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Circular RNAs (circRNAs) are newly discovered incipient non-coding RNAs with potential roles in disease progression in living
organisms. Significant reports, since their inception, highlight the abundance and putative functional roles of circRNAs in every
organism checked for, like O. sativa, Arabidopsis, human, and mouse. CircRNA expression is generally less than their linear mnRNA
counterparts which fairly explains the competitive edge of canonical splicing over non-canonical splicing. However, existing
methods may not be sensitive enough for the discovery of low-level expressed circRNAs. By combining template-dependent
multiple displacement amplification (tdMDA), Illumina sequencing, and bioinformatics tools, we have developed an experimental
protocol that is able to detect 1,875 novel and known circRNAs from O. sativa. The same method also revealed 9,242 putative
circRNAs in less than 40 million reads for the first time from the Nicotiana benthamiana whose genome has not been fully annotated.
Supported by the PCR-based validation and Sanger sequencing of selective circRNAs, our method represents a valuable tool in

profiling circRNAs from the organisms with or without genome annotation.

1. Introduction

Circular RNA (circRNAs) is an emerging class of non-
coding RNA that attracts significant attention in scientific
community. They are covalently closed without the 5’ cap
and polyadenylation in the 3’ end. CircRNAs were initially
described from plant viroids [1] and subsequently identified
in human and visualised by electron microscopy over 35 years
ago [2]. Consequent work in sex-determining region Y (SRY)
gene was recognised as splicing errors [3, 4]. However, studies
on antisense non-coding RNA in INK4 locus (ANRIL) [5]
and cerebellar degeneration-related protein 1 (CDR1) [6]
have provided compelling evidence for circRNA in human
[7], mammals [8], archaea [9], C. elegans, and mice [10].
CircRNAs are synthesized by backsplicing of downstream
donor site with the upstream acceptor site using the canonical
spliceosomal signals and machinery [11, 12]. Recently ever
growing reports on circRNAs reveal their pivotal roles in

fundamental biological pathways by their multiple functional
aspects, such as microRNAs (miRNAs) sponges [10, 13-17],
cap-independent translation [18-21], modulation of cellular
proliferation [19, 22-24], scaffolding the protein activity [12,
25, 26], and competition with linear mRNAs [19].

With the assistance from computational algorithms [7, 8,
27-32], numerous approaches have been developed to detect
and validate the presence of circRNAs in different species
across the kingdoms [12, 15, 33, 34]. A major challenge in
circRNA discovery might be attributed to its extremely low
abundance in samples. The cutting-edge method involves
the enrichment of circRNA by enzymatic digestion, RNA-
Seq, and bioinformatics identification, followed by PCR-
based validation [13, 35, 36]. A limitation in this approach is
the sensitivity because library preparation in next-generation
sequencing (NGS) is often associated with the loss of low-
abundant molecules [12, 37]. Thereby significant sequencing
depth is required in order to identify putative circRNAs [12].


http://orcid.org/0000-0003-4081-9750
http://orcid.org/0000-0003-0811-0397
http://orcid.org/0000-0002-2240-3965
http://orcid.org/0000-0001-5399-3681
http://orcid.org/0000-0001-5884-5477
http://orcid.org/0000-0003-1802-1566
http://orcid.org/0000-0002-3201-5499
http://orcid.org/0000-0002-2186-2473
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2756516

In the present study, we have introduced a step of template-
dependent multiple displacement amplification (tdMDA)
prior to library preparation. Together with a newly developed
computer program, we have built an experimental pipeline
that shows an enhanced sensitivity to identify circRNAs from
the plants.

2. Materials and Methods

2.1. Plant Materials. O. sativa plants were grown in green
house maintained at 32°C and (70-80) % humidity for 2
months. Similarly, N. benthamiana were grown in plant
growth chamber with 16 hrs/8hrs light/dark condition and
85% humidity for 2 months. Plant leaves at 30- and 45-day
old were collected for RNA isolation from O. sativa and N.
benthamiana, respectively.

