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Simple Summary: The contact point between the Hippo pathway, which serves as a central hub
for various external environments, and O-GlcNAcylation, which is a non-canonical glycosylation
process acting as a dynamic regulator in various signal transduction pathways, has recently been
identified. This review aims to summarize the function of O-GlcNAcylation as an intrinsic and
extrinsic regulator of the Hippo pathway.

Abstract: The balance between cellular proliferation and apoptosis and the regulation of cell dif-
ferentiation must be established to maintain tissue homeostasis. These cellular responses involve
the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dys-
regulation is implicated in diverse diseases, including cancer. O-GlcNAcylation is a non-canonical
glycosylation that affects multiple signaling pathways through its interplay with phosphorylation in
the nucleus and cytoplasm. An abnormal increase in the O-GlcNAcylation levels in various cancer
cells is a potent factor in Hippo pathway dysregulation. Intriguingly, Hippo pathway dysregulation
also disrupts O-GlcNAc homeostasis, leading to a persistent elevation of O-GlcNAcylation levels,
which is potentially pathogenic in several diseases. Therefore, O-GlcNAcylation is gaining attention
as a protein modification that regulates the Hippo pathway. This review presents a framework
on how O-GlcNAcylation regulates the Hippo pathway and forms a self-perpetuating cycle with
it. The pathological significance of this self-perpetuating cycle and clinical strategies for targeting
O-GlcNAcylation that causes Hippo pathway dysregulation are also discussed.

Keywords: Hippo pathway; O-GlcNAcylation; cancer; cellular signaling pathway

1. Introduction

The evolutionarily conserved Hippo pathway influences tissue growth and develop-
ment by regulating proliferation, apoptosis, and cell differentiation [1–3]. Its dysregulation
can trigger tumorigenesis, tissue fibrosis, and hyperplasia [4,5]. The central components of
the Hippo pathway are serine/threonine kinases and effectors, namely, the Yes-associated
protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) [4,6–8].
Thus, the Hippo pathway is driven by kinase cascade-mediated phosphorylation. Since
2017, when O-GlcNAcylation was found to be a posttranslational modification (PTM)
regulating the Hippo pathway, it has been in the spotlight in the Hippo pathway research
field [9–13]. O-GlcNAcylation modulates various phosphorylation-mediated signaling
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pathways via crosstalk [14,15]. In tumors from multiple tissues, abnormal increases in
O-GlcNAc transferase (OGT), an enzyme catalyzing O-GlcNAcylation, and intracellular
O-GlcNAcylation have been observed along with hyperactivation of YAP/TAZ [12,16–22].
Moreover, some core components of the Hippo pathway are O-GlcNAcylated, and these
O-GlcNAcylations induce Hippo pathway dysregulation [9,10,12]. In addition, when
Hippo pathway dysregulation causes hyperactivated YAP, the OGT expression increases,
leading to consistently high intracellular O-GlcNAcylation levels [4,9,10]. Aberrant hyper-
O-GlcNAcylation and Hippo pathway dysregulation are implicated in tumorigenesis,
tumor growth, and metastasis, and they contribute to various diseases [4,5,20,23–26]. Thus,
understanding how O-GlcNAcylation affects Hippo pathway dysregulation is necessary to
end the vicious cycle caused by the feedback regulation between O-GlcNAcylation and the
Hippo pathway.

This review provides overviews of the Hippo pathway and O-GlcNAcylation and sug-
gests mechanisms through which O-GlcNAcylation induces Hippo pathway dysregulation
by examining the O-GlcNAcylation of specific proteins that regulate the Hippo pathway.
In addition, this review presents the pathological significance of the self-perpetuating cycle
caused by the feedback between O-GlcNAcylation and the Hippo pathway. It also discusses
the applicability and limitations of clinical techniques to break such a mutual relationship.

2. Hippo Pathway

The Hippo pathway is an evolutionarily conserved intracellular signaling pathway that
affects tissue growth and development by coordinating apoptosis, cell proliferation, and
cell differentiation [1–3]. It was first identified through the genetic screening of Drosophila
melanogaster to discover tissue growth regulators [1,6,27–33]. Since the central components
of the Hippo pathway were identified in mammalian cells, numerous functional studies on
the Hippo pathway in mammalian cells have been conducted.

