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Abstract 

Purpose: Glaucoma is a generic term of a highly different disease group of optic neuropathies, which the leading 
cause of irreversible vision in the world. There are few biomarkers available for clinical prediction and diagnosis, and 
the diagnosis of patients is mostly delayed.

Methods: Differential gene expression of transcriptome sequencing data (GSE9944 and GSE2378) for normal 
samples and glaucoma samples from the GEO database were analyzed. Furthermore, based on different algorithms 
(Logistic Regression (LR), Random Forest (RF), lasso regression (LASSO)) two diagnostic models are constructed and 
diagnostic markers are screened. GO and KEGG analyses revealed the possible mechanism of differential genes in the 
pathogenesis of glaucoma. ROC curve confirmed the effectiveness.

Results: LR-RF model included 3 key genes (NAMPT, ADH1C, ENO2), and the LASSO model outputted 5 genes (IFI16, 
RFTN1, NAMPT, ADH1C, and ENO2), both algorithms have excellent diagnostic efficiency. ROC curve confirmed that 
the three biomarkers ADH1C, ENO2, and NAMPT were effective in the diagnosis of glaucoma. Next, the expression 
analysis of the three diagnostic biomarkers in glaucoma and control samples confirmed that NAMPT and ADH1C 
were up-regulated in glaucoma samples, and ENO2 was down-regulated. Correlation analysis showed that ENO2 was 
significantly negatively correlated with ADH1C (cor = -0.865714202) and NAMPT (cor = -0.730541227). Finally, three 
compounds for the treatment of glaucoma were obtained in the TCMs database: acetylsalicylic acid, 7-o-methyliso-
mucitol and scutellarin which were applied to molecular docking with the diagnostic biomarker ENO2.

Conclusions: In conclusion, our research shows that ENO2, NAMPT, and ADH1C can be used as diagnostic markers 
for glaucoma, and ENO2 can be used as a therapeutic target.
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Introduction
Glaucoma is a group characterized by progressive 
degeneration of retinal ganglion cells of optic neu-
ropathy, which is the main cause of blindness and 
raises the prevalence [1, 2]. There are four categories 
of adult glaucoma: primary open-angle (POAG) and 
closed-angle glaucoma, and secondary open-angle 
(OAG) and closed-angle glaucoma (ACG). Compared 
with normal, primary glaucoma has neuropathy and 
elevated intraocular pressure. Secondary glaucoma 
has some causes of elevated intraocular pressure, 
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including trauma, neovascularization, pigment disper-
sion, inflammation or pseudodefoliation. The diagnosis 
and classification of glaucoma need to combine clinical 
examination, intraocular pressure measurement, visual 
field, and structural imaging parameters [2, 3].

Biomarkers make it more convenient to explore the 
ocular matrix. Repeated sampling and evaluation of bio-
markers can show the biological process of disease pro-
gression and drug treatment [4]. Studies have reported 
that small molecules to macromolecules, nucleic acids 
to proteins can be used as molecular biomarkers. At pre-
sent, biomarkers in the tear film, aqueous humor, vitre-
ous, and blood/serum have been proved to be useful in 
the diagnosis of glaucoma [2].

Current used treatment includes drugs, laser surgery 
and minimally invasive surgery for glaucoma [5]. Glau-
coma treatment technology were relatively mature, but 
early detection and treatment was vital for excellent 
vision prognosis of glaucoma. Patients have lost 35 ~ 40% 
of retinal ganglion cells when glaucoma was diagnosed 
clinically, which was a common phenomenon [6]. The 
glaucoma was asymptomatic in the immediate stage and 
onset of symptoms in a relatively late stage, so the diag-
nosis was often delayed, Which was causing irreversible 
damage to patients and was the biggest challenge to diag-
nosis of glaucoma [7].