2.2. RNA Extraction, Reverse Transcription (RT), and
Template-Dependent Multiple Displacement Amplification
(tdMDA). Total RNA was extracted from approximately
100mg of leaves of N. benthamiana and O. sativa using
Tri Reagent (Sigma, St. Louis, MO, USA) according to the
manufacturer’s instruction (TRI Reagent (T9424)-Technical
bulletin). Extracted RNA was treated with 4U of Turbo
DNase (2U/uL, Ambion, Austin, TX, USA) at 37°C for
30 minutes and then inactivated at 72°C for 10 minutes,
followed by phenol/chloroform purification. Ten microgram
of DNase-treated RNA was subjected to 10U of RNase
R (20U/uL, Epicentre, Madison, WI, USA) digestion at
37°C for 15 minutes. Both integrity and concentration were
determined respectively on 1.2% agarose gel and Nanodrop
ND-1000 (Thermo Scientific, Waltham, MA, USA).

RNA amplification was achieved by RT-tdMDA protocol
[38]. In that protocol, background amplification in MDA
was eliminated by using exo-resistant random pentamer
primers with their 5' ends blocked by C18 spacer [38]. Its
efficiency was first evaluated by using extracted RNA and
plasmid APTRY [39, 40] with the final primer concentration
ranging from 50 to 200 uM. About 1ug of RNase R-
treated RNA was converted into cDNA using RevertAid or
RevertAid H minus first strand cDNA synthesis kit according
to manufacturer’s instructions (Thermo Scientific, Waltham,
MA, USA). Approximately 50ng of converted cDNA was
directly used for tdMDA in a 20-uL reaction consisting of
2ul of 10mM dNTP mix, 2 ul of 10X reaction buffer, 2 ul
of 500 uM 5'end-blocked exo-resistant random pentamer
primers, 0.6 ul of Phi29 DNA polymerase (10U/ul, Thermo
Scientific, Waltham, MA, USA), and 2 ul of pyrophosphatase
(0.01U/ul) (Thermo Scientific, Waltham, MA, USA). The
reaction mixture was incubated at 28°C for 18 hours and
terminated by heating at 65°C for 10 minutes. An aliquot of
3 ul reaction was loaded on 1% TAE agarose gel to check for
tdMDA performance.

2.3. Identification of circRNA from the tdMDA Ampli-
cons by Cloning and Sequencing. The tdMDA amplicon
was randomly digested with the restriction enzymes, Sacl,
HindIll, Sspl, BamHI, EcoRV, and EcoRI (10U/ul, Thermo
Scientific, Waltham, MA, USA) for 3 hours at 37°C. The

BioMed Research International

HindIIl, Sacl digested fragments were purified by GeNei
PCR purification kit (Bangalore, Karnataka, India) and
cloned in pOKI2 or pBluescript II KS (+) vector at the
corresponding site at 16°C for 12 hours. After the con-
firmation by restriction digestion, a total of nine clones
were sequenced, seven for N. benthamiana and two for O.
sativa. The mapped clone sequences such as HindIII 10,
HindIIl 33, HindIII 38, and Sacl 11 for N. benthamiana and
HindIIl 1 and HindIIl 2 for O. sativa were subjected to
prediction for their possibility of forming circRNA in Plant-
circBase [41] (http://ibi.zju.edu.cn/plantcircbase/index.php).
Predicted putative circRNA sequences were validated by RT-
PCR with divergent primers (Table 1) [42].

2.4. Identification of circRNA from the tdMDA Amplicons
by Illumina Sequencing. About 200ng of tdMDA prod-
ucts was used for library construction using Illumina-
compatible NEXTflex Rapid DNA sequencing kit (BIOO
Scientific, Austin, Texas, USA) according to manufacturer’s
instructions, followed by sequencing at the Illumina NextSeq
500 platform (150-nt paired end) at Genotypic Technology,
Bangalore as previously described [40, 43]. Under genomic
annotations from Ensembl plant release 29 [44], trimmed
reads at Phred 23 were aligned with O. sativa Indica genome
and N. benthamiana draft genome for subsequent circRNA
identification using DCC software (v 0.4.4) [45]. In addition
to the consideration of non-canonical splice junction, other
parameters were also included for circRNA identification as
postulated in the DCC [45]. All the analysis was carried out
using Biolinux 8 OS [46].

