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Introduction
The mammalian nuclear envelope (NE) consists of the nuclear 
pore complexes, the outer and inner nuclear membranes sepa-
rated by a luminal space, and the nuclear lamina, which is 
a thin proteinaceous meshwork tightly associated with sev-
eral inner nuclear membrane–associated proteins (e.g., SUN, 
MAN1, lamina-associated polypeptides, lamin B receptor, 
and emerin; Broers et al., 2006). The main components of the 
nuclear lamina are the type V intermediate filaments A- and 
B-type lamins, which exist as coiled-coil dimers and associate  
in head to tail polymers. Alternative splicing of a common pre-
mRNA transcribed from the LMNA gene gives rise to precursor 
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forms of lamin A and C (the predominant A-type lamins),  
lamin A10, and the germline-specific lamin C2 (Broers et al., 
2006). Pre–lamin A undergoes a series of posttranslational 
modifications that culminate with the cleavage of its farnesy
lated 15 C-terminal residues to generate mature lamin A 
(Broers et al., 2006).

Besides their well-established role in maintaining the 
mechanical stability of the nucleus, it is becoming increas-
ingly evident that A-type lamins and associated NE proteins 
are scaffolds for proteins that regulate DNA synthesis, re-
sponses to DNA damage, chromatin organization, gene tran-
scription, cell cycle progression, cell differentiation, and cell 
migration (Broers et al., 2006; Verstraeten et al., 2007). A-type 
lamins have been in the limelight since the discovery that 
LMNA mutations or defective posttranslational processing of 
pre–lamin A causes the majority of human diseases termed  
laminopathies, which include systemic disorders and tissue-
restricted diseases (Table I; Capell and Collins, 2006;  
Verstraeten et al., 2007). The tissue-specific phenotypes fre-
quently associated with LMNA mutations are surprising given that 
A-type lamins are expressed in nearly all differentiated cell 
types. Skeletal and cardiac abnormalities might be explained 
by the structural hypothesis, according to which laminopathy 
mutations result in a weakened NE, cell damage, and eventu-
ally death in tissues exposed to high mechanical stress (Hutchison, 
2002). The gene expression hypothesis proposes that defects 
in NE proteins lead to pathogenic and tissue-specific altera-
tions in gene expression, and is based on recent studies pro-
posing that A-type lamins and other NE proteins form a 
docking platform for regulatory proteins and that some of 
these interactions are altered by laminopathy-causing muta-
tions (Hutchison, 2002). In this paper, we review studies in 
mammalian cells and genetically modified mice that support 
these emerging concepts, focusing on the interplay of A-type 
lamins and associated proteins with signal transduction path-
ways, transcription factors, and chromatin-associated proteins 
and on mechanisms by which NE defects might alter these 
interactions to cause disease.

A-type lamins (lamins A and C), encoded by the LMNA 
gene, are major protein constituents of the mammalian 
nuclear lamina, a complex structure that acts as a scaffold 
for protein complexes that regulate nuclear structure and 
functions. Interest in these proteins has increased in recent 
years with the discovery that LMNA mutations cause a 
variety of human diseases termed laminopathies, includ-
ing progeroid syndromes and disorders that primarily  
affect striated muscle, adipose, bone, and neuronal tis-
sues. In this review, we discuss recent research supporting 
the concept that lamin A/C and associated nuclear enve-
lope proteins regulate gene expression in health and dis-
ease through interplay with signal transduction pathways, 
transcription factors, and chromatin-associated proteins.