The discovery and application of glaucoma biomark-
ers can be difficult, the marker selection is limited by 
patients with individual differences, techniques for the 
use, and analysis of therapeutic drugs [8]. At present, it 
is possible to provide a comprehensive ophthalmology 
examination by suspicious patients with positive fam-
ily history or results of optic nerve papilla examination, 
which can provide convenience for glaucoma diagno-
sis [9]. Previous studies have reported that hundreds of 
candidate biological markers have been proposed (> 450). 
However, biomarker diagnosis has not yet entered the 
clinical stage due to the sensitivity and specificity of the 
difference in the patient’s genetic, sick and therapeutic 
phase [2]. Therefore, the candidate glaucoma biomarker 
will use to transform into clinical practice that still takes 
a lot of research.

This study obtains glaucoma clinical data from the pub-
lic database GEO database. a large number of data analy-
sis were used which including the obtained of database 
sample genes and the prediction of targeted biomarkers 
and their transcription factors in the online database. In 
addition, through the molecular docking between the 
protein crystal encoded by the diagnosed biomarker and 
the small molecule drug, it is tested that the targeted 
drug can be successfully docked with the marker protein. 
It provides a reference for biomarkers to become the key 
target of targeted drug therapy in the future.

Methods
Data sources
The GEO database dataset GSE9944, GSE2378 were 
used to download the gene sequencing data and sample 
information of glaucoma and normal samples. GSE9944 
selected data from the GPL8300 platform with a large 
number of samples, including 13 glaucoma samples and 
6 normal samples. GSE2378 selected the data meas-
ured by the GPL8300 platform with a large number of 
samples, including 7 glaucoma samples and 6 normal 
samples.

Analysis methods
Differentially expressed genes analysis and annotation
In our study, we used the limma package of R to com-
pare the differences of gene expression levels between 
glaucoma / normal sample groups. The screening con-
ditions are: < 0.05 and丨log2FC丨 > 0.5.The VennDia-
gram package was used to compare the two data sets 
up and down-regulated differential express genes, and 
the differential expression genes commonly discovered 
by the two data sets. Differential expression gene func-
tion was analyzed (Including GO function analysis and 
KEGG pathway enrichment analysis, P < 0.05 was sig-
nificant) by the Cluster Profiler (version 3.18.0) pack-
age. GO plot was used to structure the chord diagram 
of GO items, and Ggplot2 package was used to create 
the volcano diagram (differential genes) and bubble dia-
gram (KEGG pathway) [10–12]. Differential expression 
analysis aims to find out the genes with significant dif-
ferences in expression between glaucoma and normal 
sample groups. The grouping may be different biologi-
cal states, such as drug treatment and control, diseased 
individuals and healthy individuals, different tissues, 
different development stages, etc.

Construction of glaucoma diagnostic model and screening 
of diagnostic markers
Machine algorithms Logistic Regression (LR), Random 
Forest (RF), and lasso regression (LASSO) were used to 
construct the diagnostic model of glaucoma based on 
the differentially expressed genes of glaucoma. Based on 
LR-RF and LASSO algorithm, the RandomForest and 
Glmnet packages of the language of R were used to con-
struct glaucoma diagnosis models, and the AUC values 
of each model were calculated respectively. ROC curves 
and AUC values were used to evaluate the effectiveness 
and accuracy of the model. The RMS package of diag-
nostic biomarkers was used to build a nomogram and 
straightening curve to assess the clinical risk of glaucoma 
patients.
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Analysis of transcription factors regulatory network 
and noncoding RNA regulatory network
The network analyst database was used to predict the 
transcription factors of biomarkers and obtain the gene—
transcription factor (TF) pairs. The mirwalk database was 
used to predict miRNA targeting diagnostic biomarkers. 
The Starbase was applied to predict the targeting rela-
tionship of miRNA-lncRNA (Supplementary materials 
1). The relationship between the biomarker’s gene-TF 
network and the predicted miRNA—lncRNA targeting 
was visualized by Cytoscape (version 3.8.0).