2.5. Validation of circRNAs Derived from tdMDA-Illumina
Sequencing. Divergent primers were designed from the cir-
cRNA derived from NGS-tdMDA containing the junction
site (Table 1). Most primers designed for O. sativa and N.
benthamiana were tested for the validation of corresponding
circRNAs using genomic DNA and ¢cDNA by the standard-
ised annealing temperature (T,). Divergent PCR products
were subjected to sequencing or digestion with restriction
enzymes.

2.6. Northern Hybridization. Non-radioactive northern hy-
bridization was performed with the purified PCR fragment
(>200 nt) as the probe, which spanned the corresponding cir-
cRNA junction site. Probe preparation was followed with the
DIG DNA labelling kit (Roche, Basel, Switzerland) according
to manufacturer’s instructions.

2.7. Analysis on circRNA Conservation and miRNA Binding
Sites. NCBI-BLASTN was used to examine the conserva-
tion of circRNAs with other reported plant species, such
as S. bicolour [47], S. italica [47], B. distachyon [47], and
those included in plant circular RNA database [41]. The
psRNATarget, a plant small RNA target analysis server (2017
release) [48], was applied to annotate the possible role of
reported O. sativa and N. tabacum miRNAs on predicted
circRNAs.
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TaBLE 1: List of divergent primers designed for use in confirmation of putative circRNA.

Divergent primer

Sequence

Forward: 5'-CTATAGTTGAAGCACCTGATGGTGT-3

HindIII 10 ) ,
Reverse: 5 -GAGCCATAAAGATAGGCAGTAACTACA-3

Findl 33 Forward: 5'-TGGTTCACCACAACCCGT-3'
Reverse: 5’ -TGTGTGACTCAAGTTCTCAGTTTGTAA-3

osi_circl Forward: 5’ -TGGTAGCAACCGCACAAA-3'

(1:36416264-36418547)

Reverse: 5’ -ATGCTTCCAGGCACATCA-3'

osi_circ2
(2:19273316-20009087)

Forward: 5'-GGGAGCTCAAGGTGAAGAT-3
Reverse: 5 -GTTGAACAAACAACACACAAC-3'

osi_circ3
(8:24552647-24573025)

Forward: 5'-ACGTTGAGAGTAAGTTTCCG-3'
Reverse: 5 -CCCTTTACGATACCACTAGCC-3'

osi_circ4
(12:16650523-17328210)

Forward: 5 -TAGGCTCACGATGTGTTGC-3
Reverse: 5 -CGATGAGGGCTGCGAAC-3'

osi_circ5
(9:15720676-15721227)

Forward: 5'-ATCCTTGGAGCTGGCTATGA-3'
Reverse: 5'-ATCTCGGTTGACCACACACT-3'

osi_circ6
(7:15534138-15534682)

Forward: 5 -TCAAGTCCGCCGTCAAATC-3’
Reverse: 5'-CCCAAGGGCAGGTTCTTAC-3'

osi_circ7
(6:27117575-27118530)

Forward: 5 -TGCAGAAACAGCATGGTCA-3'
Reverse: 5’ -ATAGGGTGCAAACCTGTGAG-3'

osi_circ8
(8:4494958-4495647)

Forward: 5'-AGAGTCTCTGGCAGTCTCC-3'
Reverse: 5 -AACCAGTGACTAGCAACTAAGAA-3'

osi_circ9
(1:41518651-41519075)

Forward: 5'-GCGACCTTACTGCACGAATA-3'
Reverse: 5 - TTGCAAGCGCAACACAAC-3'

osi_circl0
(8:15854661-15861841)

Forward: 5'-GCTAGCAGGGACAGGTTATC-3'
Reverse: 5 -CAGAAGACGTGTGTGCCTAT-3'

Nb_circl
(Niben101Scf01334:583095-583645)

Forward: 5'-CTGGGTCAGTCCTCCATTT-3'
Reverse: 5 -AGATACGCATGCCTCCAA-3'

Nb_circ2
(Niben101Scf01481:214685-215144)

Forward: 5'-TCAACGTGCTTCCTGAACT-3'
Reverse: 5'-AAATGCTTGGGTCCTACTCC-3'

Nb_circ3
(Niben101Scf01671:738307-738555)

Forward: 5 -TCTTGTCCCAGTCCAGAGA-3'
Reverse: 5 -TGTCTCCGCGTGTTAATGT-3'

Nb_circ4
(Niben101Scf01820:33613-33924)

