].
Machine learning, however, may not always pro-
vide enhanced utility in the prediction of dementia
and there are only few studies that explicitly com-
pared the effect of model complexity [28]. Complex
models based on machine learning performed better
than classical linear models in some clinical cases
[29, 30], whereas several studies showed that using
models with higher complexity and nonlinearity did
not improve the predictive accuracy in classifying
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cognitive impairment of dementia [31, 32]. More-
over, most previous studies have focused on whether
or not the machine learning algorithms successfully
predict the target outcome, rather than evaluating
the extent to which high dimensional models show
a better predictive performance than classical lin-
ear models [33]. Few studies have directly compared
how specific algorithms performed better and what
it implies with the predictive attributes of behavioral
instruments. The lack of rationale for the choice of
algorithms may hinder the meaningful discussions of
using the machine learning approach in the practice
of AD assessment.

Another constraint in utilizing the machine learn-
ing approach is the necessity of the large-scale
dataset. The advantage of machine learning algo-
rithms generally depends on the sample size. The
datasets used for predictive modeling should be suf-
ficiently large for an algorithm to build a model
that exploits complex characteristics of clinical out-
comes [34, 35]. Thus, machine learning approaches
should suggest a rationale for sample size needed in
exceeding the performance of the classical statistical
model, rather than merely identifying the presence of
predictability. This issue has been thoroughly dealt
with by the predictive performance across varying
sample sizes when constructing complex machine
learning models. The predictive power tends to show
improvement as the sample size increases, and end-
point saturation of this maximum accuracy reflects
the potential utility in using nonlinear models of
machine learning. This procedure explores how many
data points should be acquired in constructing the
most predictive model. In the examples of image clas-
sification, using nonlinear models (i.e., kernel support
vector machine or neural network) more benefited
from the large-scale dataset than linear models (i.e.,
linear support vector machine, logistic regression)
[34]. Machine learning in the clinical assessment of
dementia can also benefit from large-scale data [36],
but the empirical evidence of the extent to which the
larger sample size benefits in utilizing the neuropsy-
chological test remains unknown.

This study will examine how the multiple scores
of the neuropsychological battery can be enhanced
in predicting the clinical outcome of dementia based
on the nonlinear modeling of the large-scale dataset.
Clinical rating of functional impairment and survey
score of daily activities were used as a clinical out-
come of interest that cognitive test attempts to predict.
The single total score and multiple subtest scores of
the test battery were used as the main predictors.

We utilized a support vector machine, a classic
algorithm widely used to predict neurological and
psychiatric disorders [37, 38]. The predictive util-
ity of the linear and nonlinear model was compared
across different sample sizes.

METHODS

Participants

Older adults with or without cognitive impair-
ment were retrospectively recruited from SMG-SNU
Boramae Medical Center for Dementia from Jan-
uary 2012 to December 2020. The participants
underwent both neuropsychological assessment and
structured clinical interview. This study was con-
ducted under the Declaration of Helsinki, and the
protocol was approved by the Institutional Review
Board of SMG-SNU Boramae Medical Center (IRB
No.10-2020-295). The current study included older
adults without cognitive impairment (age-associated
cognitive decline) or with mild cognitive impairment
(MCI) or Alzheimer’s disease (AD) dementia. The
clinical diagnosis of the probable or possible AD and
MCI was based on the National Institute of Neuro-
logical and Communicative Disorders and Stroke and
AD and Related Disorders Association (NINCDS-
ADRDA) and the core clinical criteria of MCI [39,
40]. Subjects suspected or diagnosed with dementia
types other than AD were not included in the analysis,
including vascular dementia, Lewy body dementia,
frontotemporal lobe dementia, and vascular demen-
tia. In addition, those identified or suspected with
significant neurological or psychiatric conditions
including stroke, traumatic brain injury, meningioma,
hemorrhage, normal pressure hydrocephalus, delir-
ium, intellectual disabilities, psychotic disorders, and
mood disorders were also excluded. We confined
our predictive analysis within the dementia staging
of ‘moderate’ impairment (Clinical Dementia Rat-
ing (CDR) sum of box score ≤ 15.5), considering the
disproportionate sample size and feasibility of the
neuropsychological test [41]. Finally, a total of 2,642
older adults who met the screening criterion were
analyzed (Table 1).