Role of A-type lamins in signaling, transcription, 
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is further supported by the finding that the development of 
cardiomyopathy in LMNAH222P/H222P mice is blocked by chronic 
systemic treatment with the ERK1/2 inhibitor PD98059 before 
the appearance of clinical symptoms (Muchir et al., 2009a). 
However, it remains unknown whether ERK1/2 inhibition can 
ameliorate cardiac abnormalities once DCM is established or 
impede the muscle weakening and degeneration associated 
with EDMD. More work is also needed to unravel the mecha-
nisms by which expression of mutant lamin A/C and emerin 
deficiency lead to ERK1/2 hyperactivation. Our recent findings 
that ERK1 and ERK2 interact with A-type lamins at the nuclear 
periphery and participate in the rapid regulation of activator  
protein 1 (AP-1) activity are consistent with the possibility that 
the NE directly modulates ERK1/2 activity and downstream sig-
naling and that alterations in lamin A/C expression might perturb 
NE structure sufficiently to directly affect these processes (see  
Lamin-dependent regulation of…; González et al., 2008).

Wnt–-catenin. Wnts are secreted lipid-modified sig-
naling proteins involved in many aspects of embryonic develop-
ment and homeostatic self-renewal in adult tissues (Clevers, 
2006). A key downstream effector of Wnt is -catenin, a tran-
scriptional cofactor of T cell factor (TCF)/lymphoid enhancer 
factor and structural adaptor that links cadherins to the actin  
cytoskeleton during cell–cell adhesion. In the absence of Wnts, 
cytoplasmic -catenin undergoes proteasomal degradation  
(Fig. 1 A). Once bound by Wnt, the coreceptor complex com-
prising frizzled/lipoprotein receptor–related proteins 5 and 6 
causes cytoplasmic accumulation of -catenin, which is then 
translocated to the nucleus where it binds TCF/lymphoid en-
hancer factor and induces target gene expression.

There is evidence that the Wnt–-catenin pathway is 
regulated by emerin. First, -catenin binds to the adenoma-
tous polyposis coli (APC)–like domain of emerin, and GFP-
emerin overexpression in HEK293 cells causes cytoplasmic 
accumulation of -catenin and inhibits its activity; conversely, 
GFP-emerin (a mutant lacking the APC-like domain) domi-
nantly increases -catenin nuclear accumulation and activity 

Lamin-associated signaling pathways
A-type lamins and associated proteins engage in a wide variety of 
intermolecular interactions that affect signal transduction path-
ways (see following paragraphs). Specifically, several studies im-
plicate NE proteins as regulators of the activity and/or availability 
of components of the MAPK, Wnt–-catenin, TGF-, and Notch 
signaling cascades. This section reviews evidence that signaling 
via these pathways is defective in several laminopathies and 
might contribute to the etiopathogenesis of these diseases.

Extracellular signal-regulated kinase (ERK). 
Two tissue-restricted laminopathies associated with mutations 
in LMNA are Emery–Dreifuss muscular dystrophy (EDMD) 
and dilated cardiomyopathy (DCM; Table I). The pathogenesis 
of these diseases is associated with perturbed MAPK signal-
ing, as abnormal activation of ERK and JNK is observed before 
clinical signs or detectable expression of molecular markers of 
disease in the hearts of LMNAH222P/H222P knock-in mice, a model 
of autosomal EDMD that features DCM (Muchir et al., 2007b). 
ERK and JNK signaling are also induced in cardiomyocytes, 
HeLa, and COS-7 cells expressing the lamin A–H222P mutant 
(Muchir et al., 2007b), and ERK activation is reduced in C2C12 
skeletal myoblasts and HeLa cells treated with siRNA to knock 
down A-type lamins or emerin (Muchir et al., 2009b), which 
is a type II protein anchored to the inner nuclear membrane by 
interactions with lamin A/C (Vaughan et al., 2001). Hyperacti-
vation of ERK1/2 also occurs in the hearts of emerin-deficient 
mice (EMD-/y), a model of x-linked EDMD with DCM (Muchir 
et al., 2007a). These findings are consistent with experiments 
using skin fibroblasts from three patients with EDMD and one 
with DCM bearing missense lamin A/C mutations (Emerson  
et al., 2009). These cells exhibit an impaired emerin–lamin  
A/C interaction and altered ERK1/2 function, inducing a lag in 
ERK1/2 activation followed by hyperactivation 2 h after cell 
attachment. Moreover, these effects coincided with enhanced 
proliferation and defects in parameters related to cell spreading 
such as elevated cell migration and polarization. An important 
role for ERK1/2 hyperactivation in the pathogenesis of DCM 