The expression and correlation analysis of glaucoma 
diagnostic biomarkers
Ggplot2 (version 3.3.2) and Ggpubr (version 0.4.0) pack-
ages of R were used to create scatter plots, which show 
the expression of diagnostic biomarkers in normal and 
glaucoma samples. Rank-sum test was used to compare 
the expression of glaucoma biomarkers between the two 
groups. The Ggcorrplot software package was used to 
analyze the relationships between three diagnostic mark-
ers for glaucoma. ROC curves constructed based on the 
GSE2378 and GSE9944 datasets were used to evaluate 
and verify the diagnostic efficiency of three glaucoma 
diagnostic markers.

Molecular docking analysis of diagnostic markers 
and compounds with therapeutic activity for glaucoma
Gene cards database was used to predict the disease 
targets of glaucoma. The TCMSP database was used to 
obtain active compounds that have therapeutic effects 
on glaucoma. The PDB database was used to download 
protein structure data of glaucoma biomarkers. The small 
and water molecules included in the original protein 
structure were completely removed by Auto Dock Tools 
before molecular docking, as well as the calculation of 
hydrogen bonds and charges. The PubChem database 
was used to download the structure of compounds with 
glaucoma therapeutic activity, which was predicted by 
Auto Dock Tools for charge balance and rotatable cova-
lence bonds. The center of activity was then determined 
according to the range of the receptor docking box. 
Finally, Auto Dock Vina was used to calculate the dock-
ing of receptors and ligands, the structure with the low-
est binding free energy (the highest binding affinity) in 
the output results was selected, and PyMoL software was 
used to visualization and beautification.

Results
Screening and functional annotation analysis 
of differential expression genes in glaucoma
Differential gene analysis indicated that the 350 and 478 
differentially expressed genes were obtained in GSE9944 

and GSE2378 data sets (Supplemental Tables  1 and 2 
for the statistical table of clinical information), respec-
tively. Among them, 263 genes were up-regulated and 87 
genes down-regulated in glaucomatous tissue samples of 
GSE9944 data sets (Fig. 1A), 301 genes were up-regulated 
and 177 genes down-regulated in glaucomatous tissue 
samples of GSE2378 data sets (Fig. 1C). The top50 of dif-
ferentially expressed gene expression in GSE9944 and 
GSE2378(Fig.  1B and 1D). The intersection of differen-
tially expressed genes between the two groups showed 
that 156 genes were up-regulated and 48 genes were 
down-regulated (Fig. 1E, F).

GO enrichment results show that the main enrich-
ment cleavage the differentially expressed genes of glu-
cose metabolism, muscle cell differentiation and NADH 
regeneration and other biological processes: such as 
extracellular matrix organization, extracellular structure 
organization, striated muscle cell differentiation, NADH 
regeneration, canonical glycolysis, glucose catabolic 
process to pyruvate, hyperosmotic response, glycolytic 
process through glucose-6-phosphate, muscle cell dif-
ferentiation and glycolytic process through fructose-
6-phosphate, etc., (Fig. 2A).

In addition, the down-regulated differentially expressed 
genes are mainly significantly related to muscle structural 
components, small molecule sensor activity, monosac-
charide binding in terms of molecular function, including 
structural constituent of muscle, ammonium transmem-
brane transporter activity, small molecule sensor activ-
ity, monosaccharide binding (Fig.  2B). In terms of cell 
composition, it is significantly related to the cell base-
ment membrane, cell base, filamentous membrane, and 
mitochondrial outer membrane. Which including basal 
plasma membrane, basal part of a cell, filopodium mem-
brane, an integral component of the mitochondrial outer 
membrane, cell projection membrane and intrinsic com-
ponent of the mitochondrial outer membrane (Fig. 2C).