Forward: 5 -GTTGTGCTCATTCCATTGGG-3'
Reverse: 5’ -TGCTTCCTGAGCAAGTTCTG-3'

Nb_circ5
(Niben101Scf01505:317983-318653)

Forward: 5'-CCCAATCCACCTTGATCCTT-3'
Reverse: 5'-CACGACTGGATTTGGCGATA-3'

Nb_circ6
(Niben101Scf32276:10732-11201)

Forward: 5’ - TGGGTACCGAAGTGTACTGT-3'
Reverse: 5’ -AAACCTTGGACCGAGATCAAAT-3'

Nb_circ7
(Niben101Scf27324:1438-11811)

Forward: 5'-TGAGCCATTCGCAGTTTCA-3'
Reverse: 5’ -GGTCGTCTCGTCCCTTCT-3'

Nb_circ8
(Niben101Scf15187:11992-12579)

Forward: 5’ -TGGCTAGAATGCGGGTTTC-3'
Reverse: 5 -ATCTTGAAAGTCGTGGTTTCCT-3'

Nb_circ9
(Niben101Scf09703:266605-266722)

Forward: 5'-GCAGTTGGAGACTTTGAGGT-3'
Reverse: 5 -TGCCGCAAGGGTGATATG-3'

Nb_circl0
(Niben101Scf11535:99376-100075)

Forward: 5'-ACAGGTAGTCTGTTCCGACA-3'
Reverse: 5'-AGATGCCGAGGAGTTGGA-3'
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F1GURE 1: Amplification of cDNA by Phi29 DNA polymerase. Total RNA from N. benthamiana (a) and O. sativa (b) was treated with DNase
and RNase R to enrich circRNAs. The enriched circRNAs were converted into cDNA using random hexamer and subjected to amplification

by Phi29 DNA polymerase.

3. Results

3.1 The Elimination of Background Amplification by tdMDA.
Template independent amplification (TIA) in MDA is a major
concern owing to high concentrations of random hexamers
and an extended incubation period [38]. To eliminate TIA,
we followed the protocol proposed by Wang et al. [38].
Total RNA extracted from O. sativa was mixed with the
plasmid pAPTR9 that harboured Bhendi yellow vein mosaic
virus (BYVMV). After DNase treatment, BY VM V-specific
PCR vyielded no amplification, suggesting a complete DNA
digestion in the template (Figure Sla). This template was sub-
sequently used to test the efficiency of RT-tdMDA protocol
[38]. In four primer concentrations (50, 100, 150, and 200
¢#M), no amplicon was found in the controls (no template)
(Figure S1b). In contrast, 50 ng of template along with 50 yM
final primer concentration showed an apparent amplification
(Figure SIb). Therefore, the use of exo-resistant random
pentamer primers with blocked 5’ ends efficiently eliminates
TIA.

3.2. Novel circRNAs Identified by RT-tdMDA, Cloning, and
Sanger Sequencing. After DNase and RNase R treatment
(Figure S2), total RNA from N. benthamiana and O. sativa
plants was successfully amplified (Figure 1). Again, no
amplification was observed from the negative controls (no
template) (Figure 1). Of seven sequenced clones derived from
N. benthamiana, four sequences, named Sacl 11, HindIII 10,
HindlIIl 33, and HindlIII 38, showed 100% sequence identity
in BLAST analysis against N. benthamiana genome [49]
(https://solgenomics.net/organism/Nicotiana_benthamiana/
genome). Two clones from O. sativa, HindIll 1 and HindlIIl
2, were aligned onto the intron region in chromosomes 7
and 1 of O. sativa with 100% and 99% identity respectively.
These sequences were then analyzed in PlantcircBase for
the potential of circRNA formation. As a result, three
sequences from N. benthamiana, Hindlll 10, HindIll
33, and Sacl 11, were predicted to be putative circRNAs.
The HindIll 10 sequence was partially mapped onto the
intron domain of N3 disease resistance protein gene of
Nicotiana paniculata with 96% sequence identity (Figure S3,
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F1GURE 2: Identification of rice circRNAs from NGS data. CircRNAs identified from total number of reads obtained in rice (a); their

chromosome wise distribution (b); types (c); size distribution (d).