Table I.  Classification and clinical phenotype of laminopathies

Laminopathies Clinical manifestations

Systemic 
  HGPS Premature aging, hair loss, loss of subcutaneous fat, premature atherosclerosis,  

  myocardial infarction, stroke
  Atypical Werner’s syndrome Premature aging, cataracts, scleroderma-like skin changes, premature atherosclerosis,  

  hair graying
  Restrictive dermopathy Intrauterine growth retardation, skin alterations, multiple joint contractures, skull defects
  MAD Skull/face abnormalities, clavicular hypoplasia, joint contractures/lipodystrophy,  

  alopecia, insulin resistance
Tissue restricted 
  EDMD Early contractures of the neck/elbows/Achilles tendons, muscle contractures, wasting of  

  skeletal muscle, cardiomyopathy with conduction disturbance
  DCM Ventricular dilatation, systolic dysfunction, arrhythmias, conduction defects
  Limb-girdle muscular  

  dystrophy 1B
Slowly progressive shoulder and pelvic muscle weakness/wasting, contractures,  
  cardiac defects

  Charcot-Marie-Tooth  
  neuropathy type 2B1

Axonal degeneration, lower-limb motor deficits, walking difficulty, secondary foot  
  deformities, reduced/absent tendon reflexes starting in the second decade of life

  Dunningan-type FPLD Dramatic absence of adipose tissue in the limbs/trunk and accumulation in the  
  neck/face, hypertriglyceridemia, increased susceptibility to atherosclerosis/diabetes
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and emerin and to ascertain their pathophysiological implications. 
For example, although treatment with the nuclear export inhibi-
tor leptomycin B abrogates the effect of emerin overexpres-
sion on the subcellular distribution of -catenin (Markiewicz  
et al., 2006), the precise mechanisms of emerin-dependent  
-catenin shuttling into and out of the nucleus remain obscure. 
It will also be of interest to investigate whether disease-causing 
LMNA mutations alter -catenin subcellular localization be-
cause nuclear protein import is reduced in cells expressing  
lamin A mutants that cause prenatal skin disease restrictive der-
mopathy and HGPS (Busch et al., 2009). Other questions of in-
terest are whether emerin interacts with PPAR- and whether 
the regulation of adipogenesis (and perhaps other differentia-
tion programs) requires direct interaction between emerin and 
-catenin, which could be tested by overexpressing the GFP-
emerin mutant lacking the APC-like domain responsible for 
this interaction. Furthermore, because the major sites of emerin 
phosphorylation are all within or immediately upstream of its 
APC-like domain, it is possible that phosphorylation regulates 
the emerin–-catenin interaction in vivo. It will also be impor-
tant to ascertain whether the emerin–-catenin–PPAR- inter-
play observed in cultured cells occurs in vivo. If so, it may be 
that the growth phenotype (Markiewicz et al., 2006) and en-
hanced adipogenic potential (Tilgner et al., 2009) of x-linked 
EDMD fibroblasts contribute to the progressive replacement of 
skeletal muscle fibers and cardiomyocytes with fatty fibrotic tis-
sue in x-linked EDMD. Reduced Wnt–-catenin signaling may 

(Markiewicz et al., 2006). Second, x-linked EDMD fibroblasts 
lacking emerin show enhanced growth and nuclear accumu-
lation and activity of -catenin (Markiewicz et al., 2006). 
Thus, interaction of -catenin with emerin might inhibit Wnt–
-catenin–TCF-dependent transcription by restricting access 
of -catenin to the nucleus (Fig. 1 A).

