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Abstract
Background: Multiple regression models are used in a wide range of scientific disciplines and automated model selection
procedures are frequently used to identify independent predictors. However, determination of relative importance of potential
predictors and validating the fitted models for their stability, predictive accuracy and generalizability are often overlooked or
not done thoroughly.

Methods: Using a case study aimed at predicting children with acute lymphoblastic leukemia (ALL) who are at low risk of Tumor
Lysis Syndrome (TLS), we propose and compare two strategies, bootstrapping and random split of data, for ordering potential
predictors according to their relative importance with respect to model stability and generalizability. We also propose an
approach based on relative increase in percentage of explained variation and area under the Receiver Operating Characteristic
(ROC) curve for developing models where variables from our ordered list enter the model according to their importance. An
additional data set aimed at identifying predictors of prostate cancer penetration is also used for illustrative purposes.

Results: Age is chosen to be the most important predictor of TLS. It is selected 100% of the time using the bootstrapping
approach. Using the random split method, it is selected 99% of the time in the training data and is significant (at 5% level) 98%
of the time in the validation data set. This indicates that age is a stable predictor of TLS with good generalizability. The second
most important variable is white blood cell count (WBC). Our methods also identified an important predictor of TLS that was
otherwise omitted if relying on any of the automated model selection procedures alone. A group at low risk of TLS consists of
children younger than 10 years of age, without T-cell immunophenotype, whose baseline WBC is < 20 × 109/L and palpable
spleen is < 2 cm. For the prostate cancer data set, the Gleason score and digital rectal exam are identified to be the most
important indicators of whether tumor has penetrated the prostate capsule.

Conclusion: Our model selection procedures based on bootstrap re-sampling and repeated random split techniques can be
used to assess the strength of evidence that a variable is truly an independent and reproducible predictor. Our methods,
therefore, can be used for developing stable and reproducible models with good performances. Moreover, our methods can
serve as a good tool for validating a predictive model. Previous biological and clinical studies support the findings based on our
selection and validation strategies. However, extensive simulations may be required to assess the performance of our methods
under different scenarios as well as check their sensitivity to a random fluctuation in the data.
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Background
Regression models have long been used in medicine, clin-
ical epidemiology, health services research, pharmaceuti-
cal research, social sciences and business studies. Their
application has greatly increased in the past few decades
[1-3]. In particular, regression models such as logistic and
Cox models have become standard statistical methods in
medicine and epidemiology [4]. Regression models can
also be used to combine data from different sources. In
cancer research, for example, predictive models based on
wide range of data such as clinical, gene expression and
single nucleotide polymorphism (SNP) are frequently
developed to assess risk factors with the ultimate aim of
developing better prevention, diagnostic and treatment
strategies [5-8]. In recent years, clinical data have been
integrated with genomic and other types of data for devel-
oping more accurate predictive models [9-11]. For
instance, clinico-genomic models were used in breast can-
cer outcomes prediction where genomic data combined
with clinical and demographic characteristics were used
for improving predictive accuracy [11].

Despite the fact that predictive models are commonly
used in wide range of scientific disciplines, they are fre-
quently presented inadequately [3,12,13]. A recently pub-
lished systematic review discusses the gravity of this issue
[12]. The authors investigated 2,234 papers published in
104 journals in areas of obstetrics and gynecology. A con-
siderable percentage (34.2%) of the studies used logistic
regression. Among those that utilized logistic regression,
most (96%) reported significance (in the form of p-val-
ues), however, only 3.6% reported goodness of fit. None
of them considered model validation of any sort. The
authors, however, did not distinguish between etiologic
and predictive models. The empirical results, therefore,
might well include both types of models. Concerns
regarding such inadequate presentation of predictive
models in other areas of medicine such as cancer research
have also been reported [3,13-15].

Validity of predictive models as well as their application
in the general population highly depends on their good-
ness of fit [3,4,16,17]. Assessing goodness of fit and
model validation are, therefore, essential in any model fit-
ting task in general and in constructing predictive models
in particular.

