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As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional
plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed
strengthening of responses through the open eye. It has been proposed that these bidirectional
changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through
homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the
modification threshold determining the boundary between synaptic depression and synaptic
potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased
modification threshold, open-eye responses are strengthened via homosynaptic long-term
potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention,
and although several alternative hypotheses are also supported by current research, evidence suggests
that a-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through
LTD is a key mechanism. The change in modification threshold appears to occur partly through
changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio
of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the
question of open-eye potentiation, several studies suggest that LTP could account for observed
changes in vivo. This review will discuss evidence supporting this three-stage model, along with
outstanding issues in the field.
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1. INTRODUCTION
The substrate for binocular vision in mammals is the

convergence of retinotopically matched inputs onto

common postsynaptic cortical neurons. Development,

refinement and maintenance of these binocular con-

nections depend on the quality of visual experience.

Degrading vision in one eye—a manipulation called

monocular deprivation (MD)—shifts the ocular dom-

inance (OD) of cortical neurons such that they cease to

respond to stimulation of the deprived eye. This

phenomenon of OD plasticity occurs during early

post-natal development in all mammals with binocular

vision, and in some species (e.g. the mouse) it persists

well into adulthood. In humans, lasting visual impair-

ment can result from several conditions that degrade

or unbalance vision prior to adolescence, including

strabismus, uncorrected refractive errors and cataracts

(Doshi & Rodriguez 2007).

The significance of understanding the synaptic and

molecular bases of OD plasticity cannot be overstated.

First, the processes revealed by OD plasticity are likely

to be the same as those that refine cortical circuitry in
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response to the qualities of sensory experience during
development, and thus determine the capabilities and
limitations on visual performance in adults. Second,
rapid OD plasticity is an example of cortical receptive
field plasticity, the most common cellular correlate of
memory in the brain. It is therefore likely that
understanding the mechanisms of OD plasticity will
yield insight into the molecular basis of learning and
memory. Third, the detailed understanding of how
synaptic connections are weakened by sensory depri-
vation will suggest possible strategies to reverse such
changes, and possibly overcome amblyopia. Finally, the
detailed understanding of how synaptic connections
are strengthened by experience will suggest possible
strategies to augment such changes, and promote
recovery of function after brain injury.

Mouse visual cortex has emerged as the favoured
preparation for the mechanistic dissection of OD
plasticity. First, mice display robust OD plasticity in
response to MD, and the kinetics and behavioural
consequences of OD plasticity are very similar to those
observed in others species. Second, the property of
binocularity is established early in cortical processing
by convergence of thalamic inputs onto layer 4
neurons, potentially simplifying the analysis of the
underlying synaptic changes. Third, mice are geneti-
cally homogeneous and plentiful, enabling rapid
This journal is q 2008 The Royal Society
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progress using coordinated biochemical and electro-
physiological studies in vitro and in vivo. Fourth, the
absence of a columnar organization makes feasible the
use of chronic recordings from awake animals. Fifth,
the fact that the mouse visual cortex is relatively
undifferentiated (e.g. compared with monkey V1)
suggests that insights gained here might apply broadly
across species and cortical areas. Sixth, genes can be
delivered or deleted in the mouse visual cortex by
genetic engineering or viral infection. Finally, mice
have emerged as valuable models of human genetic
disorders, offering the opportunity to use the powerful
paradigm of OD plasticity to understand how experi-
ence-dependent cortical development can go awry in
genetic disorders and, hopefully, suggest ways that
these disorders could be corrected.
2. BIDIRECTIONAL KINETICS OF OD PLASTICITY
IN THE MOUSE
Responsiveness of the mouse visual cortex to stimu-
lation of the eye has been measured using a number of
methods, including single-unit recordings, visually
evoked potentials (VEPs), optical imaging of intrinsic
signals related to oxygen usage, immediate early gene
expression and imaging of cellular calcium transients.
Each of these methods introduces a different bias. For
example, recording of spiking activity is biased towards
deep layers of cortex, where units are the easiest to
isolate from one another; VEP recordings reflect
summed synaptic currents that are dominated by
thalamocortical input to layer 4; and calcium imaging
is limited to neurons within a few 100 mm of the cortical
surface. These differences are important to recognize, as
it has become clear that the mechanisms of OD plasticity
vary according to layer, as we will discuss. However,
despite this caveat, all methods yield a consistent picture
of what happens when one eyelid is closed.

Visual responses of mice raised in a normal
(laboratory) visual environment are dominated by the
contralateral eye. Even in the binocular segment,
the contralateral eye response is approximately
double the ipsilateral eye response. This OD is rapidly
shifted when the contralateral eyelid is closed at
approximately four weeks of age. A shift of the
contra/ipsi ratio is detectable with as little as 1 day of
MD and reaches an asymptote by 3 days, when the
contra/ipsi ratio is approximately 1 (Frenkel & Bear
2004; Liu et al. 2008).

