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A B S T R A C T   

In the epidemiological COVID-19 research, artificial intelligence is a unique approach to make predictions about 
disease severity to manage COVID-19 patients. A limitation of artificial intelligence is, however, the high risk of 
bias. We investigated the skill of data mining and machine learning, two advanced forms of artificial intelligence, 
to predict severe COVID-19 pneumonia based on routine laboratory tests. A sample of 4009 COVID-19 patients 
was divided into Severe (PaO2< 60 mmHg, 489 cases) and Non-Severe (PaO2 ≥ 60 mmHg, 3520 cases) groups 
according to blood hypoxemia on admission and their laboratory datasets analyzed by the R software and WEKA 
workbench. After curation, data were processed for the selection of the most influential features including 
hemogram, pCO2, blood acid-base balance, prothrombin time, inflammation biomarkers, and glucose. The best 
fit of variables was successfully confirmed by either the Multilayer Perceptron, a feedforward neural network 
algorithm that performed machine recognition of severe COVID-19 with 96.5% precision, or by the C4.5 soft-
ware, a supervised learning algorithm based on an objective-predefined variable (severity) that generated a 
decision tree with 89.4% precision. Finally, a complex bivariate Pearson’s correlation matrix combined with 
advanced hierarchical clustering (dendrograms) were conducted for knowledge discovery. The hidden structure 
of the datasets revealed shift patterns related to the development of COVID-19-induced pneumonia that involved 
the lymphocyte-to-C-reactive protein and leukocyte-to-C-protein ratios, neutrophil %, pH and pCO2. The data 
mining approaches to the hematological fluctuations associated with severe COVID-19 pneumonia could not only 
anticipate adverse clinical outcomes, but also reveal putative therapeutic targets.   

1. Introduction 

The current pandemic outbreak of COVID-19 has led to millions of 
deaths worldwide, put a strain on healthcare systems of developed 
countries and collapsed the economies of low-income countries. Since 
the start of the pandemic, Ecuador has reported 468.414 COVID-19- 
infected people (26.142 per million) and 21.830 deaths (1218 per 
million) because of the SARS-CoV-2 infection [1]. Ecuador is one the 
countries with the sharpest increase of COVID-19 cases in Latin America. 
Although the majority are usually mild to moderate, COVID-19 disease 
can also progress to severe pneumonia (i.e., severe acute respiratory 

syndrome) and death. On hospital admission, the evaluation of the 
status of COVID-19 patients is critical for their clinical management, 
especially when dealing with limited hospital resources and personnel 
like in Ecuador. 

Artificial intelligence may be a unique non-clinical approach to meet 
healthcare requirements and relieve the burden imposed by the COVID- 
19 pandemic [2]. One of the main criticisms is, however, the high risk of 
bias or optimistic predictive performance of this approach [3]. Although 
it may undermine trust in its efficacy, artificial intelligence is evolving 
all by itself. One of the most advanced techniques of artificial intelli-
gence is data mining, which can be used for data-driven knowledge 

* Corresponding author. School of Biological Sciences & Engineering, Yachay Tech University. Hacienda San José s/n, Proyecto Yachay, 100115, Urcuquí, Ecuador. 
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powered by large labeled datasets [4,5]. Another promising subset of 
artificial intelligence is machine learning (ML), which focuses on pro-
ducing systems that are able to learn from examples and improve 
without being explicitly programmed [6]. ML algorithms are just 
beginning to be investigated as prognostic tools. ML-driven predictions 
of COVID-19 outcomes are based on clinical data and largely radiolog-
ical features extracted from X-ray computed tomography (CT) [2,7–9]. 
However, CT scan images are time consuming, weakly correlated with 
initial disease severity [10] and unable to detect small infected lung 
regions. CT systems are expensive and a heavy financial burden for 
hospitals [11]. 