Neuropsychological test

All participants received the Korean version of the
Consortium to Establish a Registry for Alzheimer’s
Disease neuropsychological battery (CERAD-K)
[42]. The battery measures multiple domains of
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Table 1
Descriptive characteristics of the participants

Mean (SD) / Frequency
(proportion)

Age 75.82 (8.02)
Sex (M : F) 958 : 1684
Education (years) 7.75 (5.08)
Diagnosis

Alzheimer’s disease dementia 1,057 (40.0%)
Mild cognitive impairment 1,300 (49.2%)
No cognitive impairment 285 (10.7%)

cognitive function and facilitates the diagnosis of
MCI and dementia. The battery contains the follow-
ing subtests as constituents of total score: Verbal
fluency (the number of correct animal words; four
blocks of 15 s interval), Boston Naming Test, Word
List Recall (immediate, delayed), Word List Recog-
nition (subtraction of the number of false positives
from the number of true positives), and Construc-
tional Praxis (copy). The CERAD-K total score was
calculated as the sum of the raw scores subdomains
as previously described [43].

The additional tests that are not summed in the
total score of CERAD-K include Trail Making Test
A/B (TMT-A and B) and Construction Recall. The
TMT measured the total time spent to complete the
tasks. The test administration had set the maximum
time limit at 360 s (TMT-A) and 300 s (TMT-B) based
on administration instruction in CERAD-K [44]. The
score was interpolated as the maximum time limit
(360 s or 300 s) in the cases when the TMT was
aborted or not feasible due to the following reasons:
exceeded the time limit, unable to understand the rule,
or committed more than five errors.

The primary analysis compared the predictability
of a single total score and nine multiple subtests that
sum the total score. The additional analysis examined
whether the inclusion of three subtests not summed
in the total score of CERAD-K (TMT-A/B and Con-
struction Recall) increases predictability.

Functional assessment

The CDR is a semi-structured interview developed
to provide a global summary of dementia sever-
ity. The CDR is useful for staging and tracking
the course of AD progression [45–47]. The global
score of CDR describes the presence or extent of
overall cognitive impairment. In addition, the score
of CDR–sum of boxes (CDR–SOB) is calculated
by summing impairment in six domains of daily
cognitive categories (memory, orientation, judgment,

community affairs, home and hobbies, personal care)
[48]. The CDR-SOB provides a more fine-grained
measure of functional disturbances (normal: 0, ques-
tionable impairment: 0.5–2.5, very mild dementia:
3.0–4.0, mild dementia: 4.5–9.0, moderate demen-
tia: 9.5–15.5) [41]. Even within the same category of
a global score or clinical diagnosis, CDR-SOB dif-
ferentiates the variations of functional ability across
six domains of real-world functioning. The trained
clinical psychologists administered the structured
interview and the ratings. As noted in the adminis-
tration standard, the decisions of CDR scoring were
based on the information gathered in a structured
interview rather than neuropsychological test perfor-
mance.

The Lawton instrumental activities of daily liv-
ing index (IADL) evaluated the ability to function
independently in a list of activities [49]. The index
was initially developed to sum the item differentially
depending on gender (the housework and food prepa-
ration items are additionally summed in women).
The current study used five items of Lawton IADL
that are commonly applicable to both genders. The
IADL items included whether the respondent could
perform the following tasks independently or with
support: phone use (1–4), buying goods (1–4), taking
medicine (1–3), managing money (1–3), transporta-
tion use (1–5). The total sum score indicated the
levels of functional independence ranging from 5
(fully independent) to 19 (requiring full support or
complete inability). The instrument’s reliability and
concurrent validity have been confirmed [50]. The
IADL was primarily assessed based on the informant
report, but the self-report was used only when the
patients were able to visit without the accompany-
ing caregiver. The validity of the IADL rating was
reviewed by the interviewer whether the item options
were misconstrued.

In the analysis, CDR-SOB and IADL were used
as prediction target outcomes. Diagnosis of MCI and
AD was only considered descriptive and participation
selection purposes rather than a target outcome since
the main predictors (neuropsychological test infor-
mation) were explicitly confounded in the diagnostic
information. Even in the mildest range of impairment,
the diagnostic definition requires the maintenance
of independent functioning, but subtle IADL vari-
ations have been observed in not-dementia groups
[51, 52]. Thus, variations of functional CDR-SOB
and IADL were examined across older adults with
no impairment, questionable impairment, and very
mild to moderate impairment.
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Table 2
Characteristics of the predictive models

Model Training Predictor(s) Linearity Characteristic
(Hyperparameters)

Model 1 Simple linear regression Total score (n = 1) Linear Uniformly weighted sum of subtests

Model 2 Multiple linear regression Subtest scores (n = 9) Linear Differentially weighted sum of subtests

Model 3 Kernel support vector regression Subtest scores (n = 9) Nonlinear Lower complexity
(radial basis function, C = 1, � = 0.1) (Low error penalty, low flexibility)

Model 4 Kernel support vector regression Subtest scores (n = 9) Nonlinear Higher complexity
(radial basis function, C = 100, � = 0.01) (High error penalty, high flexibility)

Predictive modeling

The test scores of CERAD-K were used as the pre-
dictors of CDR-SOB and IADL. All measures were
scaled before being introduced in the dataset split.
The dataset was randomly divided into a training
dataset (2/3 of the data fold) and a testing dataset
(1/3 of the data fold) to evaluate the predictive
accuracy in novel data. The model fitting was con-
ducted only in the training dataset. The predictive
weight estimated in the training dataset was applied
in the testing dataset. The accuracy of the predic-
tive model was assessed with the metrics of mean
absolute error (MAE) and Pearson’s correlation coef-
ficient (r) between the predicted functional score and
observed actual score of CDR-SOB and IADL in the
test dataset.