Some laminopathies are characterized by alterations in ad-
ipose tissue. For example, localization of this tissue is altered in 
Dunningan-type familial partial lipodystrophy (FPLD), skeletal 
myocytes and cardiomyocytes are progressively replaced with 
fatty fibrotic tissue in x-linked EDMD, and subcutaneous fat is 
lost in Hutchinson–Gilford progeria syndrome (HGPS; Table I).  
The appearance of these alterations might involve interplay  
between Wnt–-catenin, emerin, and the adipogenic transcrip-
tion factor peroxisome proliferator-activated receptor  (PPAR-).  
Adipogenesis is repressed via Wnt–-catenin–dependent inhibi-
tion of PPAR- (Ross et al., 2000), which promotes proteasomal 
degradation of -catenin (Moldes et al., 2003). Remarkably, 
emerin and -catenin influence each other’s levels of expression  
and the onset of adipogenesis in cellular models of differenti-
ating preadipocytes. Moreover, in the presence of activated  
-catenin, emerin-null dermal fibroblasts exhibit abnormal  
PPAR-–dependent signaling and enhanced adipogenic conver-
sion, both of which are reversed upon transfection with -catenin–
specific siRNA (Tilgner et al., 2009).

Much work is needed to define the molecular mechanisms 
underlying the functional interactions between Wnt–-catenin 

Figure 1.  Control of Wnt–-catenin and 
TGF- signaling by A-type lamins and as-
sociated proteins. (A, left) In the absence of 
Wnt, cytoplasmic -catenin (-cat) under-
goes proteasomal degradation, and TCF- 
dependent transcription is repressed. (right) 
Upon Wnt binding to its receptors (e.g., 
frizzled), -catenin accumulates in the cyto-
plasm, translocates to the nucleus, and in-
duces TCF-dependent transcription. Emerin 
exports nuclear -catenin to the cytoplasm, 
thereby inhibiting TCF-dependent transcrip-
tion. GSK3, glycogen synthase kinase 3.  
(B, left) In the absence of TGF-, hypophos-
phorylated R-Smads accumulate in the cyto-
plasm. (right) Binding of TGF- to its receptors 
leads to R-Smad phosphorylation and the for-
mation and nuclear import of R-Smad–Smad4 
complexes, which induce target gene expres-
sion in conjunction with other transcription 
factors (TF). MAN1 might sequester active 
R-Smads at the NE, preventing them from 
oligomerizing with co-Smads. A-type lamins 
interact with activated PP2A, which can de-
phosphorylate R-Smads and ppRb.
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HES5, HEY1, and TLE1. These alterations are not caused by 
changes in NICD expression or the levels of the Notch ligands 
DLL and Jag but, instead, correlate with reduced levels of the 
transcriptional corepressor NcoR and increased levels of SKIP, a 
transcriptional coactivator of Notch target genes that is associated 
with the nuclear matrix in normal cells but is found in the nuclear 
interior of HGPS cells (Fig. 2). Despite these interesting correla-
tions, many questions need to be answered to clarify the connec-
tion between Notch signaling and HGPS. One issue is whether 
SKIP, and possibly other Notch effectors, is anchored to the NE 
in normal cells through physical interactions with A-type lamins 
and whether progerin interferes with this interaction because of a 
reduced affinity for SKIP. It will also be of interest to determine 
whether the altered epigenetic modifications frequently found in 
HGPS cells contribute to misregulation of Notch effector genes. 
Another issue is the possible involvement of Notch misregula-
tion in physiological aging because low levels of progerin are de-
tected in cells of healthy individuals (Scaffidi and Misteli, 2006). 
Finally, given that MSCs within the artery wall might contribute 
to vascular regeneration (Abedin et al., 2004) and that Notch3 
modulates the response to vascular injury (Wang et al., 2008), 
it is possible that progerin-induced defects in Notch signaling in 
arterial MSCs contribute to the alterations in the large arteries of 
HGPS patients. Addressing these questions would not only shed 
light on how interplay between progerin and Notch causes HGPS 
but would also extend our knowledge of normal aging.

Lamin-dependent regulation of  
transcription factors
Direct interaction of A-type lamins and associated proteins with 
transcription factors constitutes an additional mechanism by 
which the NE regulates gene expression. These interactions ap-
pear to regulate transcription in several ways, for example, by se-
questering transcription factors in inactive complexes at the NE, 
altering posttranslational modifications important for their func-
tion, and regulating transcriptional complexes. Importantly, 
laminopathy-causing mutations appear to disrupt these processes.