Routinely-collected laboratory blood tests, which are readily avail-
able and inexpensive, have revealed important hematology, coagulative 
and biochemical fluctuations associated with COVID-19 severity 
[12–20]. Unfortunately, the power of data mining and ML applied to 
laboratory tests datasets has barely been explored [6,21–23]. Powered 
by a large laboratory dataset from confirmed COVID-19 patient [20], 
and assisted by the free R software [24] and the WEKA workbench [25] 
for statistical computing and graphics, this study was intended to 
generate blood-tests data-driven solutions that could predict the pro-
gression to severe COVID-19 pneumonia. While many studies rely on a 
previous selection of biomarkers to model the risk for developing severe 
COVID-19, this retrospective analysis used several data mining ap-
proaches [26] directly applied to a whole laboratory test dataset to find 
the best fit of variables that predicted disease severity [27]. 

2. Methods 

2.1. Selection and classification of COVID-19 patients 

Written informed consent was waived due to the retrospective nature 
of the study. We followed STROBE guidelines to report this study, which 
was approved by the Ethics Committee of the IESS COVID-19 Hospital 
Quito Sur and conducted in accordance with the ethical policies estab-
lished by the Ecuadorian government [28]. The authors declare they had 
no access to identifying patient information when analyzing the data. 

Laboratory tests was obtained from 4009 confirmed cases of COVID- 
19 (CDC 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic Panel in 
upper and lower respiratory specimens) admitted at the IESS Hospital 
Quito Sur, a large COVID-19 hospital in Quito (Ecuador), from March 13 
to June 17, 2020. Hematological analysis was performed using a Sysmex 
XN-550™ Hematology Analyzer (Sysmex America Inc., USA). Arterial 
blood gasometry was conducted on a RAPIDPoint® 500-systems blood 
gas system (Siemens Healthcare GmbH; Germany). All the basic infor-
mation and laboratory results were downloaded from patients’ elec-
tronic medical records (IBM AS-400). Consecutive adult patients with a 
confirmed diagnosis of COVID-19 were admitted with COVID-19-like 
symptoms, such as fever, cough, fatigue, shortness of breath, and 
headache. Drawing samples for routine laboratory tests took place upon 
admission [20] (a complete list is available in Supplementary material 
1), whereas those patients with a pneumonia severity index (PSI) above 
3 (1215 patients) in the triage evaluation were submitted to an arterial 

blood gas exam after a 40-min interval of average. From them, 489 
patients suffered from blood hypoxemia (PaO2 < 60 mmHg) and were 
classified as “Severe” [29]. The rest, 726 patients with a PSI >3 and 
PaO2 ≥ 60 mmHg, along with 2794 patients with no PaO2 tests (PSI ≤ 3), 
were considered “Non-Severe” (3520 cases). This classification allowed 
us to predict the adverse clinical outcomes of COVID-19-induced 
pneumonia and the follow-up treatment plan. 

2.2. Dataset collection and feature selection 

Fig. 1 summarizes the complete workflow of dataset processing. 
Datasets were pre-processed for cleaning non-numeric data, symbols, 
eliminating outliers, inconsistencies, and discriminating or replacing 
null values, as well as data formatting. A nonparametric outlier detec-
tion approach based on interquartile ranges (IQR) was performed to cure 
datasets as follows: lower outlier = Q1 - (1.5•IQR) and higher outlier =
Q3 + (1.5•IQR). All possible patient information was then compiled into 
a single dataset integrated into a .csv file and subsequently converted 
into.arff extension, a format compatible with the WEKA (Waikato 
Environment for Knowledge Analysis) workbench. This software is a 
data mining toolkit to approach bioinformatics problems using simple 
datasets [30]. Given the high dimensionality of the data, the processing 
pipeline continued with a selection of the features (FS) that better pre-
dicted COVID-19 severity. The FS was performed using the WEKA 
software with the default configurations and using severity classification 
(S = Severe and N = Non-severe) as the response variable. The methods 
applied were as follows: Correlation Subset forward method, which re-
tains a subset of features highly correlated with the activity and lowly 
correlated among them [31], this was applied with the Best first and 
Genetic search as search strategies. The three following methods used 
Ranker as search method, which was specified to retain 30 attributes: (1) 
the Relief-F method retained the features that best distinguish among 
the nearest instances [32], (2) the Correlation Attribute evaluated the 
Pearson correlation between the features and the severity class, and (3) 
the Gain Ratio Attribute Evaluation analyzed the gain ratio with respect 
to the severity class [33]. Finally, the Principal Component Analysis 
(PCA) reduced the dimensionality that collected a 95% of the variance of 
the chosen eigenvectors using Ranker this time with the default 
configuration. 