First, we evaluated the maximum accuracy
achieved with the largest available sample size. To
visualize the precision pattern, the scatter plot of a sin-
gle prediction loop showed the predicted and actual
score (n = 881). We iterated the same procedure ten
times and averaged the accuracy metrics to minimize
the random effect of disproportionate data splitting.
At each iteration, the subset data were randomly
sampled.

We then examined the effect of sample size used
in building predictive models. To explore the optimal
sample size in identifying the specific advantage of
the machine learning algorithm, we iterated the same
predictive analysis across the specified sample size
(100, 200, . . . 2600). The rate at which prediction
accuracy improves indicated the learning curve of a
model.

Predictive models comparison

The four predictive modeling approaches were
evaluated. The models differed in terms of the input

predictor, linearity, and hyperparameters of nonlinear
complexity (Table 2). In addition, the increasing rate
of predictive accuracy and the maximally achieved
accuracy were compared across the four models.

First, the linear models were fitted by ordinary least
square regression with the neuropsychological test
predictor (s) (Model 1-single total score, Model 2-
multiple subtest scores). The two linear models were
distinguished in terms of whether the weights of sub-
test scores are uniformly or differentially estimated
in the training dataset. In the prediction with multiple
regression (Model 2), coefficients of the subtests were
fitted in that best explains the target variable. Thus,
the subtest scores more closely associated with the
functional outcome are summed with higher weights.
The regularization was not applied in the regression
since the ratio of sample size-to-predictor was suffi-
ciently large [27].

In the nonlinear regression methods, support vec-
tor regression (SVR) with radial basis function (RBF)
kernel was used to fit the target variable. Typically, the
support vector machine is used to find supporting vec-
tors of a hyperplane that achieves the largest distance
between the two discrete groups [53, 54]. In predict-
ing continuous outcomes, SVR likewise works with
the algorithm that finds supporting vectors of a hyper-
plane that best explain the target measure’s real value.
Analogous to the soft margin of the largest distance,
the regression line is surrounded by a tube, and the
data points lying within that tube do not influence the
course of a regression line. In the �-sensitive SVR, the
regression line surrounded by a tube is fitted under the
constraint of the two hyperparameters: Cost (C) and
epsilon (�). Hyperparameter C weights the penalty of
violating the prediction range beyond the nonlinear
tube and determines the softness of the tube margin
[55]. In addition, the hyperparameter � optimizes how
keen the nonlinear tube should be in explaining the
given data [54, 56]. Thus, the SVR model with more



1362 S. Kwak et al. / Machine Learning Utility in Predicting Functional Impairment

Table 3
Demographic and neuropsychological test performances across clinical severity level (CDR-SOB). Mean, standard deviation (parenthesis),

rank-order correlations (rho) are noted

Clinical Staging Category Spearman’s Rank
Correlation (rho)
with CDR-SOB

Normal / Very mild Mild Moderate
Questionable (n = 475) (n = 665) (n = 193)
Impairment
(n = 1,309)

CDR-SOB range 0.0–2.5 3.0–4.0 4.5–9.0 9.5–15.0
CDR global score 0.49 (0.08) 0.51 (0.06) 1.00 (0.17) 2.01 (0.10) 0.87
Instrumental Activities of Daily Living (IADL) 5.63 (1.17) 7.77 (2.06) 11.5 (2.77) 15.8 (2.0) 0.84
Age 72.8 (7.5) 76.6 (7.2) 79.6 (7.3) 81.0 (7.1) 0.41
Education 9.0 (4.7) 7.1 (5.1) 6.5 (5.1) 5.5 (4.9) –0.25
CERAD-K Total Score 58.9 (12.6) 45.2 (11.6) 36.2 (11.4) 23.0 (10.9) –0.70
Semantic Fluency 12.5 (4.4) 9.7 (3.8) 7.4 (3.5) 4.3 (3.2) –0.57
Boston Naming 10.7 (2.7) 8.6 (3.1) 7.3 (3.1) 2.8 (5.2) –0.52
Word List Recall-Immediate 14.7 (4.3) 11.2 (4.1) 8.9 (4.0) 5.2 (3.7) –0.59
Word List Recall-Delayed 3.9 (2.2) 1.8 (1.8) 1.0 (1.4) 0.4 (0.8) –0.62
Word List Recognition 7.7 (2.4) 5.4 (3.0) 3.9 (2.9) 1.8 (2.4) –0.59
Construction-Copy 9.4 (1.8) 8.5 (2.1) 7.7 (2.4) 6.4 (2.7) –0.39
Construction-Delayed 4.4 (3.1) 1.9 (2.3) 1.1 (1.7) 0.4 (1.2) –0.56
Trail Making Test A 90.8 (69.2) 147 (107) 205 (119) 281 (112) 0.53
Trail Making Test B 245 (77.2) 282 (48.0) 294 (29.6) 298 (16.8) 0.38