Retinoblastoma gene protein (pRb), E2F-DP, 

and cell cycle control. The alterations associated with lami-
nopathies might be caused in part by defects in the cell cycle and 
differentiation, two processes regulated by the pocket proteins 
pRb, p107, and p130 (Korenjak and Brehm, 2005). The nuclei of 
healthy quiescent cells accumulate hypophosphorylated pRb, 
which binds to and inactivates the dimeric transcription factor 
E2F-DP. In contrast, in proliferating cells, cyclin/Cdk activity 
triggers the accumulation of hyperphosphorylated pRb (ppRb) 
during late G1 phase. In turn, this causes the release of E2F-DP 
and the transactivation of target genes necessary for S phase pro-
gression. pRb also suppresses cell proliferation by recruiting his-
tone deacetylases (HDACs; Brehm et al., 1998), components of 
the human switch/sucrose nonfermentable complex (Trouche  
et al., 1997), polycomb group proteins (Breiling et al., 2001), 
histone methyltransferases (Nielsen et al., 2001), and DNA 
methyltransferases (Robertson et al., 2000).

The nucleoli of primary fibroblasts in early G1 are sur-
rounded by a limited number of foci that contain replication 
proteins, lamin A/C, and pRb. Both lamin A/C and pRb are later 

also underlie NE defects and stem cell dysfunction in progeroid 
syndromes because abnormal accumulation of pre–lamin A and 
NE defects observed in a mouse model of progeria in which  
lamin A processing is defective coincides with Wnt–-catenin 
down-regulation and abnormalities in the number and prolifera-
tive capacity of epidermal stem cells (Espada et al., 2008).

TGF-. The TGF- cytokine superfamily regulates dif-
ferentiation, proliferation, and apoptosis in many cell types 
(Massagué, 2000). Binding of TGF- to type I and II recep-
tors triggers phosphorylation of receptor-regulated Smads  
(R-Smads). These form oligomers with co-Smads (Smad4), which 
are imported into the nucleus where they regulate transcription 
of a large number of target genes (Fig. 1 B). MAN1 (also named 
lamina-associated peptide 2 [LAP2]–emerin–MAN [LEM] 
domain–containing protein 3), a protein that interacts with lamin A 
and emerin (Gruenbaum et al., 2005), can inhibit TGF-–mediated 
signaling by binding R-Smads (Osada et al., 2003; Raju et al., 
2003; Hellemans et al., 2004; Lin et al., 2005; Pan et al., 2005; 
Pinto et al., 2008). MAN1 can sequester active R-Smads at the 
NE, preventing them from forming active R-Smad/co-Smad 
oligomers (Fig. 1 B), and can also affect the phosphorylation, 
oligomerization, and nuclear translocation of Smads (Pan et al., 
2005; Bengtsson, 2007). Moreover, A-type lamins can modulate 
TGF-–dependent signaling through interaction with protein 
phosphatase 2A (PP2A; Fig. 1 B; Van Berlo et al., 2005). Fur-
ther work is needed to elucidate the molecular mechanisms and 
pathophysiological implications underlying the functional link 
between MAN1, A-type lamins, and Smads at the NE.

Notch. Notch-dependent signaling regulates cell fate 
and stem cell differentiation (Bray, 2006). Notch proteins are 
cell surface receptors that harbor transmembrane domains, a 
large extracellular domain consisting primarily of epidermal 
growth factor–like repeats, and a Notch intracellular domain 
(NICD; Fig. 2). Activation of Notch by ligands produced by 
neighboring cells leads to cleavage of the NICD, which translo-
cates to the nucleus and regulates downstream gene expression 
by acting as a coactivator of the transcription factor suppressor 
of hairless (also named CSL, CBF1, and LAG-1; Fiúza and 
Arias, 2007).