2.3. Statistics 

Statistical analysis of the data was performed using the SPSS soft-
ware (version 24.0) for Windows (IBM, Armonk, NY, USA). Proportions 
for categorical variables (sex, age, and severity) were compared by the 
Chi-square test to analyze the nature and distribution of the sample. 
Normal distribution tests were computed by the Kolmogorov-Smirnov 
test. The independent sample Mann-Whitney U test was run to compare 
differences between the Severe and the Non-Severe groups for specific 
non-parametric continuous variables (denoted as Wilcoxon’s W). Data 
were presented as mean ± SD. Alpha value was set at 0.05. 

Fig. 1. Data mining and statistics workflow.  
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2.4. Data mining with machine learning algorithms 

The C4.5 Decision Tree and the Multilayer Perceptron algorithms 
predicted the severity of COVID-19 cases powered by the most prevalent 
laboratory features. The widely used statistical classifier C4.5, also 
known as J48, is a supervised learning algorithm based on an objective- 
predefined variable (severity) used to generate a classification (decision) 
tree [34,35]. The Multilayer Perceptron (MLP), a class of feedforward 
artificial neural networks, performs machine recognition and finds 
patterns too complex and numerous for a human programmer to extract. 
Datasets were submitted to a K-fold Cross-Validation procedure (k de-
fines the number folds in which to split a given dataset) to limit over-
fitting and evaluate the skill of the machine learning models and its 
default parameters to predict severity among COVID-19 patients. The 
value for k was fixed to 10, a value that has been found through 
experimentation to generally result in a model skill estimate with low 
bias and a modest variance [36]. 

2.5. Correlation matrix, hierarchical clustering analysis, and tanglegram 

Variables of the datasets were also submitted to a bivariate Pearson’s 
correlation matrix to measure the degree of linear relationships in either 
the Severe group or in the Non-Severe group. The matrices were then 
visualized using the ggcorrplot library of R to represent correlation 
strengths as a heatmap. Advanced hierarchical clustering analysis was 
applied to the color-mapped matrix to explore and summarize correla-
tion datasets, given its visual form like a tree-shape dendrogram. The 
Agnes function with Ward’s method showed the agglomerative hierar-
chical clustering of variables. Each leaf of the dendrogram corresponded 
to one observation (variable) and the fusion height showed the dissim-
ilarity between two observations on the vertical axis. A cut height for 
cluster identification was calculated using the Average Silhouette 
method [37]. 

The tanglegram framework in R was selected to graphically compare 
the hierarchical grouping of variables with full linkage to Ward’s 
method and each combinatorial incongruence or misalignments identi-
fied visually. The similitude between trees was further computed by an 
entanglement coefficient between 0 and 1 [38]; where 1 meant a full 
entanglement and 0 no entanglement (the lower entanglement coeffi-
cient, the better alignment). 

3. Results 

3.1. Nature and distribution of the sample 

There were a total of 4009 cases of COVID-19 patients, including 
2007 males (50.1%) and 2002 females (49,9%). The sample was divided 
into “Severe” (489 cases, 12.2%; PaO2 = 49.4 ± 8.7 mmHg; O2Sat =
94.7 ± 16.4%) and Non-Severe” (3520 cases, 87.8%; PaO2 = 72.1 ± 9.5 
mmHg; O2Sat = 88.1 ± 3.3%) groups based on a PaO2 cut-off threshold 
of 60 mmHg (PaO2 effect: W = 121479, p < 0.001; O2Sat effect: W =
267181, p < 0.001). A total of 189 females (9.4%) and 300 males 
(14.9%) were classified as Severe, whereas 1813 females (90.6%) and 
1707 males (85.1%) were considered Non-Severe. COVID-19 severity 
impacted males more than females (χ2 (1) = 28382, p < 0.001) and 
increased with age (W = 1.176 × 106, p < 0.001; Severe: 54.9 ± 20.3 
years, Non-Severe: 41.4 ± 21.9 years). 