The VEP recording method has been particularly
useful for understanding the processes that account
for this shift. A practical advantage of the VEP is that
it can be recorded with chronically implanted electro-
des. Thus, before- and after-MD measurements can
be made from the same mice, and the data can be
collected from awake alert animals. Applying this VEP
technique to varying periods of MD in mice demon-
strated that the observed OD shift towards the non-
deprived eye results from the combination of two
distinct processes: a weakening of deprived-eye
responses and a strengthening of open-eye responses
(Frenkel & Bear 2004). Although both processes
contribute to the overall OD shift, they do so with
distinct time courses (Frenkel & Bear 2004). Three
Phil. Trans. R. Soc. B (2009)
days of MD produces a strong shift in the contra/ipsi
ratio by weakening the response of the deprived
(contralateral) eye without affecting the non-deprived
(ipsilateral) eye responses. By contrast, 7 days of
deprivation yields both deprived-eye depression and
potentiation of open-eye responses. This pattern of
rapid deprived-eye depression and delayed open-eye
potentiation has also been noted in other species
(Mioche & Singer 1989).

Importantly, the bidirectional consequences of MD
are each functionally significant. In rats, the deprived
eye exhibits a dramatic reduction in visual acuity
assessed through visually guided behaviour following
MD (Prusky et al. 2000; Iny et al. 2006). In the same
visually guided task (Iny et al. 2006), open-eye
performance was enhanced following MD, indicating
that the bidirectional plasticity of VEPs reflects
functionally meaningful changes in sensory processing.

Based on the synthesis of theoretical and experi-
mental work, a comprehensive model of OD plasti-
city has been proposed (Frenkel & Bear 2004):
(i) deprived-eye responses depress via homosynaptic
long-term depression (LTD), (ii) the plasticity
threshold, determining the boundary between poten-
tiating and depressing input activity, becomes lower in
response to the decreased cortical activity that follows
monocular lid closure, and (iii) open-eye responses
potentiate via homosynaptic long-term potentiation
(LTP) due to the lower threshold for synaptic
potentiation. In the sections that follow, we will briefly
present the data that support this model. Alternative
hypotheses for deprived-eye depression and open-eye
potentiation will be discussed later in the review.
3. LTD AS A MOLECULAR MECHANISM OF
DEPRIVED-EYE DEPRESSION IN THE MOUSE
MD triggers response depression in cortex by degrad-
ing images on the retina, not by eliminating retinal
activity (Rittenhouse et al. 2006). The adequate
stimulus for response depression appears to be the
weakly correlated afferent activity arising in the visually
deprived retina, and relayed to cortex by the lateral
geniculate nucleus (Bear 2003; Blais et al. 2008).
Synaptic modifications that are driven by activity in the
affected inputs are said to be ‘homosynaptic’. Thus,
there has been a search for mechanisms of homo-
synaptic LTD of excitatory synaptic transmission. This
search has been aided by the development of LTD
paradigms that use electrical stimulation of synaptic
transmission in brain slices or in vivo. An important
caveat is that it is abundantly clear that the mechanisms
of LTD vary from one synapse type to the next, so
one must be cautious in generalizing (Malenka &
Bear 2004).

The ‘canonical’ LTD mechanism in the CA1 region of
hippocampus was used to guide early studies in the visual
cortex. In CA1, weak activation of NMDA receptors
(NMDARs) activates a postsynaptic protein phospha-
tase cascade that alters the phosphorylation state of
AMPA receptors (AMPARs), which are in turn inter-
nalized by clathrin-dependent endocytosis (Malenka &
Bear 2004). These changes can be detected biochemi-
cally using phosphorylation site-specific antibodies and
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Figure 1. Mechanisms of deprived-eye depression vary across cortical layers. (a) Thalamocortical axons project to both layers 4
and 3 of the mouse visual cortex. Axons were labelled with biotin-conjugated dextran (3000 MW) injected into binocular dLGN
of a P28 mouse. Imaging took place 4 days later from fixed coronal sections containing visual cortex. Laminar borders were
determined based on Nissl staining. Image courtesy of J. Coleman. (b) Schematic showing CB1 receptor density variations
across cortical layers, with high levels of expression in supragranular layers and limited expression in layer 4. Drawing based on
Deshmukh et al. (2007). (c) Three days of MD produces depression of deprived-eye responses in both layers 3 and 4 through
distinct mechanisms. In layer 3, both LTD and deprived-eye depression require CB1 activation, whereas LTD is independent of
postsynaptic AMPAR internalization. The absence of high CB1 expression in layer 4 correlates with the lack of a requirement for
CB1 activation in both LTD and deprived-eye depression. By contrast, LTD in layer 4 requires AMPAR endocytosis, suggesting
that deprived-eye depression at this synapse may also occur through AMPAR internalization.
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assays of receptor surface expression. The biochemical

signature of LTD can be used as a ‘molecular fingerprint’

to ask whether similar changes occur in visual cortex

following a period of MD. To date, this has only been

examined in the rat visual cortex, but the results support

the hypothesis that MD induces this type of LTD in

visual cortex (Heynen et al. 2003).