2.1. Kinase-Mediated Signaling Cascade of the Hippo Pathway

The central part of the mammalian Hippo pathway is a kinase cascade consist-
ing of the serine/threonine kinases mammalian Ste-20-like kinase 1/2 (MST1/2) and
large tumor suppressor 1/2 (LATS1/2), their adaptor proteins Salvador homologue 1
(SAV1) and Mps one binder 1 (MOB1), and the transcriptional co-activators YAP and TAZ
(Figure 1). When MST1/2 are phosphorylated at the activation loop (Thr183/Thr180) by
specific stimuli, MST1/2 activation is induced by phosphorylation-mediated conforma-
tional change [34]. The direct binding between SAV1 and MST1/2 facilitates MST1/2
activation by promoting and protecting the phosphorylation of the MST1/2 activation loop
and stabilizing SAV1 [35,36]. SAV1 also recruits MST1/2 to the plasma membrane [37,38].
Activated MST1/2 interacts with MOB1 by creating a phosphor-docking site via autophos-
phorylation, causing a conformational change in MOB1 and allowing MOB1 to bind to
LATS1/2 [39,40]. Merlin recruits LATS1/2 to the MST1/2-SAV1 complex at the plasma
membrane [38]. As a result, MST1/2 can indirectly interact with LATS1/2 with the assis-
tance of Merlin and two adaptors, namely SAV1 and MOB1 [38–40]. MST1/2 phosphorylate
the N-terminal tail of MOB1 (Thr12 and Thr35) and the hydrophobic motif of LATS1/2
(Thr1079/Thr1041) [40]. MOB1 phosphorylation causes the LATS1/2–MOB1 complex to
dissociate from the MST1/2–SAV complex, and the released LATS1/2 are activated by the
autophosphorylation of its activation loop (Ser909/Ser872) [40,41]. Activated LATS1/2
subsequently phosphorylate a serine residue within the HXRXXS motifs of the Hippo
pathway effectors YAP/TAZ [8,42–45]. The phosphorylated residues of YAP are Ser61,
Ser109, Ser127, Ser164, and Ser381, and those of TAZ are Ser66, Ser89, Ser117, and Ser311.
When YAP/TAZ are phosphorylated at Ser127/Ser89, an interaction with 14-3-3 occurs,
inducing the cytoplasmic sequestration of YAP and TAZ [8,42,43]. When YAP/TAZ are
also phosphorylated at Ser381/Ser311, phosphorylation by casein kinase 1δ/ε (CK1δ/ε) is
stimulated, causing the proteasomal degradation of YAP and TAZ via ubiquitination by
SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, and F-box protein) E3 ubiquitin
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ligase [44,45]. Therefore, phosphorylated YAP/TAZ cannot act as transcriptional cofactors [8],
whereas dephosphorylated YAP/TAZ interact with and assist the transcription factors,
such as TEADs, p73, RUNX, and TBX5 [46–51].
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Figure 1. Schematic representation of the mammalian Hippo pathway. The Hippo kinase cascade,
composed of Ser/Thr kinases MST1/2 and LATS1/2, adaptor proteins SAV1 and MOB1, and effectors
YAP/TAZ, is regulated by various stimuli, including cell–cell junctions, cellular stresses, mechanical
cues, and multiple extracellular signaling molecules. A “+” indicates a stimulus that increases the
activity of the Hippo pathway, and a “−” indicates a stimulus that decreases activity. The Hippo
pathway phosphorylates YAP/TAZ, leading to their cytoplasmic sequestration and proteasomal
degradation. Dephosphorylated YAP/TAZ translocate into the nucleus and act as transcriptional
cofactors, thereby controlling cellular responses such as proliferation, survival, and metastasis and
affecting stemness, regeneration, organ size, and tissue homeostasis.

2.2. Hippo Pathway as an Essential Cellular Hub

The Hippo pathway is controlled by diverse mechanical or chemical upstream inputs
rather than exclusive molecules (Figure 1). Cell adhesion enhances Hippo signaling by
attracting MST1/2 and LATS1/2 closer to each other or sequestering YAP/TAZ at cell
junctions [52]. Mechanical cues regulate the Hippo pathway by actin remodeling, and
extracellular signaling molecules such as hormones, growth factors, and lysophosphatidic
acid (LPA) modulate the Hippo pathway via their receptors or G protein-coupled recep-
tors (GPCRs) [52,53]. The Hippo pathway is also controlled by stresses such as glucose
deprivation [54–56], hypoxia [57], endoplasmic reticulum stress [55], heat shock [58–60],
osmotic stress [61], and oxidative stress [62,63]. Recently, the striatin-interacting phos-
phatase and kinase (STRIPAK) complex was reported as an upstream regulator of the
Hippo pathway. It dephosphorylates and suppresses MST1 in a manner dependent on
Ras homolog family member A (RhoA) [64]. The STRIPAK mechanism can explain how
upstream signals such as LPA and serum connect to one another to regulate the Hippo
signaling pathway, but their correlation with other stimuli needs to be further investigated.