The up-regulated differentially expressed genes are sig-
nificantly related to hormone metabolism, retinoic acid 
metabolism, small molecule metabolism, retinol metab-
olism, and microglia activation in biological processes, 
including retinoic acid metabolic process, extracellular 
matrix organization, extracellular structure organiza-
tion, ethanol oxidation, cellular response to transforming 
growth factor-beta stimulus, response to transforming 
growth factor-beta, embryonic eye morphogenesis, hor-
mone metabolic process, ethanol metabolic process, 
retinol metabolic process, etc., (Fig.  2D). In terms of 
molecular function, it is significantly related to retinol 
dehydrogenase activity, oxidoreductase activity, and pro-
teoglycan binding, including proteoglycan binding, acting 
on the aldehyde or oxo group of donors, oxidoreductase 
activity, acting on the aldehyde or oxo group of donors, 
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Fig. 1 Screening and analysis of glaucoma-related genes. A Volcanic map of differentially expressed genes between GSE9944 glaucoma and 
normal samples (red: up, blue: down. The dotted line on the horizontal and vertical axis indicates that the absolute threshold of logFC is 0 and the 
p—value threshold is 0.05, respectively); B Heat map of differentially expressed genes between GSE9944 glaucoma and normal samples (Said every 
little squares one gene, its color amount, said the gene expression to express the greater the amount of the deeper the color (red: up, blue: down)); 
C Volcanic map of differentially expressed genes between GSE2378 glaucoma and normal samples; D Heat map of differentially expressed genes 
between GSE9944 glaucoma and normal samples; E: Screening of up-regulated glaucoma related genes (Red: GSE2378 increase expression of 
genes, yellow: GSE9944 increase expression of genes); F: Screening of down regulated glaucoma related genes (Red: GSE2378 down expression of 
genes, yellow: GSE9944 down expression of genes)
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NAD or NADP as acceptor, aldehyde dehydrogenase 
(NAD +) activity, aldehyde dehydrogenase [NAD(P) +] 
activity, retinol dehydrogenase activity, alcohol dehydro-
genase [NAD(P) +] activity, bile acid-binding, co-SMAD 
binding, proteoglycan binding, etc., (Fig. 2E). In terms of 
cell composition, it is significantly related to the collagen-
containing extracellular matrix.

KEGG (Kyoto Encyclopedia of Genes and Genomes, 
KEGG) pathway enrichment analysis found that there 
was no down-regulated differentially expressed gene 
related pathway, while the up-regulated differentially 
expressed genes were significantly related to amino acid 
metabolism, glucose metabolism, and fatty acid metab-
olism, including Histidine metabolism, beta-Alanine 
metabolism, Complement, and coagulation cascades, 
Valine, leucine and isoleucine degradation, TGF -beta 
signaling pathway, Glycolysis/Gluconeogenesis, Pyruvate 
metabolism, Fatty acid degradation (Fig. 2F).

Diagnostic models and biomarkers of glaucoma created 
by Logistic Regression, Random Forest, and LASSO 
regression
In this part, the Glmnet and random Forest packages 
respectively applied LASSO and LR-RF algorithms to 

construct glaucoma diagnostic models. When λ min was 
0.03137, the glaucoma diagnostic model derived from 
LASSO regression was optimal (Fig.  3A). The model 
contained five genes including IFI16, RFTN1, NAMPT, 
ADH1C, and ENO2, and the AUC value of the ROC 
curve was 1 (Fig. 3B), which proved the accuracy and sen-
sitivity of the model. The AUC values of the LR-RF diag-
nostic model were 0.987 and 0.936 respectively (Fig. 3C). 
The genes output by the model were NAMPT, ADH1C, 
and ENO2. The gene intersection results of the LASSO 
regression model and LR-RF model indicated that three 
genes NAMPT, ADH1C, and ENO2 could be used as bio-
markers in this study (Fig. 3D).