A second approach to address whether LTD is

induced by MD is to ask whether naturally occurring

synaptic depression in vivo occludes LTD ex vivo. As

originally pointed out by Nigel Daw and colleagues,

however, the mechanisms of LTD appear to vary

according to cortical layer (Daw et al. 2004). This issue

has been recently examined in the mouse by Crozier

et al. (2007). Identical stimulation protocols applied to

the radial inputs to layers 4 and 3 induced LTD via

activation of postsynaptic NMDARs. However, only in

layer 4 was the LTD mediated by clathrin-dependent

AMPAR endocytosis. Conversely, only in layer 3 was

the LTD sensitive to pharmacological blockade of

cannabinoid receptors. However, in both layers, the

LTD measured in slices was reduced (occluded) by

3 days of MD in vivo. Thus, the evidence suggests that

MD induces LTD in both layers 3 and 4, but by distinct

molecular mechanisms (figure 1).

The evidence is very strong that MD leads to LTD

of synaptic transmission in visual cortex. However, still

controversial is the question of the relative contribution

of this change to the functional consequences of MD

(i.e. cortical blindness). An approach to this question

has been to correlate deficits in LTD and OD plasticity

in genetically or pharmacologically modified mice.

However, limitations inherent to this approach are

that the manipulations may affect only the stimulation
Phil. Trans. R. Soc. B (2009)
requirements for LTD in brain slices, not the core

mechanism; compensatory adaptations may occur; and

plasticity may be disrupted in vivo by alterations in

retina, thalamus or behavioural state. Furthermore,

such studies have not taken into account key features of

visual cortical plasticity: first, that an OD shift can

occur by deprived-eye depression, open-eye poten-

tiation or both (Sawtell et al. 2003; Frenkel & Bear

2004), and second, that the mechanisms of LTD

(Crozier et al. 2007) and OD plasticity (Liu et al.
2008) vary according to layer (figure 1).

The OD shift assayed using single-unit recordings

(layers not specified) is disrupted in the glutamic acid

decarboxylase 65 (GAD65) knockout mouse, which

has impaired cortical inhibition (Hensch et al. 1998a).

Although drifting baseline recordings obscured the

deficit in the original report (Hensch et al. 1998a),

layer 3 LTD is also clearly impaired in these mice (Choi

et al. 2002). Similarly, cannabinoid receptor blockade

prevents both LTD (Crozier et al. 2007) and deprived-

eye response depression in unit recordings restricted to

layer 3 (Liu et al. 2008).

On the other hand, a dissociation of LTD and OD

plasticity was suggested in several protein kinase A

mutants. For example, the RIb knockout mouse

reportedly has a deficit in layer 3 LTD but exhibits a

normal OD shift after 4 days of MD (Hensch et al.
1998b). Unfortunately, the significance of the LTD

deficit is unclear as control recordings in WT mice were

not performed under these experimental conditions.

Two additional studies deleting either of the RII

subunits of PKA further complicate the relationship

between PKA, LTD and OD plasticity. RIIa KO mice

display normal LTD in layer 3, whereas both LTP in
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this preparation and OD plasticity were moderately
reduced (Rao et al. 2004). By contrast, RIIb KO mice
exhibit normal LTP at the same synapse, but lack both
LTD and OD plasticity (Fischer et al. 2004).

Given that many different plasticity mechanisms
exist in the visual cortex (Daw et al. 2004), it is likely
that a large portion of these seemingly conflicting
results may be attributable to laminar differences
between the molecular pathways supporting LTD and
LTP. In mice, MD produces an OD shift simul-
taneously in layers 4 and 3 (Liu et al. 2008), suggesting
that the disruption of layer-specific plasticity
mechanisms (Wang & Daw 2003; Rao & Daw 2004)
will affect OD plasticity in a complex fashion. Many
studies using single-unit recordings pool neurons
recorded across all layers, thereby preventing analysis
of layer-specific deficits in plasticity. In addition, the
use of acute single-unit recordings in many studies
precludes the separation of mechanisms impacting the
loss of deprived-eye responses from those affecting
potentiation of the open eye, because eye-specific
responses cannot be compared before and after
deprivation. In KO mice with abnormalities in both
LTP and LTD this can be especially problematic, as it
becomes impossible to determine the process that
contributes to the observed OD phenotype.

If we restrict consideration to layer 4, where VEP
recordings are made, and to periods of MD 3 days or
less, when the shift is dominated by deprived-eye
depression, the data support the hypothesis that MD
shifts OD via the loss of AMPARs at visually deprived
synapses. However, it remains to be determined
whether this is the only—or the most important—
mechanism for deprived-eye response depression.
4. METAPLASTICITY DURING MD
After approximately 5 days of contralateral eye MD, the
ipsilateral (non-deprived) eye responses begin to grow.
Because there has been no change in the quality of
visual experience through this eye, there must be an
adaptation in the cortex that allows response poten-
tiation. A theoretical framework for this aspect of OD
plasticity was provided by the influential Bienenstock,
Cooper and Munro (BCM) theory (Bienenstock et al.
1982). According to this theory, the reduction in
overall cortical activity caused by closing the contral-
ateral eyelid decreases the value of the modification
threshold, qm, thereby facilitating potentiation of
correlated inputs (reviewed by Bear 2003).