flexible and complex features can be generated by
increasing the penalty of unexplained datapoint out-
side the tube (higher C) and decreasing the width of
the tube that finds highly curved supporting vectors
(lower �). We examined kernel SVR models with rel-
atively lower complexity (Model 3-SVR low) and
higher complexity (Model 4-SVR high). The SVR
was conducted using the e1071 package in R [57].
The default setting of hyperparameter was applied in
Model 3 as suggested in the package. The SVR hyper-
parameters with higher complexity were set with log
scale units similar to the previous study [58]. The
gamma parameter was set as a function of sample
size (1 / (dimension of training data)).

Predictive weights representing the relative con-
tribution of each subtest were evaluated with
coefficients in multiple regression model (Model 2)
and feature importance of support vector machine
(Model 3, 4). The coefficients and feature importance
across subtests were interpreted equally compared as
the target measures were scaled. Feature importance
was calculated with the dot product of coefficients
and supporting vectors. All predictive weights were
inversely presented, indicating that the higher weight
is associated with a stronger contribution in predict-
ing the functional outcome.

In the supplementary analysis, we first exam-
ined whether the predictive performance can be
maximally improved when the additional subtests

in CERAD-K (i.e., Construction Recall, TMT-A/B)
and the demographic information (age, education,
sex) are included in the models. The model perfor-
mance was compared between the original models
with nine subtests (formal set of CERAD-K total
score), additive models with 12 predictors (TMT-A/B
and Construction Recall added), and 14 predictors
(demographics of age and education added). The
comparison of this additive benefit was assessed in
the multiple linear regression (Model 2) and nonlinear
SVR with high complexity (Model 4).

In addition, we also applied predictive modeling of
Model 4 (SVR-high) to the single predictor of a total
score to confirm that the additive benefit of the non-
linear approach is the multiplicative effect of separate
subtests rather than nonlinear scaling effects of over-
all performance. Lastly, we also examined whether
the results are consistent when constraining the analy-
sis within the subgroups of diagnosis or gender. Since
the subgroups differ in the sample size, the subgroups
with larger sample sizes are subsampled to match the
other subgroups (i.e., diagnosis subgroup: n = 1,057;
Gender subgroup: n = 958).

RESULTS

The stages of clinical impairment rating (CDR-
SOB ranges) corresponded with the score of IADL
(Table 3). The total score of CERAD-K showed



S. Kwak et al. / Machine Learning Utility in Predicting Functional Impairment 1363

Fig. 1. Prediction scatter plots in the testing dataset (1/3 of the total sample, n = 881). X-axis: Actual score of CDR-SOB and IADL. Y-axis:
Predicted scores based on neuropsychological performance (NP-predicted) in the training dataset (2/3 of the total sample). Averages of
10-iterated predictions (correlation coefficient r) are also noted.

the highest rank-order correlation with the CDR-
SOB stages. The subtests representing the cognitive
domain of episodic memory and language showed
moderately high association with the CDR-SOB.

After predictive models are fitted within the train-
ing dataset (2/3 of the dataset), the predictive weights
were applied in the testing dataset (1/3 of the dataset).
In the testing dataset, the accuracy metrics (correla-
tion and MAE) between the predictive score based
on neuropsychological performance (NP-predicted
score) and the actual measure of the functional
outcome (CDR-SOB and IADL) were calculated
(Fig. 1). Also, the 10-times iteration of the prediction
showed stable variability (Fig. 2). In linear models
(Model 2), using the multiple subtest scores added a
minimal increase in the predictive correlation com-
pared to the single total score (Model 1). On the
contrary, the predictive model using nonlinear models
(Model 3, 4) showed higher accuracy than the linear
models.