Defective Notch signaling has been implicated in HGPS, 
an exceedingly rare childhood state of premature senescence 
characterized by alopecia, wrinkled skin, disproportionately 
large head, loss of subcutaneous fat, joint abnormalities, pre-
mature development of atherosclerosis, and death at a mean age  
of 13, most frequently from heart attack or stroke (Pereira  
et al., 2008). HGPS is caused by constitutive expression of a 
truncated form of pre–lamin A termed progerin, whose accumula-
tion dominantly produces DNA damage and aberrant nuclear 
shape and chromatin structure, mainly in mesenchymal tissues.  
Human mesenchymal stem cells (MSCs) expressing progerin 
change their molecular identity and differentiation potential, 
exhibiting enhanced osteogenesis and reduced adipogenesis, 
whereas chondrogenesis is unaffected (Scaffidi and Misteli, 
2008). Interestingly, the same effects in human MSCs are seen 
upon overexpression of the NICD. Moreover, both HGPS fibro-
blasts and progerin-transduced immortalized human MSCs up-
regulate major downstream effectors of Notch, including HES1, 
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Loss of function experiments in cultured cells appear to 
confirm a role for A-type lamins and LAP2- as regulators of 
pRb function. Lamin A/C ablation causes mislocalization and 
increased proteasomal degradation of pRb and alters its post-
translational modifications (Johnson et al., 2004; Van Berlo  
et al., 2005), and RNAi-mediated down-regulation of LAP2- 
enhances proliferation and interferes with cell cycle withdrawal 
upon serum starvation (Dorner et al., 2006). Moreover, lack of 
LAP2- prevents the nucleoplasmic localization of A-type lam-
ins in early G1, affects pRb function, and alters the balance be-
tween proliferation and differentiation with consequences in 
early progenitor cell proliferation in regenerative tissues (Naetar 
and Foisner, 2009). Notably, both lamin A/C– and pRb-null 
cells display increased proliferation (Johnson et al., 2004; Van 
Berlo et al., 2005; Ivorra et al., 2006; Nitta et al., 2006). These 
studies identify A-type lamins and LAP2- as key regulators of 
the cell cycle, at least in part through modulation of the protein 
levels, subcellular localization, and phosphorylation of pRb. 
More work is warranted to identify the precise molecular mech-
anisms underlying the functional cross talk among these pro-
teins and to ascertain whether laminopathy-causing mutations 
affect cell cycle activity through alterations in their interaction.

pRb, myogenic regulatory factors (MRFs), 

and skeletal myogenesis. The MRFs MyoD, myogenin, 
Myf5, and Myf6/Mrf4 are essential for mammalian skeletal 
myogenesis (Parker et al., 2003), a differentiation program that 

lost from these foci in S phase, when DNA replication sites dis-
tribute to regions located throughout the nucleus (Kennedy  
et al., 2000). Although A-type lamins and pRb have been shown 
to heterodimerize in vitro (Mancini et al., 1994; Ozaki et al., 1994; 
Van Berlo et al., 2005), it remains to be determined whether 
they interact or simply colocalize in the perinucleolar foci. 
There is also evidence that LAP2-, an interaction partner of 
nucleoplasmic A-type lamins, binds pRb, causing its hypophos-
phorylation and thereby reducing E2F-dependent gene expres-
sion and delaying cell cycle entry from G0 arrest (Markiewicz 
et al., 2002; Dorner et al., 2006). A third possibility is that  
A-type lamins might also control cell proliferation and gene ac-
tivity downstream of TGF-1 via nuclear PP2A-dependent con-
trol of pRb (Fig. 1 B; Van Berlo et al., 2005). A-type lamins are 
essential for TGF-1–dependent dephosphorylation of ppRb 
and inhibition of fibroblast proliferation, and PP2A binds to  
lamin A/C and is responsible for TGF-1–induced ppRb de-
phosphorylation. Moreover, A-type lamins modulate TGF-1–
induced Smad phosphorylation. Further work is needed to 
assess the model proposed by Van Berlo et al. (2005), which 
suggests that PP2A–lamin A/C docking restores pRb function-
ality via rapid TGF-1–dependent ppRb dephosphorylation. It 
is also important to determine whether lack or mutation of  
A-type lamins renders PP2A–pRb complexes unable to inacti-
vate target genes owing to defective subnuclear localization of 
one or both factors.