There are different methods for developing predictive
models and it is very challenging to maintain balance
between including too many variables (and risk loss of
precision) and omitting important variables (and risk
biased prediction) [18]. Automated variable selection
methods are frequently used in regression analysis for
selecting important predictors, however, these approaches
may result in spurious noise variables being mistakenly

identified as independent predictors of the outcome [19].
Moreover, predictive models developed using such auto-
mated algorithms tend to be non-reproducible and hence
are not reliable in practice. Use of good strategies for
model selection along with adequate performance and
goodness of fit measures are, therefore, needed in devel-
oping accurate prediction.

The ultimate goal of developing a predictive model is to
use the model for predicting future outcomes in a much
larger, broader and heterogeneous population. It is
important to note that accurate models that perform
extremely well may perform poorly outside the data set
they are built on. In fact, the performance of a predictive
model is overestimated if determined on data used to con-
struct the model and may not be reliable for the larger
population [17]. For more details regarding model selec-
tion and the tradeoff between model over-fitting and
under-fitting can be found in [20,21].

In this paper, we propose two different approaches for
ordering potential predictors according to their relative
importance with respect to model stability and generaliz-
ability. We use the concept of explained variation and area
under the Receiver Operating Characteristic (ROC) curve
for developing models and in determining how many pre-
dictors to include in final model. We illustrate the
approaches using a study conducted by Truong and col-
leagues [5]that aimed at developing a prediction rule to
identify patients with Acute Lymphoblastic Leukemia
(ALL) at lower risk of Tumor Ly sis Syndrome (TLS). A
publicly available data set is also used for additional illus-
tration.

Methods
Motivating case studies
To illustrate model selection and validation methods pre-
sented in this paper, data and statistical results from pre-
vious two studies are considered. Here we give brief
descriptions of the original studies. For more details about
the data and the statistical analyses performed, we refer
the reader to the original papers [5,22]. We focus on the
first case study and illustrate our methods using this data
set. However, data from a prostate cancer study is also
considered for additional and supplementary illustration.

Case Study 1 - Prediction of children at low risk for Tumor Lysis 
Syndrome (TLS)
With the long-term aim of a risk-stratified approach to the
prevention of Tumor Lysis Syndrome (TLS), the study was
originally performed to describe the prevalence and pre-
dictors of TLS in childhood Acute Lymphoblastic Leuke-
mia (ALL) and develop a sensitive prediction rule to
identify patients at low risk of TLS [5].
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In this paper, we consider the primary outcome, i.e., pres-
ence or absence of TLS. In total, 328 patients (of which 74
are TLS cases) were included in the study. Potential predic-
tors included in the model consist of 1) Laboratory fea-
tures: white blood cell count (WBC  20 × 109/L) and
presence of T-cell immunophenotype 2) Clinical indica-
tors: presence of mediastinal mass, hepatomegaly(palpa-
ble liver  3 cm) and splenomegaly (palpable spleen  2
cm), and 3) Demographic characteristics: age ( 10 years)
and sex.

Case Study 2 - Prostate Cancer Study
The main objective of the original study was to determine
whether variables measured at a baseline exam can be
used to predict whether the tumor has penetrated the
prostate capsule. A total of 380 subjects are considered of
which 153 had a cancer that penetrated the prostate cap-
sule. Variables included in the study are age, race, results
of digital rectal exam(DPROS), detection of capsular
involvement in rectal exam(DCAPS), prostate specific
antigen (PSA), tumor volume from ultrasound (VOL-
UME) and total Gleason score. We refer the reader to
[22]for more details about this data set.

Proposed methods and analytical strategies
We propose two approaches for ordering variables accord-
ing to their relative importance with respect to model sta-
bility and generalizability. A predictive model is then
constructed using explained variation and area under the
Receiver Operating Characteristic (ROC) curve where var-
iables from our ordered list enter the model according to
their relative importance. Increase in explained variation
as well as the area under the ROC curve is used to deter-
mine the number of variables included in the final model.