In accordance with theoretical predictions, experi-
ments using a period of dark rearing to decrease activity
in the visual cortex have demonstrated that the
threshold level of stimulation required to induce LTD
and LTP is modifiable by prior visual experience. In
both rats and mice, 2 days or more of darkness is
sufficient to shift qm, moving the boundary between
LTP and LTD induction towards lower stimulation
frequencies (Kirkwood et al. 1996; Philpot et al. 2003,
2007). Brief re-exposure to light rapidly reverses the
effects of dark rearing on the modification threshold
(Kirkwood et al. 1996; Philpot et al. 2003).

Modifications of NMDAR function were proposed
as a physiological mechanism for changing qm
Phil. Trans. R. Soc. B (2009)
(Bear et al. 1987; Abraham & Bear 1996), and a
number of recent studies have focused specifically on
the ratio of NR2A to NR2B subunits (Bear 2003). Rats
that are dark reared or exposed to the dark for brief
periods show reductions in the ratio of NR2A to
NR2B proteins, which can be reversed rapidly upon
re-exposure to light (Quinlan et al. 1999a,b). Addition-
ally, dark rearing increases the decay times of synaptic
NMDA currents (Carmignoto & Vicini 1992), while
also increasing the sensitivity to NR2B selective
antagonists and temporal summation of synaptic
responses (Philpot et al. 2001).

These findings are consistent with an increased
proportion of NR2B-containing NMDARs at
synapses, and demonstrate that the changes observed
at the protein level have a meaningful effect on synaptic
transmission. The longer decay kinetics of NR2B-
containing receptors have been proposed to facilitate
the summation of inputs and thereby promote
coincidence detection, possibly facilitating LTP
(Monyer et al. 1994; Flint et al. 1997). In addition,
NR2B subunits may recruit LTP-promoting proteins
to the synapse (Barria & Malinow 2005).

The mechanism by which the NR2A/B ratio changes
is determined by the length of dark exposure: short
periods shift the ratio through increasing NR2B levels,
whereas with longer periods NR2B protein levels
return to normal and NR2A levels decrease (Chen &
Bear 2007). To determine whether plasticity of the
NR2A/B ratio is required for a shift in qm, visual
experience was manipulated in mice with a fixed ratio
due to genetic deletion of NR2A (Philpot et al. 2007).
The deletion of NR2A was found to both mimic and
occlude the effects of dark rearing on the amplitude,
decay kinetics and temporal summation of NMDA
currents. Critically, when qm was examined by testing
the frequency dependence of LTP and LTD, dark
rearing failed to produce a shift in mice lacking NR2A,
demonstrating a critical role for NR2A and the NR2A/
B ratio in governing qm (Philpot et al. 2007).

If qm is modified via changing the NR2A/B ratio, and a
change inqm is permissive for the potentiation of the open
eye, the time course of the changes in the NR2A/B ratio
(and therefore qm) should slightly lead the time course of
open-eye potentiation. When the NR2A/B ratio was
examined in the mouse visual cortex following MD of the
contralateral eye, a significant decrease in ratio was
observed following 5 and 7 days of deprivation but not
with shorter periods (Chen & Bear 2007). Given that
open-eye potentiation during MD does not occur until
after 5 days (Frenkel & Bear 2004), the observed time
course is precisely as would be predicted.
5. LTP AS A MECHANISM FOR OPEN-EYE
POTENTIATION
Although the strengtheningof inputsoriginating fromthe
open eye has been documented for over 30 years, the
molecular mechanisms underlying this process have
received scant attention relative to those mediating
deprived-eye depression. Nonetheless, the predictions
from the BCM theory are clear: open-eye inputs to the
cortex, which remain at their original activity level during
the early stages of MD, potentiate via homosynaptic
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mechanisms once qm drops below this activity level. LTP
has been demonstrated at multiple cortical synapses ex
vivo, and although the mechanisms appear to vary across
layers similar to LTD (Wang & Daw 2003), homo-
synaptic NMDAR-dependent LTP has been shown at
layer 3 synapses in the rat (Kirkwood & Bear 1994).
Additionally, in rats, NMDAR-dependent LTP can be
induced in layers 4 and 3 in vivo following tetanic
stimulation of LGN, and this LTP is sufficient to increase
the magnitude of visually evoked responses (Heynen &
Bear 2001). These results suggest that homosynaptic
LTP, possibly at thalamocortical synapses, can mimic the
effects of open-eye potentiation after long-term MD.

Many manipulations known to disrupt homosynap-
tic LTP have been applied during OD plasticity (Daw
et al. 2004; Hensch 2005; Hooks & Chen 2007),
although many of these studies suffer from the inability
of acute single-unit recordings to isolate changes in
deprived-eye pathways from those serving the open eye.
One example of this is the finding that OD plasticity is
disrupted in mice with either disrupted aCaMKII
autophosphorylation or lacking the protein entirely,
which suggests a role for LTP (Gordon et al. 1996;
Taha et al. 2002). Unfortunately, because all measures
of OD in these studies were performed by comparing
the relative drive from the deprived and non-deprived
eyes, it is not clear which processes were disrupted.