3.2. Feature selection (FS) 

Only those hematological and clinical biochemistry features with an 
incidence ≥ 3 in the frequency matrix (inclusion criteria) were mean-
ingful for further analyses (a list of variables, their means and the 
reference values are available in the Supplementary Material file). From 
the original dataset, a total of 63 variables were cut down to 30 (see 
Table 1 for the abbreviations list) including age and sex. They were 

hematocrit (%), red blood cells (•1012/L); median corpuscular volume 
(fL); red cell distribution width based on the standard deviation (fL); 
median corpuscular hemoglobin concentration or MCHC in g/dL; white 
blood cells (•109/L); neutrophils (•109/L); neutrophil %; monocytes 
(•109/L); monocytes % (MP); lymphocytes (•109/L); lymphocytes % 
(LP); eosinophils % (EP); neutrophil to lymphocyte ratio (NLR); leuko-
cyte to C-reactive protein ratio (LeuCR); base excess (mEq/L); HCO3- 
(mmol/L); chloride anion (mEq/L); PaCO2 (mmHg); pH; lactate (mmol/ 
L), glucose (mg/dL); prothrombin time (s); high sensitive C-reactive 
protein (ng/L); hemoglobin O2 saturation (%). The following variables 
were added by supervised attribute selection: eosinophils (•109/L); 
lymphocytes-to-C-reactive protein ratio, and medium platelet volume- 
to-platelet ratio. 

3.3. Classifying severe COVID-19 pneumonia by data mining and 
machine learning 

The evaluation metrics of the algorithms when classifying patient’s 
severity are shown in Table 2. The C4.5 and MLP algorithms showed the 
skill to predict severe COVID-19 pneumonia (89.6% and 96.5% preci-
sion respectively). Whereas the MLP algorithm computed the whole FS, 
the C4.5 algorithms only considered those variables with greater rele-
vance for prediction (Fig. 2): O2Sat > pH > PaCO2 > sex > lymphocytes 
> RDW-SD > eosinophils > lactate. Compared to C4.5, MLP had 

Table 1 
List of abbreviations.  

AEC Absolute eosinophil 
cell count 

LP Lymphocyte cell % 

ALC Absolute lymphocyte 
cell count 

LyCR Lymphocytes-to-C- 
reactive protein ratio 

AMC Absolute monocyte 
count 

MCHC Median corpuscular 
hemoglobin 
concentration 

ANC Absolute neutrophil 
count 

MCV Median corpuscular 
volume 

arff Attribute-Relation File 
Format 

MCV Medium corpuscular 
volume 

BE Base excess ML Machine learning 
CfsSubstEval Correlation based 

Feature Selection 
subset evaluation 
function 

MLP Multilayer Perceptron 
algorithm 

CorrelAttrEval Correlation attribute 
evaluator 

MP Monocyte % 

csv Comma-separated 
values 

MPR Medium platelet volume- 
to-platelet ratio 

CT Computed tomography NLR Neutrophil-to- 
lymphocyte ratio 

EP Eosinophil % NP Neutrophil % 
FS Feature selection O2Sat Hemoglobin O2 

saturation 
GainRatAttEval Gain ratio criterion 

evaluator 
PaCO2 Partial pressure of carbon 

dioxide 
GLC Glucose PaO2 Partial pressure of oxygen 
HCT Hematocrit PCA Principal Component 

Analysis 
hs-CRP High sensitive C- 

reactive protein 
PSI Pneumonia severity index 

ICU Intensive care unit PT Prothrombin time 
IQR Interquartile ranges RBC Red blood cells/ 

erythrocyte cell count 
Lac Lactate RDW- 

SD 
Red cell distribution 
width based on the 
standard deviation 

IESS Instituto Ecuatoriano 
de Seguridad Social 

RT-PCR Reverse transcription 
polymerase chain 
reaction 

LeuCR Leukocyte to C-reactive 
protein ratio 

STROBE Strengthening the 
reporting of 
observational studies in 
epidemiology  
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minimum errors in terms of Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative 
Squared Error (RRSE). In addition, the Kappa statistic value of MLP was 
0.9282, which means that the prediction model was statistically 
significant. 