Bootstrapping for model selection
Bootstrapping is a modern, computer-intensive re-sam-
pling approach which allows simulation of test data sets
that mimic the initial original data set and the technique
has been used successfully in a wide range of applications
[23]. An excellent comprehensive tutorial paper that
focuses on the application of the bootstrap method for
constructing confidence intervals is provided in [24].
Bootstrap re-sampling along with an automated selection
procedure have been used to develop parsimonious mod-
els [25,26]. It has been demonstrated that bootstrap
methods can be used to assess the strength of evidence
that an identified variable truly is an important predictor.
Sauerbrei and Schumacher used bootstrap sampling to
assess the distribution of an indicator variable denoting
the inclusion of a specific predictor for identifying strong
and weak factors for predicting survival [26]. Bootstrap-
ping has also been used to show that automated model
selection procedures are likely to identify noise variables

as important predictors and hence produce unstable mod-
els in a logistic regression setup [27].

Here we propose the use of bootstrapping for ordering
potential predictors according to their importance. We
took one thousand bootstrap samples from the original
data. On each bootstrap sample, we applied three most
commonly used automated model selection procedures
(forward, backward and stepwise) where all candidate
variables are included at the initial stage of the analysis.
Candidate variables are, then, ordered according to their
importance, where the variable chosen most frequently is
ranked first.

After the initial ordering of the candidate predictors using
bootstrapping, our final predictive model is constructed
using a stepwise procedure where the top ranked variable
from our ordered list enters the model first. Variables are
then sequentially added to the model according to their
relative importance. At each stage, we calculate the
improvement in the predictive accuracy of the model,
measured by the percentage of explained variation and
area under the ROC curve.

Random Split of Data
The bootstrap approach described above addresses the
issue of variable stability. However, model reproducibility
is also another important criterion since models are often
developed with the aim of predicting future outcomes. We
considered variables to be reproducible or generalizable if
their predictive power can be generalized to new data set.
That is, the model consisting of these variables not only
have a good predictive power for the data set the model is
built on, but also its performance (with respect to predic-
tive power) can be generalized in predicting future out-
comes. Here we propose an approach for model selection
that not only considers model stability but also generaliz-
ability and reproducibility. We randomly split the original
data evenly into training and validation data sets. This
step is repeated one thousand times. We use the training
data sets to build the models and validate the selected
models using the validation data sets. All candidate varia-
bles are considered and potential predictors are selected
using forward, backward and stepwise selection proce-
dures using the training data sets. Moreover, for each ran-
dom split of data, we checked if the selected predictors are
significant in the validation data set. The variables are
then ordered according to their relative importance,
where the importance of a variable is measured by the
proportion (s) it is selected as a predictor and as well as
the proportion (v) at which it is significant in the valida-
tion data set. We propose the product sv as a measure of
relative importance incorporating stability and generaliz-
ability. This product is equivalent to the proportion at
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which a variable is both selected in the final model and is
significant using the validation data set.

That is, if we define two events such that A = variable is
selected using an automated model selection procedure
based on the training data set, B = variable is significant
using the validation data set. Then, A & B = variable is
selected using the training data set and it is significant in
the validation data set. What we are interested in is the
probability of A & B. This probability, which incorporates
stability and generalizability measures, can be estimated
as the proportion at which a given variable is selected and
is significant simultaneously. It is possible to show that
this proportion is equivalent to sv.

Automated model selection procedures
Automated model selection procedures: backward elimi-
nation, forward selection and stepwise selection, are the
three most commonly used variable selection procedures.
In backward elimination, variables are eliminated from
the full model based on a certain criteria mostly based on
a decrease in R2or deviance. In forward selection, how-
ever, we start with an empty model and variables are
added sequentially where, at each step, a variable that
brings the largest increase in R2or deviance will be added
in the model. Stepwise procedure is a variation of forward
selection where variables are allowed to be eliminated
from the model. The stopping rule, which is usually pre-
specified, for all the three automated model selection pro-
cedures is based on significance at a specified level. For
comprehensive overviews of automated model selection
procedures, we refer the reader to [28,29]. For variable
selection from a Bayesian perspective we refer the reader
to [30].

Percentage of explained variation

We use two measures of explained variation appropriate
for binary outcome - direct and indirect [16]. The direct
measure is based on residual from the fit and the indirect
index is related to standard measure of information. Sup-
pose the estimates from a logistic model without a covari-

ate (i.e., unconditional) are denoted by

 and let the estimates from a

model with covariate xi (i.e., conditional) be

. Define  and

. The explained variation based on

the direct estimates is given by .

Similarly, let  and .

The explained variation based on the indirect estimates is

calculated as .