Although the data on the mechanisms underlying
open-eye potentiation in juvenile mice remain scarce,
several related experiments are suggestive. Open-eye
potentiation is absent in adult mice with a post-natal
deletion of NR1 targeted to layers 2–4, suggesting that
NMDAR-mediated plasticity plays a role (Sawtell et al.
2003). Further suggestion comes from the recently
discovered phenomenon of stimulus-selective response
potentiation (SRP). In juvenile mice, the magnitude of
visually driven thalamocortical responses in layer 4
increases following repeated presentations of an
oriented stimulus (Frenkel et al. 2006). This poten-
tiation is specific to both the trained eye and the trained
orientation, and is dependent on NMDAR activation.
The discovery of SRP demonstrates that physio-
logically relevant potentiation of visual responses can
occur in vivo, and shares a requirement for NMDAR
activation with LTP.

If open-eye potentiation during MD occurs through
LTP-like mechanisms, it is likely to be expressed
through the delivery of AMPARs to synapses (Malinow
et al. 2000), similar to the role we propose for AMPAR
endocytosis and LTD in deprived-eye depression. It
has been shown that the expression of a region of the
GluR1 C-terminal tail is sufficient to both prevent the
delivery of GluR1 to synapses and block LTP (Shi et al.
2001). Additionally, several studies in the amygdala, as
well as the somatosensory and visual cortices, have
shown that GluR1 delivery is required for experience-
dependent plasticity occurring in vivo (Takahashi et al.
2003; Rumpel et al. 2005; Frenkel et al. 2006). If a
similar blockade of GluR1 delivery could prevent
potentiation of open-eye responses following 7 days of
MD without affecting the decrease in deprived-eye
responses, it would demonstrate that AMPAR inser-
tion, and therefore probably LTP, is a necessary
component subserving open-eye potentiation.
Phil. Trans. R. Soc. B (2009)
6. ALTERNATIVE HYPOTHESES FOR DEPRIVED-
EYE DEPRESSION
Our view is that deprivation induces response
depression via the mechanisms of LTD in layers 4
and 3, and that delayed response potentiation occurs
via the mechanisms of LTP after permissive adjustment
of the modification threshold. However, several
alternative hypotheses have also been advanced to
account for the phenomenology of OD plasticity.

Brief MD has been shown to lead to increased
motility and a loss of dendritic spines located in
superficial layers belonging to layer 5 pyramidal
neurons in mice (Mataga et al. 2004; Oray et al.
2004). In both of these studies, the effect of MD on
dendritic spine dynamics was found to be dependent
on the tissue-type plasminogen activator (tPA)/plasmin
proteolytic cascade. Brief MD elevates tPA activity in
the cortex, and genetic deletion of tPA both reduces the
magnitude of the OD shift assayed through single-unit
recordings and prevents the loss of dendritic spines
during MD (Mataga et al. 2002, 2004). Furthermore,
spine motility can be increased with plasmin treatment,
an effect that is occluded by prior MD (Oray et al.
2004). Together, these findings suggest that
degradation of the extracellular matrix (ECM) by the
tPA/plasmin cascade is an essential component of OD
plasticity, possibly due to its role in promoting
dendritic spine dynamics.

It is important to recognize, however, that these
structural responses to MD are entirely consistent with
the hypothesis that deprived-eye depression occurs
through LTD mechanisms. It has been shown that
LTD is associated with structural reorganization and a
retraction of dendritic spines (Nagerl et al. 2004; Zhou
et al. 2004; Bastrikova et al. 2008). Unfortunately, a
significant limitation of current studies examining
dendritic spines following MD is that it is unclear
whether the observed changes are at spines receiving
input from the open or deprived eye. Given that MD
affects both deprived-eye and open-eye responses, it is
critical to determine whether ECM degradation and
increased spine motility relate to the depression or
potentiation of visual responses.

A second recently proposed mechanism to account for
the loss of deprived-eye responsiveness following MD
during the critical period focuses on an increase in
intracortical inhibition (Maffei et al. 2006). Using whole-
cell recordings from connected pairs of neurons in the rat
visual cortex, it was found that brief MD from P21 to P24
increased the inhibitory tone in the visual cortex by
strengthening excitatory connections onto fast-spiking
(FS) interneurons and also strengthening inhibitory
connections from FS cells onto pyramidal neurons
(Maffei et al. 2006). In the same study, it was found
that this strengthening of inhibitory feedback could be
achieved through a novel form of LTP of inhibition,
which was occluded by prior MD. The increase in
inhibitory drive following MD appears to be develop-
mentally regulated, as deprivation in younger animals
(P14–17) leads to decreased inhibition coupled with
increased excitatory drive (Maffei et al. 2004).