Figure 2.  Control of Notch signaling by  
lamin A/C and progerin. (left) In the absence 
of Notch ligands, transcription of target genes 
is repressed. (right) Notch activation by neigh-
boring cells leads to proteolytic release of 
the NICD, which translocates to the nucleus, 
where it activates target genes upon binding 
to coactivators and the release of corepres-
sors (Co-R) from the promoter. Stem cells from 
HGPS patients express progerin. Notch signal-
ing is elevated in these cells, and there is an 
up-regulation in the expression of Notch target 
genes, coincident with reduced amounts of 
the repressor NcoR and increased availability 
of the coactivator SKIP in the nuclear interior. 
Mam, Mastermind; DSL, Delta/Serrate/LAG-2 
family of proteins.
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However, drug treatment did not completely restore the defective 
nuclear matrix anchorage of p21 and cyclinD3 in a complex 
with hypophosphorylated pRb in these cells. This association 
is critical for cell cycle arrest and myogenin induction, and 
the inability of PD98059 and insulin-like growth factor II to  
reverse this defect might be caused by alterations to the  
cyclinD3–lamin A–R453W interaction (Favreau et al., 2008). 
It is also noteworthy that skeletal muscle from LMNAH222P/H222P 
and LMNA-null mice and denervated muscle from wild-type 
controls up-regulates MyoD and myogenin and down-regulates 
HDAC9, which controls chromatin acetylation in presynap-
tic neurons and electrical activity–dependent expression of 
MYOD1 and MYOGENIN (Méjat et al., 2005, 2009).

These studies suggest that NE defects resulting from 
LMNA and EMD mutations lead to muscle alterations at least 
in part through deregulation of the expression and function of 
pRb/E2F-DP and MRFs. More work is needed to define the 
molecular and cellular interactions that govern the interplay 
between pRb, MRFs, and the NE in normal and dystrophic 
myocytes. For example, it will be interesting to learn whether 
A-type lamins, emerin, and nucleoplasmic LAP2- (see pRb, 
E2F-DP, and cell cycle control; also a partner of pRb) affect 
cell cycle activity by affecting the cooperation between pRb 
and HDACs to repress E2F-dependent transcription or by in-
activating oligomers containing Cdk4, cyclinD3, p21, and 
PCNA. Moreover, lamin A/C, emerin, and LAP2- might in-
directly regulate the expression or activity of myogenic genes 
through pRb/MyoD-dependent and -independent mechanisms 
operating both in precursor cells and mature myocytes. In this 
regard, a cross-inhibitory interaction between the transcrip-
tion factor Pax7 and MyoD and myogenin appears to modu-
late fate decisions of satellite cells (Olguin et al., 2007), a 
small population of resident myogenic cells required for post-
natal growth and regeneration of skeletal muscle that express 
A-type lamins and emerin in the NE (Gnocchi et al., 2009). 
Remarkably, chromatin alterations, increased numbers of Pax7-
positive nuclei, and a reduced number of MyoD-positive nuclei 
are all features of satellite cells in skeletal muscle from four 
patients with autosomal-dominant EDMD or limb-girdle mus-
cular dystrophy 1B, a disease characterized by slowly progressive 
shoulder and pelvic muscle weakness and wasting, contractures, 
and cardiac defects (Park et al., 2008). Moreover, neuromuscular 
junctions are defective in patients with autosomal-dominant 
EDMD and in mouse models of this disease (Méjat et al., 
2009). Defects in satellite cells and neuromuscular junc
tions might therefore contribute to muscular dystrophies in 
these laminopathies.