3.4. Correlation matrix, dendrograms, and tanglegram plot 

To avoid a high rate of false discoveries, only correlations whose r 
coefficients were either ≥0.8 or ≤ - 0.8 were considered clinically 
meaningful. A negative linear association between neutrophil and 
lymphocyte cell % was revealed by the correlation matrix in both the 
Non-Severe (r = - 0.969, p < 0.001; Fig. 3b) and the Severe groups (r = - 
0.963, p < 0.001, Fig. 3a). Of note, the strong linear positive relationship 
between the Leukocytes-to-C-reactive protein (LeuCR) and the 
Lymphocytes-to-C-reactive protein (LyCR) ratios in the Non-Severe 
correlation matrix (r = 0.829, p < 0.001) waned in the correlation 
matrix of the Severe group (r = 0.272, p < 0.001). 

The hierarchical clustering analysis extracted the bivariate Pearson 
correlation patterns in the form of dendrograms (Fig. 4). Meaningful 

clusters of variables were optimally compared, side by side, using a 
tanglegram plot (entanglement index = 0.41) for visual inspection of 
dissimilarities (Fig. 5). Combinatorial and topology changes included 
the hs-CRP, neutrophil %, PaCO2, neutrophils %, and to less extent 
monocytes, lactate, PT, glucose, chloride anion, MCHC, and NLR 
variables. 

4. Discussion 

Using a large dataset of laboratory tests at the time of hospital 
admission, this study assessed the performance of data-driven knowl-
edge algorithms for the detection of severe COVID-19 pneumonia. Be-
sides the well-known variables with predicting ability of COVID-19 
severity like sex and age, differential WBCs (e.g., NLR) and biomarkers 
of systemic inflammation (e.g., CRP), this study hints to features like 
blood acid-base balance (pH, pCO2 and lactate), LeCR, LyCR, lympho-
cytes, RDW-SD, and eosinophils that may also predict poor clinical 
outcomes. 

As expected, severe COVID-19 cases reached 12.2% of the sample 
[39–41], disease severity increased with age and males were more 
vulnerable than females [42–44]. Categorization of patient severity was 
based on the arterial blood oxygen exam, a diagnostic indicator of 
arterial hypoxemia in patients with community-acquired pneumonia 
[29]. Although COVID-19 patients experience many symptoms at many 
organs, our patient categorization were of predicting value for follow-up 
treatment plans, since COVID-19-induced respiratory failures (i.e., acute 
respiratory distress syndrome) causes multiple organ failures leading to 
death [45]. As proven by the pulse oximetry test [46], hemoglobin ox-
ygen saturation in the Non-Severe group was almost normoxic (94.7%), 
whereas it was moderately hypoxic (88.1%) in the Severe group and 
below the recommended range (92–96%) for COVID-19 patients [47]. 
Importantly NLR, an indicator of adverse clinical outcomes in the pro-
gression of COVID-19 [19,23,48,49], reached 5.8 in the Severe group, 
whereas values above 4 do predict ICU admission [50,51]. Despite the 
arterial blood oxygen exam being conducted on the same day as the 
routine laboratory tests, this does not preclude from stating that this 
data mining study could predict the risk for a fatal COVID-19 evolution. 

Data mining algorithms have only been used to discover symptom 
patterns in COVID-19 patients [52] as well as to make predictions about 
COVID-19 patient severity [2,7–9] and recovery [53]. The MLP 

Table 2 
Algorithm evaluation metrics. Metric values for the C4.5 classification algo-
rithm and the neural network Multilayer Perceptron (MLP) with performance 
parameters during cross-validation (10 folds).  

Evaluation parameters C4.5 MLP 

True Positive Rate 0.894 0.965 
False Positive Rate 0.136 0.036 
Precision 0.896 0.965 
Recall 0.894 0.965 
F-Measure 0.892 0.965 
Matthews correlation coefficient 0.779 0.928 
ROC Area 0.977 0.988 
PRC Area 0.972 0.983 
Correctly Classified Instances (%) 89.3827 96.5432 
Incorrectly Classified Instances (%) 10.6173 3.4568 
Kappa statistic 0.7745 0.9282 
Mean absolute error 0.1357 0.0396 
Root mean squared error 0.2516 0.17 
Relative absolute error (%) 28.2185 8.2407 
Root relative squared error (%) 51.3025 34.666 
Total Number of Instances 1215 1215  