The relevance of these experiments to OD plasticity
in mice is unclear as they were performed in the
monocular zone of rat visual cortex, which lacks input
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Figure 2. Layer 4 VEPs display binocular competition but not synaptic scaling. (a) MD fails to elicit changes in responses
recorded in (i) the monocular zone ((ii) record C VEPs), and (b) 4 days of complete darkness fail to modify responses in the
binocular zone, showing that deprived-eye depression is impaired in neurons that do not experience binocular competition
(record C and I VEPs). (c) Prolonged binocular deprivation fails to produce scaling up of VEPs recorded in layer 4 of the
binocular cortex. Responses to stimulation of the contralateral (C) and ipsilateral (I) eyes were recorded prior to and following
7 days of binocular lid suture. No change in the response to either eye was observed, contrary to the prediction that synaptic
scaling would lead to increased responses following decreased input activity. Experimental treatment: white, no manipulation;
grey, eyelid suture; black, dark exposure. Data are replotted from (a) Frenkel & Bear (2008), (b) Blais et al. (2008) and
(c) Frenkel & Bear (2004).
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from the open eye, and therefore binocular
interactions. In the mouse, a period of MD that is
sufficient to cause maximal deprived-eye depression in
the binocular zone (3 days) has no effect on VEPs in the
monocular segment (Frenkel & Bear 2008). Similarly,
4 days of complete darkness has no effect on VEP
amplitude in the binocular segments (Blais et al. 2008;
figure 2a,b).

VEPs may reflect the strength of feed-forward
geniculocortical transmission, and therefore be insen-
sitive to intracortical modifications. However, it is still
unclear how a rise in inhibitory tone could account for
the specific weakening of deprived-eye responses in the
binocular zone during MD. Given the lack of OD
columns in rats, lateral inhibition of neighbouring
columns cannot occur; therefore, such a model
requires the existence of eye-specific inhibitory net-
works within layer 4 of the binocular zone. The
existence of such networks is unlikely based on the
mixing of eye-specific afferents in the binocular visual
cortex of rodents—there are few, if any, neurons that
receive input exclusively from the ipsilateral eye.
7. ALTERNATIVE HYPOTHESES FOR OPEN-EYE
POTENTIATION
Homeostatic mechanisms have long been thought to
play a role in the response to altered sensory
experience. In fact, the BCM sliding threshold model
describes a means to achieve the homeostasis of firing
rates in the face of decreased synaptic drive as the
Phil. Trans. R. Soc. B (2009)
modification threshold will adopt whatever position is
required to maintain the firing rate by adjusting
synaptic weights via LTP or LTD. In this model,
prolonged MD leads to a decrease in qm, which
facilitates LTP of open-eye inputs, thereby increasing
synaptic drive and restoring postsynaptic firing rates
closer to their original position.

An alternative mechanism of homeostatic regulation
is synaptic scaling, which was first described in
dissociated rat cortical cultures, where blockade of
activity with TTX results in the global multiplicative
scaling up of synaptic weights (Turrigiano et al. 1998).
It has been proposed that such a mechanism may
account for the strengthening of open-eye responses
following MD (Turrigiano & Nelson 2004). Visual
deprivation, either through monocular inactivation via
intraocular TTX or dark rearing, increases mEPSC
amplitudes recorded in layer 2/3 neurons in juvenile
rats (Desai et al. 2002; Goel et al. 2006).

Recent work using in vivo calcium imaging to
measure visual responses in mice has suggested that
similar mechanisms are also invoked during MD. In
addition to the expected shift in responses towards
open-eye dominance, responses of cells driven
exclusively by the deprived eye were larger following
MD (Mrsic-Flogel et al. 2007). However, the results
of this study share a similar limitation with acute
single-unit recordings, namely that it is impossible
to measure responses in the same cells before and
after a manipulation, necessitating between-group
comparisons and relative measures of responsiveness.
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Figure 3. Alternative mechanisms for achieving open-eye potentiation and homeostasis following MD. Under both the synaptic
scaling and BCM hypotheses, the initial response to MD is the depression of deprived-eye responses, which results from the
decorrelation of deprived-eye inputs following lid suture. This decorrelation of input activity drives homosynaptic LTD in the
binocular visual cortex. A consequence of the degraded input coupled with the weakening of synapses via LTD is the reduced
spiking activity of neurons in the binocular visual cortex, which, after several days, leads to compensatory changes. The nature of
these changes differs between the two models of open-eye potentiation. According to the synaptic scaling model, neurons
respond to reduced spiking activity by globally scaling up synaptic weights, thereby increasing incoming drive and returning
spiking to baseline levels. By contrast, under the BCM model, neurons respond to decreased spiking activity by lowering the
modification threshold (qm), thus promoting LTP across a larger range of inputs. The inset shows that prior to MD, the
boundary between potentiating and depressing inputs is equal to the open-eye input level, thereby maintaining stable open-eye
responses if visual experience is not manipulated. Following 3 days of MD, the boundary shifts to the left, and open-eye inputs to
the cortex (the strength of which has not changed as visual experience through the open eye has remained constant) now induce
homosynaptic potentiation. This increase in drive from the open eye in turn elevates postsynaptic spiking to baseline levels.
Therefore, both the synaptic scaling and BCM models can account for both the potentiation of open-eye responses and the
output homeostasis of visual cortical neurons. The difference lies in the behaviour of the deprived-eye inputs during the later
stages of MD. Synaptic scaling is heterosynaptic; therefore, both open- and deprived-eye inputs are predicted to increase equally.
By clear contrast, BCM-mediated homeostasis occurs via homosynaptic mechanisms, thus only open-eye responses potentiate.
Current data suggest that the deprived eye does not potentiate proportionally to the open eye, suggesting that global scaling of
responses is not occurring in response to MD.
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Therefore, it is not clear whether previously monocular
cells driven by the deprived eye undergo response
potentiation, or originally binocular cells become
increasingly monocular.