The Hippo pathway is regulated by numerous signaling pathways [65], namely the
Wnt [66], Ras–Raf–MAPK [67], TGFβ [68,69], Hedgehog [70], Notch [71–74], MAPK [75,76],
and Mevalonate pathways [77]. It acts as an essential hub for transmitting diverse inputs
to YAP/TAZ and transducing such signals into cellular responses, including proliferation,
survival, metastasis, stemness, and regeneration [46,47,78]. Hence, the activity of YAP/TAZ
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must be fine-tuned. YAP/TAZ modulate their own activities by inducing the gene expres-
sion of Merlin and LATS2, which act as negative regulators of YAP/TAZ [79,80]. This
negative feedback loop in the Hippo pathway helps establish YAP/TAZ homeostasis. The
hyperactivation of YAP and TAZ via Hippo pathway dysregulation leads to tumorigenesis,
tissue fibrosis, and hyperplasia in some organs; promotes tumor growth and metastasis; and
confers chemotherapeutic resistance to some cancer cells [5,81]. Indeed, Hippo pathway
dysregulation is frequently observed in patients with cancer or fibrotic diseases [5].

3. O-GlcNAcylation

YAP/TAZ hyperactivation is a common feature of cancer cells, but the genetic mu-
tations of the core components in the Hippo pathway are rarely found in patients with
cancer [4,16,82–84]. This observation begs the question of what causes Hippo pathway
dysregulation in cancer cells? The abnormal elevation of intracellular O-GlcNAcylation in
cancer cells is one possible answer.

3.1. Hexosamine Biosynthetic Pathway

O-GlcNAcylation is a PTM through which a single N-acetylglucosamine (GlcNAc)
is attached to a target protein [85,86]. Uridine diphosphate-N-acetylglucosamine (UDP-
GlcNAc), an active monosaccharide donor, is synthesized by the hexosamine biosyn-
thetic pathway (HBP) that consolidates glucose, amino acid, fatty acid, and nucleotide
metabolism [87] (Figure 2). Thus, O-GlcNAcylation acts as a nutrient sensor. Glucose,
which is transported into cells through glucose transporters (GLUT), is phosphorylated
by hexokinase using ATP, thereby producing glucose-6-phosphate (Glc-6-p); Glc-6-p is
then transformed into fructose-6-phosphate (Fru-6-P). Most of these products undergo
pentose phosphate and glycolytic pathways as energy and carbon sources. A small por-
tion of Fru-6-P is turned into glutamine-fructose-6-phosphate (GlcN-6-P) by glutamine
fructose-6-phosphate amidotransferase (GFAT), the key enzyme of the HBP. Thus, only
2–5% of imported glucose can be converted to UDP-GlcNAc using glutamine, acetyl-CoA,
and uridine-5′-triphosphate (UTP) through the HBP [87–89]. The GlcNAc moiety is trans-
ferred by OGT from UDP-GlcNAc to the specific serine/threonine residues of various
target proteins [90,91]. O-GlcNAc from modified proteins is hydrolyzed by O-GlcNAcase
(OGA) [92].

3.2. OGT and OGA: The Sole Enzymes Responsible for the Intracellular O-GlcNAcylation Cycle

O-GlcNAc modifications of thousands of intracellular proteins are reversibly and
dynamically regulated by two enzymes, namely OGT and OGA [85]. OGT is an exclusive
enzyme involved in O-GlcNAcylation [90,93]. Human OGT (hOGT) contains 2.5–13.5
tetratricopeptide repeats (TPRs), a linker domain, and C-terminal catalytic domains [94,95].
Three hOGT variants are derived by alternative splicing and multiple transcription start
sites (Figure 3A). Among them, nucleocytoplasmic OGT (ncOGT) is the longest (with 13.5
TPR repeats) and most abundant OGT variant. The shortest OGT (sOGT) possesses 2.5 TPR
repeats. ncOGT and sOGT are both found in the nucleus and cytoplasm. Mitochondrial
OGT (mOGT) contains nine TPR repeats, and its location is due to a mitochondrial targeting
sequence (MTS) in the N-terminal region. The substrate recognition of OGT relies on TPR
repeats [96]. These conserved tandem repeats of 34 amino acids form a superhelix structure,
and the asparagine ladder in the superhelix mediates the recognition between OGT and
its diverse substrates [97]. Moreover, diverse adapter proteins that recruit OGT to specific
substrates depending on the cellular conditions confer OGT substrate selectivity and
substrate diversity [98].
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Figure 2. UDP-GlcNAc synthesis via the HBP and O-GlcNAc cycling. In the HBP, UDP-GlcNAc,
an active monosaccharide donor for O-GlcNAcylation, is synthesized by consolidating glucose,
glutamine, acetyl-CoA, and UTP, which are metabolites of carbohydrates, proteins, lipid acids,
and nucleotides, respectively. The GlcNAc moiety of UDP-GlcNAc is transferred by OGT to the
hydroxyl group of Ser/Thr residues on target proteins. O-GlcNAc from target proteins is then
hydrolyzed by OGA.