We also examined specific sample size conditions
under which machine learning algorithms provide
benefits in utilizing neuropsychological tests. The
result showed that linear regression (Model 1, 2)
showed lower predictive errors when the sample size

Fig. 2. Iterated prediction accuracy of the neuropsychological test
in predicting CDR-SOB and IADL scores (correlation r between
predicted score and actual score) (Test set size = 881, 1/3 of the
total sample). Each dot indicates iterated prediction (10 times).
Model 1: Simple linear regression with the single total score.
Model 2: Multiple linear regression with subtests. Model 3: non-
linear support vector regression of low complexity with subtests.
Model 4: nonlinear support vector regression of high complexity
with subtests.

was relatively small (n < 200). However, the linear
models showed a minimal benefit of adding the sam-
ple size, and the accuracy reached the asymptotic
maximum at a specific dataset size (n = 500).
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Fig. 3. Sample size effects on the predictive accuracy of Clinical severity (CDR-SOB) and Instrumental daily functioning (IADL). Sample
size increased from 100 to 2,600 by 100 units.

On the other hand, the nonlinear kernel SVR
(Model 3, 4) gradually showed enhanced predictive
accuracy as the sample size increases. Even until
the largest sample size (n = 2,600), the gradual
improvement in the predictive accuracy did not
reach the maximum level. Moreover, the SVR model
with higher complexity (Model 4) showed a steeper
improvement, leading to the highest predictive
performance with a more extensive sample size (n >
1500). The number of averaged supporting vectors
representing the trained data points in determining
the regression tube was greater in SVR with higher
complexity (Model 4, CDR-SOB: 1,713, IADL:
1,706) than SVR with lower complexity (Model 3,
CDR-SOB: 1,447, IADL: 1,357).

The amount of predictive contribution was
assessed with regression coefficients and feature
importance of each subtest (Fig. 4). The result showed
that the feature importance of Model 3 generally
coincided with linear coefficients of Model 2. How-
ever, the Word List Recognition and Word List–
delayed tests showed an attenuated contribution
in Model 3. Moreover, the feature importance in
Model 4 was highly variable across iterations, and the
salience of the specific feature importance (e.g., Flu-

ency first session, Word List Recognition, Word List
Recall delayed) became unclear. On the contrary, the
tests with initially weak univariate association with
functional level (e.g., Constructional Praxis–copy)
showed a considerable improvement in the strength
of feature importance.

We also evaluated the extent to which other
neuropsychological tests (TMT-A/B, Constructional
Recall) and demographic information (age, educa-
tion) add accuracy in predicting functional level.
The result showed that adding five of the predic-
tors more improved the predictive accuracy in both
linear regression (Model 2 approach) and nonlinear
SVR (Model 4 approach) (Fig. 5). Moreover, the
improvement of prediction accuracy was greater in
the nonlinear model than merely adding the predic-
tors in the linear model, indicating the multiplicative
properties in the predictive benefit. TMT-A showed
a high contribution in the predictive weights, and the
feature importance of the age effect became stronger
in the nonlinear model (Supplementary Figure 1).

We also confirmed that the predictive benefit
requires subtest combination rather than sole algo-
rithmic complexity. When the CERAD-K total score
was modeled with a nonlinear SVR-high (Model 4)
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Fig. 4. Predictive weights of CERAD-K subtests. Each dot represents 10-iterated predictions. Upper: CDR-SOB prediction. Lower: IADL
prediction. Left: Multiple regression coefficients (Model 2). Middle: Feature importance of support vector regression with lower complexity
(Model 3). Right: Feature importance of support vector regression with higher complexity (Model 4). Flu 1∼4: Animal fluency (4 sections),
boston: Boston Naming Test, wr1/2: Word List Recall immediate/delayed, wrecog: Word List Recognition, cons1: Constructional Praxis
Copy.

algorithm, the predictive accuracy showed only
slight improvement (MAE in CDR-SOB = 0.478,
IADL = 0.471) compared to the simple linear regres-
sion method (MAE in CDR-SOB = 0.535, IADL =
0.543). However, the accuracy was still worse than the
model with the full nine subtests (Model 4 SVR-high
MAE in CDR-SOB = 0.347, IADL = 0.356).

The finding was consistently maintained when the
same analysis was conducted within the dementia
diagnosis subgroups (MCI or AD group) (Table 4).
Likewise, the predictive accuracy minimally dif-
fered between gender groups of males (n = 958;
MAE in CDR-SOB = 0.29, IADL = 0.30) or females
(n = 958, subsampled; MAE in CDR-SOB = 0.31,
IADL = 0.32).

DISCUSSION

The neuropsychological battery provides essen-
tial information in assessing the levels of functional
impairment of dementia. However, unfavorable
sources of information and the idiographic context of
lifestyle often hinder valid assessment of one’s real-

world functioning. In the current study, we aimed to
find translational methods that can aid in interpreting
the complex nature of the functional status based on
neuropsychological test performance. We examined
how the classical summary of neuropsychologi-
cal battery, namely the total score method, can be
improved with the machine learning approach. We
first showed that the linear regression models that
use a single total score or multiple subtests per-
formed moderately well in predicting functional
variabilities of dementia. However, the performance
showed a profound improvement when using a non-
linear algorithm that exploits the data pattern with
higher complexity. This enhancement was explicitly
observed when the dataset was sufficiently large. As
the sample size used for training the model increases,
the linear models were rapidly saturated with minimal
additive benefit. On the contrary, nonlinear models
showed a gradual increase in the predictive accuracy
until the largest dataset available, especially when
using the nonlinear model with higher complexity.