Given that both the BCM and synaptic scaling
models describe homeostatic mechanisms for main-
taining a given level of postsynaptic activity, we should
move beyond the artificial distinction often seen in the
literature between ‘Hebbian’ and ‘homeostatic’
plasticity mechanisms in the context of OD plasticity.
A more useful distinction, which is supported by both
theoretical and experimental work, is between homeo-
static mechanisms expressed globally (synaptic scaling)
as opposed to homosynaptically (BCM; figure 3).

One possible way to distinguish between homo-
synaptic BCM and heterosynaptic scaling models is in
the predicted response to binocular deprivation (BD).
A synaptic scaling model predicts that the reduction in
visual drive from both eyes should lead to the
Phil. Trans. R. Soc. B (2009)
potentiation of responses following BD, whereas no
change in responsiveness is predicted by BCM-based
models (Blais et al. 1999; Blais et al. 2008). Unfortu-
nately, the available data are contradictory. Visual
responses measured with in vivo calcium imaging in
layer 2/3 were potentiated following BD (Mrsic-Flogel
et al. 2007), although a similar increase was not
observed in previous studies using either single-unit
recordings across cortical layers (Gordon & Stryker
1996) or chronic VEP recordings in layer 4 (Frenkel &
Bear 2004; Blais et al. 2008; figure 2c).

The NMDAR dependence of open-eye potentiation
may provide a second means to distinguish between
synaptic scaling and LTP. Homosynaptic LTP at layer
4 to 2/3 synapses as well as at layer 2/3 to 5 synapses
requires NMDAR activation (Kirkwood et al. 1993;
Wang & Daw 2003), whereas synaptic scaling in culture
does not (Turrigiano et al. 1998; Turrigiano & Nelson
2004). Open-eye potentiation is absent in mice lacking
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NR1 in layers 2–4 (Sawtell et al. 2003), suggesting that
homosynaptic LTP may underlie the strengthening of
open-eye responses.

An additional method to distinguish these two
models is through the use of genetically modified
animals deficient in synaptic scaling. This approach has
recently been used by Kaneko et al. (2008) who studied
OD plasticity in mice lacking tumour necrosis factor-a
(TNFa), which fail to show scaling up of synaptic
responses following decreased activity in vitro. Using
repeated imaging of intrinsic optical signals, it was
found that open-eye potentiation similarly fails to occur
in the absence of TNFa. The finding of normal LTP in
layer 2/3 of these mice strongly suggests that synaptic
scaling may drive open-eye potentiation. One problem
with this interpretation, as has been pointed out by
Aizenman & Pratt (2008), is that deprived-eye
responses did not increase proportionally to open-eye
responses during the later stages of MD (Kaneko et al.
2008). Likewise, at the behavioural level, delayed
increases in open-eye acuity are not accompanied by
parallel increases in deprived-eye acuity (Iny et al.
2006). A key feature of synaptic scaling is that all
synapses are scaled up or down equally, a feature that is
essential to prevent information loss and preserve the
relative strengths of distinct inputs (Turrigiano et al.
1998). Therefore, the disproportionate effect on open-
eye responses during the later stages of MD argues
against synaptic scaling as the sole mechanism of open-
eye potentiation.

At this time, it seems reasonable to suggest that the
discordant findings from imaging versus electrophysi-
ology and behaviour may arise from significant laminar
differences in the cortical response to MD and BD.
Layer 4 neurons receiving convergent thalamocortical
inputs that are dedicated to each eye might maintain
homeostasis via a homosynaptic BCM-type rule, in
which a loss of strength of one input is compensated for
by an increase in strength by a competing input.
Conversely, neurons in the superficial layers that do not
receive segregated inputs from the two eyes might
maintain responsiveness in the face of deprived-eye
depression via a heterosynaptic scaling mechanism.
8. OUTSTANDING ISSUES IN OD PLASTICITY
A clear challenge still facing the field of OD plasticity is
to demonstrate a causal role for specific molecular
processes in response to MD. Several mechanisms have
emerged as potential contributors to deprived-eye
depression, but it remains to be determined which, if
any, are required. Similarly, evidence suggests that a
decrease in the NR2A/B ratio may facilitate open-eye
potentiation, but again a causal role has yet to be
demonstrated. Viral-mediated overexpression of NR2A
or RNAi knockdown of NR2B in the visual cortex
specifically during the period of MD may be able to test
this by preventing a decrease in the NR2A/B ratio.