The diagnostic efficiency of the three gene evaluated 
by the ROC curve confirmed that the AUC values of 
the three genes were all 1, which indicates that ADH1C, 
ENO2, and NAMPT are biomarkers for the diagnosis 
of glaucoma (Fig. 3E). Furthermore, the nomogram was 
constructed for the three diagnostic biomarkers (Fig. 3F). 
The C value of the nomogram correction curve was 1, 
and the calibration curve indicated that the prediction 
effect of the Neglect diagram is excellent (Fig. 3G). These 
results suggest that the combined expression levels of the 
three genes can be used to diagnose glaucoma.
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Transcription factor regulatory network 
and lncRNA‑miRNA‑mRNA regulatory network 
of diagnostic biomarkers
The Network Analyst database predicted the TF of bio-
markers. 118 genes-F relationship pairs were obtained, 
including ENO2 and NAMPT, while ADH1C did not 
predict transcription factors (Fig.  4A). The prediction 
results of the targeting relationship show that there are 
925 lncRNA-miRNA-RNA targeting relationship pairs. 
In addition, the miRNA network with the binding energy 
of miRNA and mRNA top2 was selected for visualiza-
tion (Fig. 4B). The results show that the miRNA network 
related to ENO2 was composed of has-miR-467-p and 
has miR-96-p; The network composed of has miR-14b-p 
and has mir-6787-p were related to ADH1C, and the net-
work composed of has miR-277-p, has miR-944-p, and 
has miR-944-p were related to NAMPT.

Validation of expression and diagnostic efficiency 
of diagnostic biomarkers for glaucoma
The expression of 3 biomarkers in the GSE9944 dataset 
suggested that NAMPT and ADH1C were up-regulated 
and ENO2 down-regulated in glaucoma samples. The 
validation results in the GSE2378 dataset were con-
sistent with those in GSE9944 (Fig.  5A). Correlation 
analysis between biomarkers showed that ENO2 was 
negatively correlated with ADH1C (cor = -0.865714202) 
and NAMPT (cor = -0.730541227) (Fig.  5B). The ROC 
curve of the GSE 2378 dataset showed that the AUC 
of the three diagnostic biomarkers was 1 (Fig.  5C). The 
above results show that ENO2, NAMPT, and ADH1C 
have strong diagnostic values for glaucoma.

Molecular docking between glaucoma diagnostic markers 
and compound with therapeutic activity for glaucoma
The prediction results of GeneCards indicated that 
only ENO2 was included in the list of disease targets 
for glaucoma. In addition, 3 active molecules for glau-
coma treatment were found in the TCMSP database 
(https:// tcmspw. com/ tcmsp. php): Acetylsalicylic acid 
[PMID: 34208432], 7-O-Methylisomucronulatol, Scutel-
larin [PMID: 34414202], and molecular docking was 
carried out with the diagnostic biomarker ENO2 (PDB 
ID of ENO2 is 4ZCW crystal structure). The molecular 

docking of Acetylsalicylic acid (3D converter structure, 
Fig. 6A) and ENO2 were carried out by Auto Dock vina 
(Fig. 6B). ARG-179, GLU-415, and GLU-10 residues have 
hydrogen bond interaction with the acetylsalicylic acid 
molecules. The docking affinity between active molecules 
and proteins was 5.5 kcal/mol (Fig. 6A, B). When molec-
ular docking of ENO2 and 7-O-Methylisomucronulatol, 
in which LYS-120 and ARG-32 residues interact with 
7-O-Methylisomucronulatol molecules by a hydrogen 
bond. The docking affinity between the active molecule 
and the protein was 7.3  kcal/mol (Fig.  6C, D). When 
molecular docking of ENO2 and Scutellarin among 
which ARG-32, ARG-412, LEU-128, and THR-379 resi-
dues interact with Scutellarin molecules by a hydrogen 
bond. The docking affinity between the active molecule 
and the protein was 8.9 kcal/mol (Fig. 6E, F).