We first confirmed that the total sum score of
the neuropsychological battery moderately predicts
functional impairment associated with AD dementia.
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Fig. 5. Enhanced predictive accuracy when predictors of test scores and demographics are added. The scatter plots represent a single iterated
prediction result in Model 4 (SVR-high) with 14 predictors included. NB: Nine subtests of the neuropsychological battery used for CERAD-K
total score summation, TMT: Trail Making Test A and B, Cons2: Construction Recall, Demo: Demographic information (age, education,
sex).

Table 4
Prediction accuracy (MAE, Correlation) across predictive models in the subgroup of diagnosis

MCI AD dementia
(n = 1,057) (n = 1,057, subsampled)

CDR-SOB IADL CDR-SOB IADL

MAE r MAE r MAE r MAE r

Model 1
Total Score 0.77 0.26 0.67 0.26 0.65 0.57 0.65 0.56

Model 2
Multiple subtests 0.76 0.27 0.65 0.33 0.64 0.59 0.64 0.58

Model 3
SVR-Low 0.67 0.42 0.53 0.46 0.54 0.66 0.57 0.63

Model 4
SVR-High 0.46 0.59 0.39 0.62 0.39 0.72 0.41 0.69

When comparing the two linear models, the combi-
nation of multiple subtests of the neuropsychological
battery in a linear fashion showed a marginal increase
in predictive accuracy, indicating that the current
method in summing the subtests as the total score
is generally optimal in describing functional out-
comes of dementia. However, some scaling biases
and prediction errors seem to require more preci-

sions. Each subtest differs in its metric properties,
including skewness and floor/ceiling effect across the
levels of functioning. Also, the predictive importance
may not be uniform across the range of functional
abilities. These differences indicate that the linear
modeling may not be optimal in finding the predictive
test elements in every functional range of dementia,
requiring a more flexible model in prediction.
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One of the key findings of this study was iden-
tifying specific conditions under which machine
learning algorithms provide benefits in utilizing neu-
ropsychological tests for functional assessment in
dementia. Using the radial basis kernel function of the
support vector machine, additive terms with higher-
degree or interaction effects may have effectively
generated and flexibly fit into the given dataset as
a high-dimensional hyperplane. The numerosity of
supporting vectors in the fitted SVR model indicates
the complex data pattern that the models captured.
In contrast to the linear models, applying a nonlin-
ear algorithm (SVR) led to a gradual increase of
predictive accuracy as a function of sample size.
Moreover, the learning curve did not saturate to a
maximum accuracy even with the largest sample
size (n = 2,600), suggesting that adding more datasets
will further improve the predictability. While some
previous studies showed discouraging results in the
nonlinear machine learning approach [31, 32], such
results may have been due to the lack of sample size.
Our findings suggest that a relatively small dataset
(n < 500) may be insufficient in exploiting the advan-
tage of complex nonlinear algorithms.

In using the neuropsychological tests to predict
the functional outcome of dementia, multiple rea-
sons may explain the benefit of the nonlinear models.
The stages of clinical impairment can be reified with
the concepts of discrete and ordinal categories (i.e.,
early or late MCI, preclinical AD), rather than a fine-
grained measure of a real entity of human attribute
[59, 60]. Thus, if the significance of the cognitive
deficit differs across the stages of clinical ordinality,
predictive application of linear model may partly fail
since they assume uniform predictability of test ele-
ments across a long range of clinical severity. Flexible
generation of a nonlinear model can be effective in
such cases.

One of the practical difficulties in capturing the
nonlinear pattern is that the predictive benefit starts
to emerge at a relatively larger dataset. Our findings
noted that utilizing higher-order nonlinear algorithms
requires a great amount of data points, and this dif-
ficulty may be related to the signal-to-noise ratio of
the predictors. In the previous study, the slowly sat-
urating pattern of the asymptotic learning curve was
also observed when predicting other physical proper-
ties or discrete image categories [34]. However, the
required sample size in the study grew larger in iden-
tifying the benefits of nonlinear models, especially
as the amount of random noise increases. The noise
in the trained dataset minimizes the benefit of non-

linear models, and the linear models may instead
perform better when a considerable noise is mixed
in the model training. Similar to this previous study,
the classical summation of the total score in the cur-
rent study provided a more reliable and accurate
prediction on the functional outcome when the pre-
dictive summary score was generated with a relatively
smaller sample size (n < 500). On the contrary, the
worse performance of nonlinear models with small
sample sizes indicates that the model easily overfits
uninformative noise. These results suggest that the
prerequisite of the benefit is a large-scale dataset that
overcomes the confounding noise effect. Although
the source of the noise in the neuropsychological test
is not identified in the current study, sound data qual-
ity based on standardized administration and scoring
procedures will be critical in improving the clinical
prediction of dementia.