Five - fold cross validation
We performed 5-fold cross validation based on the origi-
nal TLS data to check the performance of our approaches.
That is, we randomly divided the data into five parts, esti-
mate model parameters based on 4 of the 5 data sets and
use the remaining one fold for validation. The randomiza-
tion is repeated 5 times and prediction error is averaged
over the five cross validations and the number of rand-
omizations. By doing repeated cross-validation, it is pos-
sible to reduce variability and provide more stable
estimates.

Results
Case study 1
Table 1 shows results from the bootstrapping approach in
which covariates are ordered by the proportion at which
they were selected in the final model following three com-
monly used selection procedures: forward, backward and
stepwise. The p-values presented in the table are averaged
over 100 bootstrap samples. It can be seen that the order
of importance, where the variable chosen most frequently
is considered as the most important predictor, is the same
for all the three selection procedures. Age is chosen almost
100% of the time indicating that it is the most important
predictor. Hepatomegaly is chosen the least in all of the
three procedures, chosen about 50% of the time using the
forward method and 30% of the time using backward and

Pr{ }y p yi
yi

n
= ≡ = =∑1

Pr{ | }y x pi i i= =1 ˆ | |D n y pi= −− ∑1

ˆ | |D n y px i i= −− ∑1

EV D D Ddirect x= −( ) /

D p p= −2 1( ) D n p px i i= −− ∑2 11 ˆ ( ˆ )

EV D D Dindirect x= −( ) /  

Table 1: Proportion (s) at which each of the variables entered the final model and average p-value for three automated model 
selection procedures based on one thousand bootstrap samples

Variables Forward selection Backward selection Stepwise selection
s p-value s p-value s p-value

Age 1.000 0.0003 0.999 0.0002 0.998 0.0003
Baseline WBC 0.991 0.0067 0.957 0.0028 0.951 0.0027
Splenomegay 0.767 0.0424 0.600 0.0071 0.610 0.0071
T-cell immunophenotype 0.748 0.0408 0.593 0.0043 0.588 0.0042
Sex 0.719 0.0493 0.465 0.0141 0.455 0.0137
Mediastinal mass 0.648 0.0576 0.450 0.0056 0.451 0.0055
Hepatomegaly 0.493 0.0621 0.307 0.0111 0.292 0.0108
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stepwise selection techniques. Moreover, the results show
that all of the seven variables considered are significant (at
5% level)in the backward and stepwise selection proce-
dures, once chosen as predictor. However, mediastinal
mass and hepatomegaly are not statistically significant
using the forward selection procedure. Overall, our analy-
sis shows that all the three automated procedures, fol-
lowed by bootstrapping, produce similar results.

After the initial ordering of the candidate predictors using
bootstrapping, our final predictive model for identifying
patients at low risk for TLS is constructed using a stepwise
procedure where the top ranked variable enters the model
first. We calculate the improvement in the predictive accu-
racy of the model, measured by the percentage of
explained variation and area under the ROC curve, at each
stage to see if the next variable needs to be included in the
model. Table 2 shows two estimates of percentage of
explained variation(direct and indirect) and area under
the ROC curve obtained by including the variables in the
model according to the order of importance given in Table
1.

A model with the first four variables explained 27.18%
with area under ROC curve 81.3%. The increases in per-
centage variation as well as area under ROC curve are neg-
ligible after the first four variables have been included in
the model. A final model with a good predictive accuracy
(area under ROC = 81.3%) can be constructed using the
first 4 variables. Group of children at low risk of TLS can,
therefore, be defined as absence of age, baseline WBC,
splenomegaly and T-cell immunophenotype. That is, chil-
dren younger than 10 with absence of T-cell immunophe-
notype, whose baseline WBC < 20 × 109/L and a palpable
spleen < 2 cm, are at low risk for TLS. It is important to
note that this model is different from the one constructed
in the original study where the predictors in the final
model are age, baseline WBC, splenomegaly and medias-
tinal mass. The last variable is the second last variable in
our ordering.

As can be seen from Table 2, the percentage of explained
variation increases sharply in the beginning. For instance,
a model with only age explained almost 9% of the varia-
tion with area under ROC 64.3, whereas age and baseline
WBC combined explained 19% of the variation with area
under ROC 75.7.