Discussion
The asymptomatic of glaucoma has a slow development 
process. Previous research indicated that the vision may 
have been seriously damaged before the early stage of 
glaucoma [13]. At present, many methods are used to 
diagnose, detect and screen, and point out the direction 
for clinical treatment of glaucoma. However, this has a 
great limitations on clinically available tools for analysis 
glaucoma. No gold standard, and it takes a long time of 
treatment and observation to confirm the clinical effect 
of treatment. Using biomarkers was conducive to the 
early diagnosis to better treatment and management of 
glaucoma. At the same time, the evaluation of glaucoma 
biomarkers also provides a basis for the discovery and 
research of glaucoma-targeted therapeutic drugs [14, 
15]. Recently, artificial intelligence and spatial probabil-
ity algorithms have high accuracy and data efficiency [16, 
17]. Machine learning algorithm has been proved to be 
used for disease prediction, and among the Random For-
est (RF) algorithm shows higher accuracy than the Sup-
port Vector Machine (SVM) algorithm and the Naïve 
Bayes algorithm, which provides advantages for the 
accurate diagnosis of glaucoma [18]. Glaucoma is only a 
generic term of a highly different disease group of optic 
neuropathies, which is characterized by high or normal 
intraocular pressure combined with damage to optic 
papilla, retinal nerve fiber layer, and glaucomatous visual 

Fig. 3 Three machine algorithms construct and analyses the best diagnostic model. A Lasso regression analysis Screening feature gene (A1: The 
horizontal coordinate deviance represents the ratio of the residual explanation, and the ordinate is the coefficient of the gene; A2: the abscissa is log 
(Lambda), The ordinate represents the error of cross-validation, in practice, the left dashed position is the smallest position of the cross-validation 
error, according to this location (lambda.) MIN) Determine the corresponding abscissa log (Lambda), the upper side shows the number of feature 
genes, find the optimal log (Lambda) value, find the corresponding gene and its coefficients in the left, and the residual explanation of the model 
proportion). B Evaluation of LASSO diagnostic model by ROC curve. C ROC curve of LR and RF diagnosis model of assessment. D Intersection of 
LASSO characteristic gene and LR_RF characteristic gene. E Diagnostic biomarkers (E1: ADH1C, E2: ENO2, E3: NAMP) of ROC curve. F Nomogram of 
diagnostic biomarkers (ADH1C, ENO2, NAMP). G Nomogram of calibration curve

(See figure on next page.)

https://tcmspw.com/tcmsp.php
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field [19]. At the time of diagnosis, we comprehensively 
judge whether have glaucoma by intraocular pressure 
examination, atrial angle examination, optic disc struc-
ture examination, optic nerve evaluation, visual field, and 
visual function examination. In this study, the database 
of clinical diagnosis of glaucoma and normal samples in 
the database were used directly to study and diagnosed 
glaucoma from genetic aspects. Although the differ-
ence in age, gender, and race was taken into account, the 
influence of other factors on glaucoma was not consid-
ered due to data limitations. In our study, the glaucoma 
diagnosis model was constructed by machine learning 
algorithm LR-RF and LASSO algorithm, and 3 diag-
nostic biomarkers ADH1C, ENO2, and NAMPT were 
confirmed.

NAMPT and ADH1C were up-regulated in glaucoma 
samples, contrary ENO2 was down-regulated in glau-
coma samples. NAMPT was closely related to nerve 
movement and survival. The loss of neuronal NAMPT 
will lead to motor neuron degeneration and functional 
defects in mice [20], and NAMPT has an important 
impact on human neurological diseases, this is consistent 
with the high expression of NAMPT in glaucoma sam-
ples [21, 22]. The development of glaucoma is associated 
with oxidative stress, ADH1C may be related to oxidative 
stress and mitochondrial dysfunction in glaucoma. The 
discovery of ADH1C may play a foundation for studying 
the pathogenesis of glaucoma from the aspects of oxida-
tive emergency and antioxidation. The enzyme encoded 
by ENO2 exists in mature neurons and cells of neuronal 
origin, which is called neuron-specific enolase (NSE). At 
present, NSE was helpful to predict the visual acuity of 
primary open-angle glaucoma (POAG) patients [23, 24]. 
In addition, glaucoma target prediction indicated that 
only ENO2 existed in the database. ENO2 only exists in 
neurons, neuroendocrine and muscle tissues. ENO2 is 
closely related to neurodegenerative diseases [25]. The 
up-regulated expression of ENO2 in NSCLC indicated 
that the ENO2 can be used as a marker [26, 27]. The 
serum of NAMPT level of patients with a history of reti-
nal vascular occlusion (RVOs) was much lower than that 
of healthy individual. NAMPT-PBEF-visfatin serum lev-
els can be used as a marker of RVOs [28].