Similar to OGT, OGA recognizes diverse substrates. Human OGA has two distinct
splice variants (Figure 3B): nucleocytoplasmic OGA (ncOGA), which is located primarily in
the cytoplasm, and short OGA (sOGA), which is located primarily in the nucleus and lipid
droplets [99,100]. Both OGA variants possess an N-terminal hydrolase catalytic domain
that hydrolyzes O-GlcNAc modifications. However, sOGA does not have the C-terminal
histone acetyltransferase (HAT)-like domain and part of the stalk domain. The stalk domain
participates in forming an OGA homodimer in which a potential substrate-binding cleft is
created by covering the catalytic domain of the sister monomer OGA [101–103]. Through
this substrate-binding cleft, binding to a GlcNAc moiety and sequence-independent peptide
backbone interactions with the substrate are possible [101–103]. In addition, sequence-
dependent side chain interactions can occur within the substrate-binding cleft [104]. Hence,
interactions within the OGA substrate-binding cleft likely allow OGA to differentially
regulate the O-GlcNAcylation turnover rate for various substrates [104]. Due to the lack of
these interactions in sOGA, the hydrolase activity of sOGA is much weaker than that of
ncOGA. Human OGA was expected to possess histone acetyltransferase activity due to
the similarity of its HAT-like domain to GCN5-related N-acetyltransferase (GNAT) [105].
However, the P-loop motif that supports acetyl-CoA binding is absent from the HAT-like
domain of hOGA [106,107]. Thus, the HAT-like domain of OGA is a pseudo-HAT, but its
function remains unclear. Although these structural studies have provided insights into the
interactions of OGA with various substrates, further studies are needed to explain clearly
how OGA is regulated to recognize substrates and investigate the functional roles of the
HAT-like domain in substrate recognition by OGA.
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Figure 3. Exclusive enzymes directly involved in the O-GlcNAcylation cycle. (A) The schematic
structure of hOGT isoforms. Three hOGT variants (ncOGT, mOGT, and sOGT) are derived from the
OGT gene located on chromosome Xq13.1 by alternative splicing and multiple transcription start
sites. These variants possess an identical catalytic domain in the C-terminal region, but they have
different TPR repeats involved in substrate recognition in the N-terminal region. ncOGT (116 kDa)
has 13.5 TPR repeats, mOGT (103 kDa) contains 9 TPR repeats, and sOGT possesses only 2.5 TPR
repeats. Additionally, only mOGT contains a mitochondrial targeting sequence (MTS) in the N-
terminal region. (B) The structure of human OGA (hOGA) isoforms. Two hOGA variants (ncOGA
and sOGA) are produced from the MGEA5 gene located on chromosome 10q24.32. Both contain a
hydrolase catalytic domain in the N-terminal region, but only ncOGA has a HAT-like domain and
part of the stalk domain. (C) The function of OGT O-GlcNAcylation. O-GlcNAcylation at Ser389 of
OGT promotes interaction with importin α5, leading to the nuclear import of OGT. O-GlcNAcylation
at Ser3 and Ser4 of OGT inhibits its activity by competing with GSK3β-mediated phosphorylation.
(D) The function of OGA O-GlcNAcylation. O-GlcNAcylation at Ser405 of OGA represses its stability
and activity.