The results from the random split approach where varia-
bles are ordered according to sv, a measure incorporating
stability and generalizability, are presented in Table 3.
Out of 1000 random splits of data, age was selected 994,
974 and 971 times using forward, backward and stepwise
selecting procedures. Out of the 994 inclusions based on
forward selection using the training data set, age was sig-
nificant in the validation data set 979 times (s = 979/994
= 0.985).

The same ordering is obtained using all of the three model
selection procedures where age and baseline WBC are
selected as the first two important predictors (Table 3).
Recall that this was also the case using the bootstrapping
approach. However, it is important to note that different
orderings are obtained using the two procedures in gen-
eral. This is to be expected since the random split
approach incorporates information regarding the general-
izability of the model (via the validation stage) in addi-
tion to model stability provided by the bootstrapping. For
instance, splenomegaly is the 3rd important variable
using bootstrapping, however, it is the 5th selected varia-
ble in the training set using the random split strategy. This
is because, even if it was selected 61% of the time, it was
significant only 31.1% of the time in the validation set
(and hence lacks generalizability). Overall, the propor-
tion it is selected in the training data set and significant in
the validation data set simultaneously is only 0.192. Now
that we have ordered our variables according to their
importance with respect to model stability and generaliz-
ability, the next question is to determine which of the var-
iables to include in the final model. It is already obvious
to see, as indicated in Table 3, that hepatomegaly and sex
are not significantly important variables in predicting
children at low risk for TLS. However, we use the concept

Table 2: Cumulative percentage of explained variation and area under ROC obtained by including the variables in the model according 
to the order of importance as given in Table 1.

Variables Percentage
EVdirect

Percentage
EVindirect

Percentage area
 under ROC curve

Age 8.65 8.65 64.3
Baseline WBC 18.70 19.04 75.7
Splenomegay 21.35 21.80 79.4
T-cell immunophenotype 27.18 27.05 81.3
Sex 29.54 29.42 82.7
Mediastinal mass 30.50 30.38 82.8
Hepatomegaly 30.73 30.76 83.2
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of explained variation and area under ROC as before to
select the final model. The results from the analysis are
presented in Table 4.

The results presented in Table 4 indicate that about 25%
of the variation is explained by the first three variables and
the area under the ROC curve for a predictive model con-
sisting of only these three variables is 79.1. Table 4 show
s that the increase in the percentage of variation as well as
the area under the ROC curve is very small after including
the first 3 variables.

The model with the first 5 variables explains about 28% of
the variation and the area under the ROC curve is 81.5.
However, the contribution of mediastinal mass towards
the total variation as well as area ROC is very small once
T-cell immunophenotype is included in the model. This
might be an indication that these two variables are highly
correlated and hence some of the contribution of medias-
tinal mass is already accounted for by T-cell immunophe-
notype. We used a chi-square test to investigate the
relationship between these two variables and the results
indeed show a very strong association (p-value < 0.0001).
As a result, including both of the variables in the final
model is not only unnecessary but also introduces multi-
colinearity to the model. From Tables 1 and 4, we can see

that T-cell immunophenotype is more important than
mediastinal mass according to importance measures
related to model stability and generalizability. We, there-
fore, keep age, baseline WBC, T-cell immunophenotype
and splenomegaly in the final model. In practice, how-
ever, further biological/clinical investigation might be
required to assess the biological and/or clinical impor-
tance of the variables involved before we decide to exclude
variables from the final model. According to our statisti-
cally derived and validated model, a group at low risk of
developing TLS consists of children younger than 10
years, without of T-cell immunophenotype, whose base-
line WBC < 20 × 109/L and palpable spleen < 2 cm. Note
that this low risk group is similar with the group selected
using the bootstrap approach.

It is also important to note that, T-cell immunopheno-
type, which is selected as the third most important varia-
ble using the random split and the fourth important
variable in the bootstrapping was excluded from the
model proposed in the original paper [5].

We used 5-fold cross validation to assess the performance
of the models elected based on the bootstrapping and ran-
dom split approaches. Recall that both approaches pro-
duced the same model - a predictive model consisting of
age, baseline WBC, T-cell immunophenotype and
splenomegaly. We also consider the model proposed in
the original paper for comparison purposes. Their model
is based on age, baseline WBC, Mediastinal mass and
Splenomegaly [5].