The use of predictive modeling implies further
practical applications in the field of clinical assess-
ment [25]. For example, recent attempts showed
a promising advancement of using predictive pat-
tern scores of dementia in the multidimensional
dataset, such as genetic polymorphisms or brain
structural imaging [61, 62]. Likewise, translation
from cognitive task performance to real-world func-
tioning requires complex translation. Despite the
criticisms on using summary scores and their the-
oretical basis in neuropsychological assessment [63,
64], the current study showed that multiple cogni-
tive tests could be effectively transformed into a
single summary score. Furthermore, the summary
approach can be used to serve other purposes of clin-
ical assessment (e.g., differential diagnosis, specific
domain of functional outcome) [65]. Varying degrees
of one’s functional ability can result from multiple
nonlinear combinations of cognitive processes, and
clinically meaningful features may not be captured
with human-level theories. Based on an optimal com-
bination of the clinical information, some evidence
suggests that the machine learning model can outper-
form the clinician’s predictive expertise in a specific
domain of functional outcome [66]. The current study
implies that score patterns can be validly augmented
with specific purposes and may aid the clinicians’
implicit intuition.

Our study also made use of a machine learning
advantage in translating group-level datasets toward
personalized indices. In evaluating the utility of neu-
ropsychological test instruments, machine learning
provides precision metrics at an individual level,
rather than merely rejecting null-hypothesis testing as
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a group-level difference [25, 38]. Based on the accu-
racy metrics (i.e., mean absolute error), clinicians can
interpret the current study results in how precise or
imprecise the summary score will be when assessing
a single individual. Our study was able to evaluate
the extent to which the classical summary scores and
machine learning prediction scores track functioning
levels at an individual level.

Consistent with the recent attempts of developing a
performance-based assessment of instrumental activ-
ities, validating an objective instrument of real-world
functioning will be an essential task in translating
the use of neuropsychological battery [67]. A valid
assessment of the presence and severity of functional
ability is crucial in older adults with neuropsychi-
atric conditions. However, a functional assessment
may face practical difficulties when information is
gathered under unfavorable informants or patients
with low daily motivation. The clinicians should
often discern actual ability (i.e., maximum potential
ability) from the motivational propensities in daily
activities. Also, the significance of the functional dif-
ficulties differs across specific informants and may be
prone to subjective criteria of the symptom severity.
Moreover, the contextual meaning of one’s ‘impair-
ment’ can profoundly vary depending on the social
demands (e.g., rural or urban). The current study sug-
gests that the predictive summary score of CDR-SOB
and IADL based on neuropsychological test perfor-
mance would be less affected by confounding factors
and may provide ‘expected’ levels of real-world
functioning.

Our findings support the utility of using multiple
tests in the neuropsychological assessment of demen-
tia. According to the actuarial neuropsychological
approaches in MCI diagnosis, applying a multivariate
definition of the cognitive impairment led to a more
reliable and valid prediction of dementia prognosis
and biomarkers [17, 18, 68]. Interestingly, the current
study showed that using a single score is insufficient
in generating an optimal predictive model. More-
over, the benefit of combining multiple subtests grew
larger when exploiting nonlinear patterns of predic-
tors rather than linearly adding the predictors. These
findings further support using multiple cognitive tests
rather than a single test score as a clinical cutpoint.
The multiplicative combination seems to be a critical
factor in narrowing the remaining errors that linear
methods cannot explain.

Another issue in using neuropsychological scores
in dementia assessment is the norm-based decisions.
Identifying the deviant deficit based on the expected

performance of age and education can sensitively
detect subtle inflection in the early stages of cog-
nitive disorders. Accordingly, we observed large
variabilities of the total scores, especially within
the range of subtle impairment. These participants
consisted of highly heterogeneous educational attain-
ment. It is possible that many of the older adults with
low education may have maintained the preexisting
function while showing significantly low cognitive
performances [69, 70]. The lower test specificity in
low-educated elderly may have degraded the predic-
tion accuracy, especially in the linear model method
[71]. This study found that the additive effect of
demographic information was more significant only
in the SVR-high complexity model, indicating the
predictive role of demographics in an interactive and
conditional way. Though the benefits of using norm-
adjustment in predicting clinical impairment have
been unclear [72–74], utilizing test interpretation that
reflects a premorbid functional ability will be crucial
in making a theoretically valid distinction between
preexisting functional abilities and progressive dete-
rioration [6].