O-GlcNAcylation affects the cellular processes involved in gene expression and signal
transduction by regulating chromatin remodeling and protein stability, activity, localization,
and protein–protein interactions [98,108,109]. In particular, it plays a role in many cellular
signaling pathways through its reciprocal effects with phosphorylation [14,15]. Thus, O-
GlcNAc homeostasis must be maintained within cells to sustain normal cellular functions,
and it is accomplished by OGT and OGA [98]. OGT and OGA are mutually regulated
in terms of the gene transcription levels, protein activity, and protein stability [98]. The
O-GlcNAcylation of OGT and OGA is also thought to play a role in maintaining O-GlcNAc
homeostasis [98]. OGT O-GlcNAcylation decreases the overall level of intracytoplasmic
O-GlcNAcylation (Figure 3C). OGT O-GlcNAcylation at Ser389 promotes the nuclear im-
port of OGT by facilitating its interaction with importin α5 [110]. OGT O-GlcNAcylation
at Ser3 and Ser4 also decreases OGT activity by competing with GSK3β-mediated phos-
phorylation, which enhances the OGT activity [111]. However, OGA O-GlcNAcylation at
Ser405 reduces its stability and enzymatic activity [112,113] (Figure 3D). Hence, additional
research is needed to support the hypothesis that the O-GlcNAcylation of OGA is involved
in maintaining O-GlcNAc homeostasis.

4. Effect of O-GlcNAcylation on the Hippo Pathway

Glucose is a major factor regulating the Hippo pathway. As a representative energy
sensor, AMP-activated protein kinase (AMPK) activated in response to glucose depriva-
tion induces YAP phosphorylation in a LATS-dependent and LATS-independent manner;
consequently, it interferes with the binding of YAP to TEAD [54,55]. Glucose metabolism en-
hances YAP/TAZ transcriptional activity. Phosphofructokinase 1 (PFK1), the key enzyme in
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the first step of glycolysis, binds to TEAD and functionally cooperates with YAP/TAZ [114].
Glucose metabolism and the Hippo pathway are also connected by O-GlcNAcylation syn-
thesized by the HBP, which branches from glycolysis. YAP activity is enhanced by an
increase in cellular O-GlcNAcylation levels via OGT overexpression or treatment with
PUGNAc, an OGA inhibitor [9,10]; conversely, such activity is attenuated by a decrease in
O-GlcNAcylation via OGT knockdown or treatment with OSMI, an OGT inhibitor [9,12].

Cancer cells enhance the glucose uptake to meet the increased energy and metabolism
demands for cell growth and proliferation [115,116]. In cancer cells, excessive glucose
uptake and increased GFAT, the rate-limiting enzyme in the HBP, cause an increase in
UDP-GlcNAc from the HBP flux [117,118]. Together with an increase in UDP-GlcNAc syn-
thesis, OGT overexpression in cancer cells causes aberrant hyper-O-GlcNAcylation [21–23].
O-GlcNAcylation enhances YAP/TAZ activity and YAP/TAZ induce an increase in the
cellular O-GlcNAcylation levels [9,10,12,79,80]. This mutual relationship drives a self-
perpetuating cycle that sustains aberrant hyper-O-GlcNAcylation and Hippo pathway
dysregulation [12]. Hence, O-GlcNAcylation should be studied as a factor regulating the
Hippo pathway. In this section, we describe O-GlcNAcylation associated with Hippo path-
way dysregulation and suggest potential mechanisms through which O-GlcNAcylation
affects the Hippo pathway by integrating the results of studies on O-GlcNAcylation in
intracellular signaling pathways that crosstalk with the Hippo pathway.

4.1. Mechanism by Which O-GlcNAcylation Induces Hippo Pathway Dysregulation

Since YAP O-GlcNAcylation was reported in 2017, several studies have been conducted
on the O-GlcNAcylation of core components in the Hippo pathway kinase cascade [9–12].
Subsequently, the O-GlcNAcylation of MST1 and LATS2 has been confirmed [12]. However,
the O-GlcNAcylation of MST2 and LATS1, whose sequences are similar to those of MST1
and LATS2, has not been detected [9,12]. Furthermore, the O-GlcNAcylation of TAZ, SAV,
and MOB has not been observed [9,11] Although the effect of MST O-GlcNAcylation on the
Hippo pathway is unclear, the O-GlcNAcylation of YAP and LATS2 is closely associated
with Hippo pathway dysregulation (Figure 4). The O-GlcNAcylation of LATS2 at Thr436
interferes with the interaction between LATS2 and MOB1, decreasing the LATS2 activity
by inhibiting MST-mediated phosphorylation [12]. Thus, the O-GlcNAcylation of LATS2
increases the activity of YAP/TAZ [12]. The O-GlcNAcylation of YAP at Ser109 or Thr241
also enhances the activity of YAP by inhibiting its interaction with LATS1 [9,10].