LTP provides a tempting mechanistic framework for
open-eye potentiation, but many questions remain.
Local disruption of either NMDAR function or
synaptic AMPAR insertion specifically during the
later stages of MD may help distinguish processes
serving deprived-eye depression from those involved in
Phil. Trans. R. Soc. B (2009)
open-eye potentiation. Additionally, it is important to
determine whether open-eye potentiation occludes
subsequent LTP, and to probe the relative contri-
butions of homo- and heterosynaptic processes to
open-eye potentiation.

It is essential that future studies of OD plasticity
recognize the numerous differences in synaptic
plasticity across cortical layers. This is especially
important when manipulating molecular pathways
during MD, as those pathways may be involved only
in OD plasticity in specific layers. Greater attention
must be given to the laminar position of neurons
recorded with single-unit techniques, as grouping
neurons across layers may obscure effects of manipula-
tions that are layer specific.

Experimental techniques for characterizing OD
plasticity have advanced greatly over the last four
decades. For example, the longitudinal within-animal
observations of visual responses afforded by chronic
VEP recordings have greatly added to the under-
standing of the kinetics of OD plasticity. Currently, all
available experimental techniques have significant
limitations: single-unit recordings and calcium imaging
offer single-cell resolution, but do not allow for chronic
recordings, whereas VEP recordings allow for chronic
measurements, but lack single-cell resolution. Recent
advances in transgenic calcium sensors (reviewed in
Knopfel et al. 2006) may provide a solution, allowing
large numbers of neurons to be observed repeatedly
over the course of MD. The combination of transgenic
calcium sensors with virally mediated disruption of
specific molecular pathways should allow the investi-
gation of whether individual neurons in a cortical
network respond to MD in a cell-autonomous manner.

An additional long-standing challenge in the field
has been to clearly label eye-specific inputs into the
cortex in living tissue. Without this information it is
difficult to interpret many of the results in the literature.
For example, MD produces changes in dendritic spines
(Mataga et al. 2004; Oray et al. 2004), but it is unclear
whether these changes are restricted to spines receiving
input from a particular eye. Likewise, it remains to be
determined whether the occlusion of LTD by prior
MD (Crozier et al. 2007) is restricted to deprived-
eye but not open-eye inputs into layer 4, as would
be predicted.

In this review, we have focused on the mechanisms
underlying the physiological response to MD, and have
not yet addressed the developmental regulation of OD
plasticity. Classically, OD plasticity has been described
as developmentally restricted to a critical period in
early post-natal life, and evidence still supports this
view in many species, including rats, cats and monkeys.
In mice, on the other hand, OD plasticity has been
demonstrated throughout adulthood (Tagawa et al.
2005; Frenkel et al. 2006; Hofer et al. 2006), indicating
that the critical period concept is not applicable to all
species. Although the response to MD occurs more
slowly in adult mice, this plasticity appears qualitatively
indistinguishable from that in juvenile animals
(Frenkel et al. 2006).

However, the potential for adult OD plasticity is
definitely not restricted to mice. For example, recent
work has shown that under certain conditions, rats,
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which have a critical period, can exhibit rapid and
robust OD plasticity as adults. Degradation of
chondroitin sulphate proteoglycans in the ECM can
restore a rapid OD shift in adult rats (Pizzorusso et al.
2002), as can oral administration of the antidepressant
fluoxetine (Maya Vetencourt et al. 2008). Even subtle
manipulations of experience are sufficient: both brief
dark exposure (He et al. 2006, 2007) and environ-
mental enrichment (He et al. 2007; Sale et al. 2007) are
able to restore OD plasticity in adult rats. These newer
findings build on seminal work performed in cats almost
30 years ago showing that OD plasticity can be restored
by local infusion of noradrenaline into adult visual
cortex (Kasamatsu et al. 1979). The restoration of
plasticity in adult animals is especially significant from a
therapeutic perspective, as dark rearing, environmental
enrichment and fluoxetine all promote the recovery of
vision following chronic deprivation amblyopia.

The findings of OD plasticity in adult animals raise
two important questions. First, are the mechanisms
qualitatively different from those active in juveniles?
Second, is there a final common pathway (e.g. altered
inhibition or NMDAR subunit composition) affected by
the manipulations that promote plasticity in adult
animals? Answering these two questions will represent a
major advance in the treatment of amblyopia, and may
provide insights into other forms of developmentally
regulated plasticity, including learning and memory.
9. CONCLUSION
Advances in recording techniques, coupled with the
development of molecular tools and transgenic mice,
have led to the identification of many of the molecular
pathways involved in OD plasticity. Based on currently
available evidence, we favour a three-phase model of
OD plasticity in layer 4 of mice: deprived-eye responses
rapidly weaken following MD through homosynaptic
LTD, while over a longer time period the threshold for
synaptic modification is lowered, facilitating the
strengthening of open-eye responses via homosynaptic
LTP. In addition to presenting several directly testable
hypotheses concerning OD plasticity in mice, this
model suggests potential therapeutic strategies for
amblyopia in humans.

All animal procedures were performed in accordance with
NIH guidelines for humane handling of animals and were
approved by the Institutional Animal Care and Use
Committee at MIT.
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