The results from our analysis show that the model selected
using our approach has a slightly less prediction error
(0.17) than the model proposed in the original paper
(0.19). The corresponding ROC values for the two models
are 81.3% and 81.1%, respectively. This indicates that the
model proposed in the original paper performs well in
general and has good generalizability. However, an
important variable was omitted from the model as dis-
cussed earlier. Moreover, the original model consisting of
age, baseline WBC, mediastinal mass and splenomegaly,

Table 3: The proportion at which a given variable is selected in 
the training set and is significant in the validation set after 
randomly splitting the data 1000 times

Variables Forward
 selection

Backward
 selection

Stepwise
 selection

sv sv sv

Age 0.979 0.956 0.954
Baseline WBC 0.873 0.803 0.789
T-cell immunophenotype 0.394 0.464 0.464
Mediastinal mass 0.248 0.270 0.273
Splenomegay 0.192 0.118 0.136
Hepatomegaly 0.016 0.000 0.000
Sex 0.000 0.000 0.000

Table 4: Percentage of explained variation and area under ROC obtained by including the variables in the model according to the 
order of importance given in Table 3.

Variables Percentage
 EVdirect

Percentage
 EVindirect

Percentage area
 under ROC curve

Age 8.65 8.65 64.3
Baseline WBC 18.70 19.04 75.7
T-cell immunophenotype 25.01 24.96 79.1
Mediastinal mass 26.25 26.14 79.8
Splenomegay 28.22 28.05 81.5
Hepatomegaly 28.51 28.38 81.8
Sex 30.73 30.76 83.2
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was not validated although some goodness of fit proper-
ties were reported. The approaches proposed in this paper
and the statistical results from the analysis can, therefore,
be used as a confirmation for the performance of the pro-
posed model and its appropriateness for practical use.

Case study 2
As a second case study we considered a prostate cancer
data set briefly described in the previous section. Bar
graphs showing relative importance of variables using our
two approaches are presented in Figures 1 and 2, respec-
tively. The bootstrap method identified two variables
(Gleason score and results from digital rectal
exam(DPROS)) as important predictors of prostate cancer
penetration where they are selected 99.6% and 84.8% of
the time, respectively, out of 1000 samples based on step-
wise selection. These variables are considered by clinicians
as two of the most influential factors used to determine
treatment for prostate cancer and have also been previ-
ously identified as predictors of death in prostate cancer
[31,32]. Prostate specific antigen (PSA) value is also iden-
tified as an important predictor based on forward selec-
tion where it is selected 75.9% of the time. However, this
variable is selected less than 50% of the time using back-
ward and stepwise methods. This is not surprising since
forward selection is often optimistic since the selection
process, unlike the stepwise and backward selection meth-
ods, does not involve an elimination step even if the vari-
able already included does not contribute much in the

presence of other variables. Our results from the analysis
of explained variation and area under the ROC curve are
also in agreement with this conclusion. That is, using 5
fold cross validation, the increase in the explained varia-
tion as well as the area under the ROC curve when PSA is
added to the model is small (ROC from 80.9% to 82.3%).

Since the data is relatively larger than case study 1 and also
has a larger event rate, we divided the data set in to train-
ing and validation where we set aside 1/3rdof the data for
validation purposes. For the training set, a model consist-
ing of the first two important variables, Gleason score and
digital rectal exam, gave area under the ROC = 84.2%. This
value increased to just 85.3%when PSA is added to the
model. When testing using the validation data(the 1/3 rd

data set aside in the beginning), the area under the ROC
increased from 74.2% to 75.6% indicating that although
PSA seems to be an independent predictor for this partic-
ular data set, it may not be a good predictor for future data
and hence non reproducible. This finding is supported by
previous studies that have shown that, although PSA is
negatively associated with cancer penetration, it was not
able to predict pathological features in clinically localized
prostate cancer in the overall population [33,34].