In addition to the O-GlcNAcylation of the core components in the Hippo kinase
cascade, the O-GlcNAcylation of angiomotin (AMOT) and LDL receptor-related protein 6
(LRP6) is possibly implicated in Hippo pathway dysregulation [11,13] (Figure 4). AMOT
affects cancer growth and invasion via several signaling pathways: mTOR, MAPK, Wnt
signaling, and the Hippo pathway [119]. However, studies have yet to verify whether
AMOT acts as an oncoprotein or a tumor suppressor, because its effect on tumor growth
differs depending on the cancer cell type [119]. For example, the effect of AMOT on
the Hippo pathway varies depending on the cell type. AMOT acts as an oncoprotein
by increasing the activity of YAP in hepatic carcinoma, but it acts as a tumor suppressor
by repressing the activation of YAP target genes in ovarian cancer [119]. AMOT has
two isoforms, namely AMOT-p130 and AMOT-p80, due to alternative splicing. AMOT-
p130, which can interact with YAP via PPxY motifs in its N-terminal region, undergoes
O-GlcNAcylation [11,120]. In liver cancer cells, the effect of AMOT on the Hippo pathway
depends on the concentration of glucose, a major source of UDP-GlcNAc. AMOT functions
as a YAP suppressor under normal glucose conditions, but under high glucose conditions,
AMOT induces the nuclear accumulation of YAP, thereby enhancing the pro-tumorigenic
function of YAP [11]. LRP6, a co-receptor of canonical Wnt signaling, also affects the
Hippo pathway by binding to Merlin [121,122]. This interaction suppresses the Hippo
pathway by reducing the interaction between Merlin and LATS1/2 [13,121]. Under nutrient
starvation conditions, such as serum- or glucose-free culture, LRP6 O-GlcNAcylation
decreases, and the endocytosis-mediated lysosomal degradation of LRP6 increases. As
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a result, more Merlin becomes available to interact with LATS1/2, and the YAP activity
decreases [13]. These results further support that O-GlcNAcylation indirectly attenuates
the Hippo pathway. Further research that identifies O-GlcNAcylation sites in AMOT and
LRP6 is needed to elucidate the function of AMOT and LRP6 O-GlcNAcylation.
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Figure 4. Mechanism by which O-GlcNAcylation constantly attenuates the Hippo pathway through
mutual regulation. The O-GlcNAcylation of specific proteins, such as LRP6, LATS2, YAP, and AMOT,
increases the activity of the Hippo pathway effector YAP. LRP6 O-GlcNAcylation may diminish LATS
activity by decreasing Merlin–LATS interactions through the inhibition of the lysosomal degradation
of LRP6. LATS2 O-GlcNAcylation inhibits its activity by interrupting the MOB1–LATS2 interaction.
YAP O-GlcNAcylation induces its activity by disturbing the interaction with LATS1. AMOT O-
GlcNAcylation may cause the nuclear accumulation of YAP by decreasing AMOT phosphorylation
at Ser175. Hyperactivated YAP induces the gene expression of LATS2, Merlin, and OGT. LATS2
O-GlcNAcylation blocks the Hippo pathway negative feedback loop caused by YAP-mediated
LATS2/Merlin gene expression by blocking MOB1-LATS2 interactions. As a result, abnormally
increased O-GlcNAcylation induces Hippo pathway dysregulation and sustains aberrant hyper-O-
GlcNAcylation.
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Excessive YAP/TAZ activation can be prevented, because YAP triggers the tran-
scription of Merlin and LATS2, which are negative regulators of YAP and TAZ [79,80].
However, this negative feedback loop can be blocked by LATS2 O-GlcNAcylation and,
even if more LATS2 is recruited to the MST-MOB1 complex by an increase in Merlin
and LATS2 transcription, LATS2 O-GlcNAcylation inhibits the interaction between the
MST-MOB1 complex and LATS2 [12]. Hence, abnormally increased O-GlcNAcylation
can disrupt Hippo pathway homeostasis, leading to persistent YAP and TAZ hyperac-
tivation. Interestingly, activated YAP also promotes glucose uptake by enhancing the
GLUT3 gene expression and increases HBP-stimulating intracellular metabolites, such as
glutamine, acetyl-CoA, and Fru-6-P [10,54]. In addition, YAP enhances OGT transcrip-
tion, which increases the overall intracellular O-GlcNAcylation levels [9,10]. In summary,
aberrantly increased O-GlcNAcylation induces a positive feedback loop that sustains a
hyper-O-GlcNAcylation state via Hippo pathway dysregulation. These findings imply that
increased O-GlcNAcylation triggers Hippo pathway dysregulation in cancer cells and main-
tains a hyper-O-GlcNAcylation state, leading to tumor growth and metastasis. In xenograft
mouse experiments that observe the effects of YAP and LATS2 O-GlcNAcylation on tu-
mor growth, tumors from grafts expressing an O-GlcNAcylation-deficient YAP (S109A or
T241A) or LATS2 (T436A) mutant are significantly smaller than those from grafts expressing
wild-type YAP or LATS2 [9,10,12].