Figure S5, and Figure S6), suggesting its intronic nature.
The HindlIIl 33 sequence was aligned to multiple domains,
including the unannotated region of the retrotransposon
of Nicotiana tabacum (1-156 bp, 88% identity), Frigida like
protein gene of N. benthamiana (156-259 bp, 87% identity),
and 40S ribosomal protein gene (227-282 bp, 94% identity).
Therefore, HindlIIl 33 sequence might be an intronic-exonic
circRNA (Figure S3, Figure S5, and Figure S6). The Sacl 11
sequence (Acc. No. MF066173) was predicted as a circRNA.
However, this sequence was mapped onto Nicotiana sylvestris
mitochondrial genome and thus not included for further
experimentation. Analysis in PlantcircBase also suggested
that two clones from O. sativa, HindIII 1 (osa_circ_032545)
and HindIII 2 (osa_circ_000547), were existing intronic and
exon-intronic circRNAs respectively. For putative circRNA
sequences HindIII 10 and HindIII 33, PCR amplification with
divergent primers provided a positive result when cDNA was

used as template whereas no amplification was observed at
the same size when various concentration of genomic DNA
was used as template (Figure S4).

3.3. Complete circRNA Profiles Revealed by Illumina Sequenc-
ing. Encouraged by the positive outcome from the cloning
and Sanger sequencing, the amplicons from RT-tdMDA
were subjected to Illumina sequencing for possible capture
of entire circRNA repertoire. The total number of 150-nt
paired end reads obtained from O. sativa and N. benthamiana
were 21,818,956 and 38,060,238, respectively. Using the raw
reads from the O. sativa, the DCC computational pipeline
discovered thousands of circular splicing events that yielded
1,875 circRNAs (Figure 2(a)). These putative circRNAs are
predominantly distributed on the chromosomes 1 and 5
(Figure 2(b)). Perhaps due to the unannotated genome of
Indian cultivar (Pusa Basmati 1), around 200-300 circRNAs
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came from the genes without any particular chromosome
assignment (Figure 2(b)). With respect to circRNA types, the
intergenic-intergenic type (n=1,359) was the most abundant
type followed by the intronic-intronic type (n=182) and the
exonic-exonic type (n=123) (Figure 2(c)). Furthermore, 79%
of putative circRNAs had the length between 100 and 999
nt whereas ~1% and ~20% had the size below 100 nt and
larger than 1000 nt respectively (Figure 2(d)). The smallest
circRNA was found to be of 32 nt between positions 5,187-
5,219 in the genome. This putative circRNA is surprisingly
an intergenic-intergenic type with CT/AC splice junction on
scaffold ID AAAA02040137.1. On the other hand, the largest
size of circRNA identified was 737,782 nt on the chromosome
11 between positions 18852424 and19590206, which harbours
many functional genes like MIR genes, tRNA genes, and
the genes encoding for hypothetical protein. The largest
circRNA is assumingly formed in a non-canonical manner
and categorised as an intron-intergenic type. Finally, all
putative circRNAs were associated with a total of 578 genes in
which ~72% had the translation of hypothetical proteins. The
gene ID BGIOSGA000405 on the chromosome 1 contributed
the maximum number of circRNAs (n=35) while most genes
gave only one or two circRNAs (Figure 3(a)). Individually,
less than 10% of the genes could produce more than two
circRNAs.

Similar analysis in N. benthamiana yielded 9,242 cir-
cRNAs, including 6,080 intergenic-intergenic, 1,257 intron-
intron, 1,009 intron-intergenic, and 896 intergenic-intronic
circRNAs (Figures 4(a) and 4(b)). Interestingly, no exonic cir-
cRNAs were identified probably because of unavailability of
complete genome annotation. In comparison with O. sativa,
circRNAs from N. benthamiana were larger in size with 69%
of total identified circRNAs above 1,000 nt (Figure 4(c)). The
Niben1015¢f02816, an intergenic-intergenic circRNA formed
by the non-canonical splice junction, had the smallest size
with about 35 nt located between positions 85,132, and 85,167
on the genome. The longest circRNA was Niben101Scf03154
with 299,801 nt, also an intergenic-intergenic type between
589 and 300,390 genome positions.