Discussion
Predictive models are used frequently in medical research
and automated model selection procedures are tradition-
ally used for identifying predictors. However, assessing

Relative importance of variables for the prostate cancer data, measured using the percentage of selection out of 1000 boot-strap samplesFigure 1
Relative importance of variables for the prostate cancer data, measured using the percentage of selection out 
of 1000 bootstrap samples.
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model fit and validation of the selected models are rarely
performed or not done thoroughly, if done at all. Moreo-
ver, models selected using automated procedures often
include noise variables that have little or no relationship
with the outcome variable. Similarly, important variables
might be omitted.

In this paper we proposed two approaches for ordering
candidate variables according to measures incorporating
model stability and generalizability. In our first approach,
we used bootstrapping and defined variable importance
as the proportion a given variable is selected and hence
leads to models that are more stable than models selected
using only automated procedures. This method is similar
to that of Austin and Tu [26,27]. What distinguishes our
approach from theirs is that we use d measures of impor-
tance such as relative increase in percentage of explained
variation and area under the ROC curve in determining
the number of variables included in the final model. In
the second approach, we performed one thousand ran-
dom split of data into training and testing data sets. Vari-
ables are then ordered according to the frequency they
were selected using the training data set at the same time
statistically significant in the validation data set. Our sec-
ond approach, thus, leads to a ranking that not only incor-
porated model stability but also takes generalizability and
reproducibility into account. We would like to note that
random split, like cross validation, involves random sam-
pling. The underlying population is, therefore, the same.
When available, a more rigorous test based on a com-

pletely different sample from another population can be
used to assess model generalizability. How to do the ran-
dom split is also an important issue that has been
addressed by many in classification/prediction literature.
The amount of data to set aside often depends on the sam-
ple size and also predictive ability of the variables
included in the analyses. For a small sample size, for
instance, 50% split as done in our manuscript might lead
to poor predictive model (classifier) since the model is
built on insufficient data set. Under such circumstances,
setting 1/3rd of data aside for testing might give better
results. One could also use k-fold cross validation (where
k > 2) when the sample size is small.

We used the concept of explained variation and area
under ROC where the most important variable enters the
model first and variables are added until the improve-
ment in explained variation as well as area under the curve
is negligible. This is particularly important when the
number of candidate variables is very large and one has to
select the first top most important variables. The issue of
how small the improvement has to be, in order to decide
the number of variables entering the final model, is a very
challenging task. In this paper, we used an approximate
cutoff point using plots similar to scree plot in principal
component analysis which allows us to visually assess the
point where the improvement becomes negligible. How-
ever, it might be interesting to develop a test statistic based
on the percentage increase in explained variation and/or
area under the ROC curve. One can, thus, test if the

Relative importance of predictors for the prostate cancer data using the random split approachFigure 2
Relative importance of predictors for the prostate cancer data using the random split approach.
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improvement is statistically significant or not. This is a
topic we would like to investigate in future research.

It is important to note that, the original childhood leuke-
mia study presented in this paper is well designed where
candidate predictors were selected after a thorough inves-
tigation of their clinical relationship with the outcome
variable. Consequently, not much difference was
observed between the performance of the original model
and the model constructed using our approaches. How-
ever, the results in this paper indicate that even in such
well designed study an important variable could be omit-
ted if relying on automated model selection procedures
alone. This indicates that researchers should be more cau-
tious when using automated procedures and they are
encouraged to use re-sampling techniques along with
these procedures.

Application of our approaches to the prostate cancer data
set identified two variables as important predictors of
whether tumor has penetrated the prostate capsule. These
variables have been previously identified as powerful
indicators of tumor penetration and prostate cancer death
supporting our findings. Moreover, prostate specific anti-
gen (PSA), which was ranked as the third important vari-
able based on the bootstrap approach, was not identified
as an important variable in using our random split
approach. This indicates that PSA, although associated
with prostate cancer, is not a reproducible predictor of
tumor penetration and hence not helpful for predicting
for patients outside the study population. This finding is
also supported by previous biological and clinical studies.

Conclusion
In conclusion, automated model selection procedures
may result in the inclusion of noise variables and unstable
models. Our proposed methods and analytical strategies
can be used to assess variable stability and reproducibility
and hence may lead to more robust models with favorable
predictive performance. However, extensive simulation is
needed to study the operating characteristic of our
approaches in a more general setting. We plan to pursue
this in future research.
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