In the subgroup analyses of dementia diagnosis
(MCI and AD), the main findings remained consis-
tent. Since the functional assessment measures are
strongly associated with the diagnostic criterion of
dementia, the predictability could have only reflected
diagnostic variation. However, this additional analy-
sis confirmed that the benefits of SVR also held for
the variabilities within the same clinical diagnosis
of MCI or AD. MCI group showed lower predic-
tion accuracy, possibly due to lower variability of
IADL and CDR-SOB, but a meaningful improve-
ment of SVR models was consistently observed.
Likewise, the predictive benefit held for both gender
groups. Notably, the predictability showed a min-
imal decrease even with a significant loss sample
size of the training dataset in the subgroup analysis.
The overall difference in the prediction accuracy was
observed, especially in the metric of correlation coef-
ficient (r), while absolute deviance of the prediction
(MAE) showed a minimal difference. This difference
may be due to the scaling effect between mild levels
of impairment (MCI group, low variance, low predic-
tive correlation) and severe range of impairment (high
variance, AD group, higher predictive correlation).
The correlation metric in predictive modeling has
been criticized for being sensitive to the scaling of the
data, and a high correlation can exist even when pre-
dicted values are discrepant from actual values [26].
The predictability may systematically differ across
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other clinical stages (e.g., MCI converter versus non-
converter, controls versus AD, controls versus MCI)
[28] and future study can specify whether the devel-
opment of predictive models requires a homogeneous
training dataset.

When examining the regression coefficients and
feature importance, we generally confirmed that sub-
tests of verbal episodic memory, processing speed,
category fluency contribute to the prediction of func-
tional impairment [28, 75]. However, it is notable
that the variability of feature importance grows
flat, and subtests with initially weak weights came
to have similarly high contributions. For example,
constructional praxis showed minimal predictive con-
tribution in the linear model (Model 2), but SVR
identifies the test as a similarly significant predic-
tor (Model 3 and 4). In other words, even though
some test remains the most robust predictors (audi-
tory verbal learning test), low-ranking predictors
(e.g., visuospatial ability, demographic information)
play a role in the higher-order models. Such multi-
plicative effect implies that the clinical prediction of
AD requires combining multiple cognitive domains
[17–19], rather than nominating cognitive sign of
a single impairment. Moreover, our result warrants
caution that a selective set of cognitive domains can
only reveal a fraction of the functional outcomes
of AD.

Several limitations in the study should be noted.
First, the outcome measure used for the prediction
target is not the ultimate gold standard in evaluating
the predictability of models. The two outcome mea-
sures used to train the models can also be influenced
by multiple factors of physical illness and socioe-
conomic constraints that typically concur in older
adults. While the administration guideline of CDR
explicitly requires not to consider functional distur-
bances unrelated to cognitive disorders, the confluent
nature of one’s real-world functioning may obscure
the clear-cut ratings. Moreover, the lifelong divi-
sion of gender roles in housework blur the boundary
between the propensity and ability of daily activities
[49]. Neuropsychological test scores are insufficient
in accounting for such idiographic social context. The
given dataset in the current study is not free from
the inherent bias of the prediction target. The results
require cautious interpretation in whether the pre-
dicted score purely captured the concept of interest.
Secondly, we note that the current dataset only con-
fined a specific type of dementia, namely AD. Due
to the symptom specificity of AD, the difficulties and
functional impairment can differ with other types of

neurodegenerative disease or neuropathological con-
ditions. Thus, the specific cognitive domain such as
long-term memory function may have been accen-
tuated in the predictive weight. In the future study,
modeling various neurocognitive disorders will iden-
tify a more generalized theory that explains the
association between cognitive test performance and
real-world functioning. Lastly, a nonlinear model
with high dimensional features is difficult to trans-
late into human-understandable theories. The classic
theoretical models typically highlight which of the
specific subtest was most sensitive and specific in
discriminating a particular clinical condition, but
the current study suggests that the true theoreti-
cal model of real-world functioning may be much
more complex than designed with human inference
[76]. Flexible generation of a highly complex model
accurately predicted human behavior, but the exact
explanatory mechanisms remain in the ‘black box’
models. Further study is needed in decoding how the
machine learning model improves predictive accu-
racy and what specific latent patterns are implied.
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Age-correction of test scores reduces the validity of mild
cognitive impairment in predicting progression to dementia.
PLoS One 9, e106284.

[75] Belleville S, Fouquet C, Hudon C, Zomahoun HTV, Croteau
J (2017) Neuropsychological measures that predict progres-
sion from mild cognitive impairment to Alzheimer’s type
dementia in older adults: A systematic review and meta-
analysis. Neuropsychol Rev 27, 328-353.

[76] Peterson JC, Bourgin DD, Agrawal M, Reichman D, Grif-
fiths TL (2021) Using large-scale experiments and machine
learning to discover theories of human decision-making.
Science 372, 1209-1214.