4.2. O-GlcNAcylation in Cellular Signaling Pathways That Crosstalk with the Hippo Pathway

The Hippo pathway crosstalks with multiple cellular signaling pathways, such as
Wnt, TGFβ, GPCR, and Notch [65]. Because some of these signaling pathways are reg-
ulated by O-GlcNAcylation, the Hippo pathway is expected to be indirectly affected by
O-GlcNAcylation (Figure 5). For example, β-catenin, an essential mediator of the canon-
ical Wnt signaling pathway, is O-GlcNAcylated at Thr41 in its N-terminus [123]. This
O-GlcNAcylation increases β-catenin stability by competing with ubiquitination-inducing
phosphorylation that occurs in the absence of a Wnt activity [123]. Activated β-catenin
induces the transcriptional upregulation of YAP by forming a β-catenin/TCF4 complex
that binds to a DNA enhancer element within YAP in colorectal cancer cells [124]. Phos-
phorylated β-catenin also induces the proteasomal degradation of TAZ by bridging TAZ to
β-TrCP, a ubiquitin ligase [66]. Hence, O-GlcNAcylation may indirectly enhance YAP/TAZ
activity by controlling Wnt signaling. Likewise, the O-GlcNAcylation of Smad4, an im-
portant regulator of the TGFβ signaling pathway, at Thr63 prevents the GSK3β-mediated
proteasomal degradation of Smad4, inducing the TGFβ signaling pathway [125]. SnoN, a
target gene of TGFβ signaling, stabilizes TAZ by preventing phosphorylation by LATS [68].
Thus, Smad4 O-GlcNAcylation likely promotes YAP/TAZ activity by inducing TGFβ
signaling. However, the O-GlcNAcylation of PKC decreases the TGFβRII expression by
diminishing PKC activity; as a result, TGFβ signaling is reduced [126,127]. Therefore, the
effect of O-GlcNAcylation on the Hippo pathway via TGFβ signaling may vary depend-
ing on OGT target proteins. PKA, a protein kinase that bridges the Hippo pathway and
GPCR-Gαs signaling by enhancing LATS1/2 activity through the direct phosphorylation
of LATS1/2 or the suppression of actin fiber formation, is also O-GlcNAcylated [128–130];
consequently, PKA kinase activities are enhanced [131]. Therefore, the O-GlcNAcylation of
PKA may enhance the Hippo pathway through the GPCR signaling pathway. NOTCH1 O-
GlcNAcylation induces the release of the Notch intracellular domain (NICD) by enhancing
DLL1-NOTCH and DLL4-NOTCH1 interaction [132]. NICD promotes YAP/TAZ stability,
thereby enhancing YAP/TAZ activity [71–73]. Hence, O-GlcNAcylation may improve
YAP/TAZ stability by regulating NOTCH signaling. Collectively, these studies imply
that O-GlcNAcylation indirectly affects the Hippo pathway by regulating its associated
pathways. However, these conclusions are derived by integrating individual findings from
multiple studies; thus, confirmatory studies are needed. Table 1 summarizes the O-GlcNAc
proteins involved in the Hippo pathway and the action mode of O-GlcNAcylation.
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Figure 5. The schematic model of O-GlcNAcylation regulating the Hippo pathway through other
pathways that crosstalk with the Hippo pathway. The O-GlcNAcylation of β-catenin, a mediator of
the canonical Wnt signaling pathway, competes with ubiquitinylation-inducing β-catenin phospho-
rylation, which may stabilize β-catenin and TAZ and promote β-catenin/TCF4 complex-mediated
YAP expression. Smad4 O-GlcNAcylation enhances the TGF-β/SMAD signaling pathway, which
can upregulate SnoN gene expression, thereby inactivating LATS1/2 by stabilizing Smad4. PKC O-
GlcNAcylation is possibly related to TGF-β signaling in a way that TGFβRII expression is decreased
by reducing PKC activities. In Gαs-coupled GPCR signaling, PKA O-GlcNAcylation may enhance
LATS1/2 activity by increasing PKA-mediated LATS1/2 phosphorylation or inhibiting actin fiber
formation. NOTCH1 O-GlcNAcylation elicits the release of NICD, which can stabilize YAP/TAZ, by
enhancing the interaction between NOTCH1 and DLL1 or DLL4.

Table 1. Summary of the O-GlcNAc proteins involved in the Hippo pathway and the action mode of
O-GlcNAcylation.