The regulatory network of transcription factor and 
non-coding RNA regulatory of glaucoma in diagnostic 
markers reveal the expression regulation mechanism of 

these three diagnostic markers at the transcription and 
post-transcriptional levels, respectively. Studies have 
shown that transcription factors can be used as the 
diagnostic marker or the key to optic nerve degenera-
tion in glaucoma. For example, SIX6 risk variation, 
silent information regulator T (SIRT) 1, and Forkhead 
Box O (FOXO) transcription factor 1 and 3a ( FOXOs 1 
–3a), which is the key to the pathogenesis of glaucoma 
or optic nerve degeneration [29, 30]. Furthermore, the 
target gene and its relationship with miRNA and sig-
nal pathway can realize the diagnosis of glaucoma [31], 
lncRNA and miRNA have also been proved to be key 
to glaucoma diagnosis and retinal nerve regulation. For 
example, lncRNAs (DNAJC27-AS1, AF121898, OIP5-
AS1, and SNX29P2) were established as hub RNAs in 
the ceRNA network of POAG [32]. The expression levels 
of lncRNAs T267384, ENST00000607393, and T342877 
as biomarkers of glaucoma [33]. The 20 miRNAs as 
potential biomarkers of glaucoma have been found [34], 
the isolation and inhibition of mir-615 were consid-
ered to have a certain effect on retinal neurodegenera-
tion [35]. Our research shows that ENO2 and NAMPT 
are regulated by a large number of transcription factors, 
among them, there are 8 common transcription factors. 
CeRNA network analysis of the three diagnostic markers 
obtained a total of 925 lncRNA-miRNA-mRNA target-
ing pairs. The network sorted according to the binding 
energy of miRNA and mRNA, ENO2, has-miR-2467-3p 
and has-miR-296-3p, ADHIC, has miR-514b-3p and has 
miR-6787-5p, and NAMPT has miR-2277-5p, has miR-
3944-5p, and has miR-3944-3p.

To explore whether the three diagnostic molecules 
can be used as therapeutic targets of glaucoma. Three 
compounds with glaucoma therapeutic effects were 
selected by the TCMSP database, which was used for 
molecular docking with diagnostic markers. 7-O-Meth-
ylisomucronulatol was key compound in the compound-
target network of Qing Guang An Granule (QGAG) to 
the treatment of glaucoma [36]. Scutellarin was discov-
ered as a substance that protects the nerves of the eyes 
and brain, which is a new neurotherapeutic agent for 
glaucoma treatment, it has been studied in mice, at pre-
sent, [37, 38]. Acetylsalicylic acid has complex effects on 
the changes of intraocular pressure, studies have dem-
onstrated that single-use of acetylsalicylic acid cannot 
significantly reduce intraocular pressure in glaucoma 

(See figure on next page.)
Fig. 4 Biomarkers of the regulation network analysis diagram. A Diagnostic biomarkers of gene—TF control network. Pink inverted triangular cones 
represent genes, blue circles represent transcription factors, and arrows represent targeted regulatory relationships. B The lncRNA – miRNA—mRNA 
regulatory network of diagnostic biomarkers. Pink inverted triangular cones represent genes, yellow triangles represent miRNAs, and blue squares 
represent lncrnas
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patients, but long-term use will have an impact on 
intraocular pressure [39, 40]. There was a distinguished 
effect that acetylsalicylic acid is used in combination with 
other drugs to treat glaucoma [41]. The glaucoma-related 
gene list in GeneCards only contains ENO2 among the 
three diagnostic markers, ENO2 was used for molecu-
lar docking. These results indicate that ENO2 may be a 
potential target for glaucoma.

Conclusion
Our research shows that ENO2, NAMPT, and ADH1C 
as diagnostic markers have been proved to be effective in 
the diagnosis of glaucoma, and ENO2 is a potential ther-
apeutic target.
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