Fig. 2. C4.5 algorithm decision tree. 
Notice that variables (oval) with the greatest relevance for prediction were: O2Sat, pH, and PaCO2 (critical feature values are shown in rectangles). 
Abbreviations are shown in Table 1. Cl: chloride anion; N: Non-Severe; S: Severe. 
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algorithm classified the severe patients with a precision (96.5%), similar 
to XGBoost [9] and other multipurpose algorithms [7], but with the 
advantage of using laboratory tests. Its accuracy percentage was higher 

than the C4.5 algorithms 89.6%), which just relied on a selection of 
those variables with the greatest relevance, being blood pH the most 
striking one (Fig. 2). This finding may be interesting because, although 

Fig. 3. Heatmap of the bivariate Pearson correlation matrix. 
Correlation values are represented as colors. Red and blue are the perfect linear positive and negative relationships, respectively. White means non-linear rela-
tionship. Notice the negative neutrophils (%)-lymphocytes (%) linear correlation regardless of severity, and the positive linear LeuCR-LyCR correlation associated 
with Non-Severe. Left: Severe, Right: Non-Severe. 
Abbreviations are shown in Table 1. Cl: chloride anion; HCO3: bicarbonate anion. 

Fig. 4. Hierarchical clustering of the bivariate 
Pearson correlation matrix. 
Dendrograms representing associations among fea-
tures (variables). Branches length represents the 
distance between variables or clusters based on 
correlation patterns. 
Abbreviations are shown in Table 1. Cl: chloride 
anion; HCO3: bicarbonate anion.   
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pH differences between groups were modest, they could be enough to 
affect the function of the immune system [54] and to play a role in 
SARS-CoV-2 infectivity [55,56]. Hence, this study guarantees the utility 
of C4.5 and Multilayer Perceptron algorithms for patient research and 
stratification based on routine laboratory tests [57]. 

Given the data-driven knowledge approach of this analysis, the 
hidden structure of the datasets could give further clues about evolution 
to severe COVID-19. The correlation matrix (Fig. 3) revealed a the linear 
associations between LyCR [48,58] and LeuCR [59] in the Non-severe 
group (Fig. 3b) that waned in the Severe group (Fig. 3a), likely 
because of the possible functional exhaustion of antiviral lymphocytes 
[60]. Topological changes (Fig. 5) across Severe and Non-Severe den-
drograms (Fig. 4) led to the discovery of subtle shift patterns of the in-
ternal environment that putatively involved the pro-inflammatory 
biomarker CRP [7,12,18,50,56], pCO2 and neutrophil % in the progress 
to severe COVID-19 pneumonia. Neutrophils are critical components of 
the hyper-inflammatory process in severe COVID-19 [61] and their ac-
tivity could be regulated by pCO2 [62]. 

Inconsistency and conflicting data about prognostic/diagnostic bio-
markers of COVID-19 severity and predicting modelling has affected the 
quality of studies dealing with the utility of artificial intelligence in the 
management of COVID patients [3]. The diversity of populations for 
retrospective cohorts, availability of different diagnostic tools across 
counties and a lack of explicit information on the predicting modeling 
methodology are important factors. Despite all the problems, working 
with retrospective laboratory data has been probed very valuable [57]. 
Herein, the precise patient categorization based on the 
COVID-19-induced pneumonia, the strict feature selection of the more 
influential variables, and the identification of the appropriate ML and 
other data mining analysis made the prediction process meet the ex-
pected objectives for patient risk stratification. 

5. Summary 

Data mining directly applied to routine laboratory tests discrimi-
nated with high precision COVID-19 patient’s condition and the risk for 
ICU admission. Identified laboratory features like inflammatory bio-
markers and changes in some WBC subpopulations correlated well with 
the literature and reaffirmed their role in COVID-19 disease progression 
at hematological level. Finally, our data mining supported the conten-
tion that even modest laboratory test deviations of blood pH, pCO2, 
lactate and RDW-SD, typically in the “normal” range but consistently 
skewed in one direction, are strong enough to predict the poor clinical 
progression of the COVID-19 disease. The selection of data mining data- 
driven tools herein presented may hold promise to increase the power of 
clinical decision-making at the initial hospital care of COVID-19 
patients. 
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