3.4. Validation of circRNAs Identified by RT-tdMDA and
Illumina Sequencing. PCR and northern hybridization were
used for the validation of selective circRNAs. For cir-
cRNA Nibenl01Scf27324 (Nb_circ7 primer, Table 1), PCR
produced two distinct DNA bands with the sizes at ~
150 and ~250bp. There was no DNA amplification at
similar sizes upon the use of the genomic DNA as tem-
plate (Figures 5(a) and 5(b)). Sanger sequencing of PCR
product mapped the larger fragment to the circRNA with
extra sequence, suggesting a potential alternative splicing
event involved for the biogenesis of this particular circRNA
(Figure S7). Further evidence came from the northern
hybridization that signalled an apparent presence of cir-
cRNA Nibenl01Scf27324 (Figure S8). Divergent PCR also
gave positive amplification for the osi_circl0 (Figure 5(c))
as well as other putative circRNAs including Nb_circ3,
Nb_circ6, osi_circ2, osi_circ4, osi_circ6, and osi_circ8 (data
not shown). Their authenticity was supported by restriction
digestion of purified DNA bands from the gel (data not
shown).

3.5. CircRNAs Are Conserved across the Species. Several re-
ports claimed conservative nature of circRNA across species
[8]. Therefore, we compared our circRNAs with all circRNAs
either reported [15] or deposited in the plant circular RNA
database [41]. Of 1,875 cicrRNAs from the O. sativa, signif-
icant similarity was found for 1,120 (60%) to O. Sativa ssp.
Nipponbare, 549 (29.2%) to A. thaliana, and 145 (7.75%) to
T. aestivum (Figure 6(a)). For N. benthamiana, the sequence
similarity was also shared for 55 circRNAs with S. tuberosum,
60 circRNAs with A. thaliana, and 44 circRNAs with O. Sativa
(Figure 7(a)). There was no or little conservation between
our putative circRNAs and the circRNAs discovered in the
plants like S. bicolour, S. italica, B. distachyon, H. vulgare,
and P, trifoliata. This is probably due to a rare number of the
circRNAs identified from these plants that could not provide
a full scenario to explore the conservation (Table 2).



BioMed Research International

7000 -
6000 -
25000 -
Z
Q
Total number of reads 38,060,238 5 3000 -
circRNAs obtained 9242 S 2000 -
1000
()
1400 1
« 1200 4
<
é 1000 -
S 800
% 600 |
e 400 -
Z 200 -
04
S DN DD DD DD
S AN DDA DD
— = AN &N N O I
Vosddo oo o
o O O O O O O
— N 0 < N O N

0 4

T T T
2 2 -2 g
g g g 8
5} o o) =]
j<1o] = [<19] o
- - - o—
L =} I T
£ g £ £
= g 7 g
-2 g g =
g o0 = -
% g g
2 £ g
i =
=
g
Types of circRNAs
(b)
D D DN DNDDNDNDNDNDD
D DDA DNDDNDNDNDD
X AN F AN QDN D
T I~ = N 00 I DO
co T T AR TR RS
(S == = R e R = R ]
X N OO QDD D A
o n o 9o o O 9
— = AN N N O
=1
=

Size of circRNAs (nt)

()

FIGURE 4: Identification of N. benthamiana circRNA from NGS data. CircRNAs identified from total number of reads obtained in N.

benthamiana (a); their types (b); size distribution (c).

4. Discussion

CircRNAs encompass a transcript family with distinctive
structures. Various methods are used to detect the circRNAs
in both plants and animals [10, 13]. The difficulty in circRNA
identification lies in the inability to separate the circRNAs
from other RNA species based on their size or electrophoretic
mobility. Molecular techniques that involve amplification
or fragmentation may destroy their circular nature since
circRNAs lack a free 5" or 3’ end. Likewise, methods that
use polyadenylation ends, such as rapid amplification of
c¢DNA ends (RACE) or poly (A) enrichment, cannot be
employed for circRNA identification. These hindrances have
been overcome by the emergence of exonuclease based
enrichment procedures and high throughput sequencing
techniques [12]. For instance, RNA sequencing has been
used for the identification of circRNAs in Arabidopsis and O.
sativa [14]. However, owing to an extremely low expression
of circRNAs comparing to their linear mRNA counterparts, a
high sequencing depth is demanded for productive capture of
circRNAs. In order to improve the sensitivity, we exploited the
use of tdMDA to identify circRNAs from the N. benthamiana
and O. sativa plants.