Protein O-GlcNAc Site Targeted Pathway Function Refs

YAP Ser109 or Thr241 Hippo signaling enhances the activity of YAP by inhibiting its
interaction with LATS1 [9,10]

LATS2 Thr436 Hippo signaling decreases LATS2 activity by inhibiting
MST-mediated phosphorylation [12]

AMOT-p130 not identified Hippo signaling may cause the nuclear accumulation of YAP by
decreasing AMOT phosphorylation at Ser175 [11]

LRP6 not identified Hippo pathway may diminish LATS activity by decreasing
Merlin-LATS interactions [13]
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Table 1. Cont.

Protein O-GlcNAc Site Targeted Pathway Function Refs

β-catenin Thr41 Wnt signaling
increases β-catenin stability by competing with

ubiquitinylation-inducing β-catenin
phosphorylation

[123,124]

Smad4 Thr63 TGF-β signaling
prevents the GSK3β-mediated proteosomal

degradation of Smad4, inducing the
TGF-β/SMAD signaling pathway

[68,125]

PKC not identified TGF-β signaling
decreases the TGFβRII expression by reducing
PKC activity and as a result the TGFβ signaling

pathway is reduced
[126,127]

PKA not identified GPCR signaling increases the activity of PKA that bridges the
Hippo pathway and GPCR-Gαs signaling [128–131]

NOTCH1 not identified NOTCH signaling induces the release of the NICD that promotes
YAP/TAZ stability [71–73,132]

5. Conclusions

Since the discovery of the Hippo pathway in the early 21st century, its phosphorylation-
mediated signaling has been elucidated. Although phosphorylation is the primary mecha-
nism of Hippo pathway regulation, it is affected by several PTMs, such as ubiquitination,
acetylation, methylation, sumoylation, and O-GlcNAcylation [9–12,133]. Particularly, O-
GlcNAcylation, which can crosstalk with phosphorylation, causes Hippo pathway dys-
regulation, leading to continuous YAP/TAZ hyperactivation. In addition, hyperactivated
YAP increases intracellular glucose and HBP-stimulated metabolite concentrations and
promotes OGT gene expression, which abnormally increases intracellular O-GlcNAcylation.
This mutual relationship between O-GlcNAcylation and the Hippo pathway causes a self-
perpetuating cycle that disrupts intracellular O-GlcNAc homeostasis, thereby sustaining
aberrant hyper-O-GlcNAcylation and Hippo pathway dysregulation. Hippo pathway dys-
regulation and aberrant increases in intracellular O-GlcNAcylation have been observed in
cancer cells derived from various tissues, and they contribute to carcinogenesis and cancer
progression. Thus, Hippo pathway components and O-GlcNAcylation regulatory enzymes
(OGT and OGA) are potential targets for cancer diagnosis and treatment. Currently, Hippo
pathway-targeting compounds, such as Verteporfin, and various OGT- and OGA-targeting
molecular probes, such as OSMI-1 and Thiamet-G, are being developed. However, the
systemic application of these compounds causes severe side effects because OGT and OGA
exclusively control the O-GlcNAcylation of numerous vital intracellular proteins and the
Hippo pathway is also involved in tissue and organ growth, development, regeneration,
repair, and immune modulation. With the development of compounds targeting specific
O-GlcNAcylation that induces Hippo pathway dysregulation, new cancer treatment ap-
proaches can be established. Such compounds can be developed into a wide range of
medical applications due to the diversity of diseases associated with O-GlcNAc home-
ostasis disruption and Hippo pathway dysregulation, including inappropriate immune
responses, excessive fibrosis, and metabolic disorders. YAP O-GlcNAcylation disturbs YAP-
LATS1 interactions; LATS2 O-GlcNAcylation enhances YAP/TAZ activity and stability and
blocks the negative feedback loop of the Hippo pathway, resulting in persistent YAP/TAZ
hyperactivation. Hence, YAP O-GlcNAcylation and LATS2 O-GlcNAcylation are excellent
target candidates.

Our understanding of how OGT and OGA select target proteins differently depending
on the cellular environment is insufficient, and the technology that targets only the O-
GlcNAcylation of specific target proteins is not secure. Moreover, the fundamental biology
underlying the interactions between O-GlcNAcylation and the Hippo pathway needs
additional research. With additional knowledge about the mutual relationship between
O-GlcNAcylation and the Hippo pathway and the development of techniques for detecting
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and regulating the O-GlcNAcylation of specific target proteins, more therapeutics and
regenerative medicine products can be discovered to cure human diseases.
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