Our data have demonstrated the feasibility of tdMDA in
the discovery of circRNAs from small amount of RNA sam-
ples. First, both novel and known circRNAs were identified
from RT-tdMDA product by random enzymatic digestion,
cloning, and Sanger sequencing. Two novel circRNAs from
the N. benthamiana were validated by divergent PCR and
had no significant similarity with Arabidopsis and other
plant candidates. The function of newly identified circRNAs
from N. benthamiana has to be deciphered. Second, Illumina
sequencing of the RT-tdMDA product and bioinformatics
analysis captured 1,875 and 9,242 putative circRNAs from
O. sativa and N. benthamiana respectively. The authenticity
of selective cirRNAs was confirmed by PCR and northern
hybridization. Using RNA sequencing, Jakobi et al. [50]
reported the prediction of 575 circRNAs from 33.5 million
reads in adult mice heart. Assuming a similar abundance
among the samples, we could be able to identify much higher
number of circRNAs from almost equal number of reads
using the same computational pipeline. Earlier, Jeck and
Sharpless (2013) stressed on the need of having 300,000-
300,000,000 reads using traditional sequencing to get a single
circRNA event whereas exonic circRNA is thought to present
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roughly 1% of poly(A) RNA [12, 31]. Again, Wang et al. in
2017 analyzed over 90 million raw reads and could obtain
only 88 circRNAs. Analyzing say, more than 500 million reads
will surely increase the chances of getting low abundance
circRNAs but it will spike up the overall cost tremendously.
Our method reduces the cost significantly without compro-
mising on findings of lowly expressed circRNAs. Finally, the
conservative nature of most predicted circRNAs across the
plants further suggests the methodological reliability.
Besides tdMDA, our experimental pipeline also takes
the power of the bioinformatics tool. We have applied the
DCC that gives the expression count of putative circRNAs
as well as the linear RNAs expected from the same genome
positions. Interestingly, 19% of O. sativa circRNAs showed
overexpression with respect to their linear counterparts
(Figure 3(b)). Functional aspects of circRNAs have not been
fully understood in spite of the reports for their roles in
miRNA sponging, transcriptional inhibition and protein

formation [12]. Our analysis revealed there are 33 circRNAs
that bind to 156 miRNAs in O. sativa Nipponbare (Table S1).
This number is translated into 473 miRNA binding sites as
a single circRNA can bind to more than one miRNA or
vice versa (Table S2). Of the 473 miRNA binding sites, 391
sites (~83%) are cleavage specific while the remaining 82
sites (~17%) are possibly getting sponged by their targets
(Figure 6(b)). In N. benthamiana, 2,099 circRNAs could have
8,149 miRNA binding sites on 163 published N. tabacum
miRNAs (Table S3 and S4). Approximately 85% (n=6,916) of
miRNA binding sites are cleavage specific and 15% (n=1,233)
are target inhibitory in action that need to be deciphered
(Figure 7(b)).

5. Conclusion

In summary, through the combination of tdMDA and bioin-
formatics tools, we have established an experimental protocol
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TABLE 2: List of circRNAs reported from different plants.
Plants Total no. of circRNAs Reference
O. sativa Japonica 40311 Chu et al, 2017
A. thaliana 38938 Chu et al, 2017
T. aestivum 88 Chu et al, 2017
Z. mays 3238 Chu et al, 2017
H. vulgare 39 Chu et al, 2017
G. max 5323 Chu et al, 2017
S. tuberosum 1728 Chu et al, 2017
S. lycopersicum 1904 Chu et al, 2017
G. arboreum 1041 Chu et al, 2017
G. raimondii 1478 Chu et al, 2017
G. hirsutum 499 Chu et al, 2017
P trifoliata 556 Chu et al, 2017
S. bicolor 73 Lu et al, 2015
S. italica 113 Lu et al, 2015
B. distachyon 26 Lu et al, 2015
to detect circRNAs from plant samples. Currently, efficient ~ Acknowledgments

circRNA discovery requires the treatment of RNA sample
by DNase and RNase R which are often associated with the
abundance loss of RNA species including circRNAs. Our
method is thus particularly useful in working with limited
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