Other cellular processes regulated by  
pRb–lamin A/C–LAP2- complexes
The interactions of pRb with A-type lamins, emerin, and  
LAP2- may also play roles in laminopathies affecting other tis-
sues whose differentiation is regulated by pRb, including adipose 
tissue (Chen et al., 1996; Hansen et al., 2004), bone (Thomas  
et al., 2001), and epidermis (Ruiz et al., 2004). This is supported 
by the observation that LAP2- overexpression in proliferat-
ing preadipocytes causes accumulation of hypophosphorylated 

begins with cell commitment and permanent growth arrest and 
continues with phenotypic differentiation and cell fusion to 
form multinucleated myotubes (Andrés and Walsh, 1996). 
MRFs share a homologous basic helix-loop-helix motif required 
for DNA binding and heterodimerization with transcription fac-
tors of the helix-loop-helix–containing E-protein family. MRF 
monomers and MRF-E heterodimers regulate transcription of 
muscle-specific genes containing a consensus E-box sequence 
in their promoter. MyoD-dependent transcription is also regu-
lated by histone acetyltransferases (Favreau et al., 2008), and 
myogenesis is inhibited by the interaction of MyoD with class I 
HDACs (Legerlotz and Smith, 2008).

Accumulation of hypophosphorylated pRb and inter
action of pRb with MyoD are required for cell cycle arrest and 
differentiation of skeletal myoblasts (Walsh, 1997). Studies on 
muscle from EDMD patients with either LMNA or EMD muta-
tions suggest that key interactions between the NE and pRb and 
MyoD fail at the point of myoblast cell cycle withdrawal, lead-
ing to poorly coordinated phosphorylation and acetylation steps 
(Bakay et al., 2006). Accordingly, defective muscle regenera-
tion in emerin-null mice is coincident with abnormalities in cell 
cycle parameters and a delayed myogenic differentiation asso-
ciated with prolonged ppRb accumulation and perturbations in 
pRb- and MyoD-dependent transcription (Melcon et al., 2006).

In vitro myogenesis is also impaired in LMNA-null skel-
etal myocytes and in wild-type cells with RNAi-mediated 
knockdown of lamin A/C or emerin, which display decreased 
pRb and MyoD protein levels (Frock et al., 2006; Melcon et al., 
2006). Moreover, cell cycle exit and differentiation of C2C12 
myoblasts is impaired by ectopic expression of the EDMD-
causing lamin A mutants W520S, G232E, Q294P, R386K, and 
R453W but not the FPLD-causing R482W mutant; this effect 
is possibly caused by the persistence of a large pool of ppRb 
and reduced expression of myogenin and MyoD (Favreau  
et al., 2004; Markiewicz et al., 2005; Parnaik, 2008). Notably,  
Favreau et al. (2008) detected two distinct populations of  
lamin A–R453W-expressing cells that both appeared to be 
incapable of fusing to form mature myotubes: one fraction that 
still expressed proliferation markers and another that seemed 
committed to differentiation according to its expression of 
early myogenesis markers. Defective differentiation of this sec-
ond population of lamin A–R453W myoblasts did not correlate 
with ERK1/2 hyperactivation, a feature of heart tissue of the  
EDMD model LMNAH222P/H222P and emerin-null mice (see  
Lamin-associated signaling pathways; Muchir et al., 2007a,b). 
However, myogenesis in these cells was enhanced by treatment 
with a mixture of PD98059 (an ERK1/2 inhibitor that stimu-
lates differentiation of normal C2C12 myoblasts) and insulin-
like growth factor II (an activator of phosphoinositide 3-kinase  
that contributes to myoblast survival at the onset of myo
genesis). Favreau et al. (2008) propose that PD98059 stimulates 
myogenesis of lamin A–R453W myoblasts by acting on down-
stream effectors of ERK1/2 that promote a switch from cellu-
lar proliferation to differentiation. The effect of PD98059 and 
insulin-like growth factor II coincided with down-regulation  
of proliferation markers (ppRb and cyclinD3), up-regulation 
of myogenin, and sustained activation of p21 and cyclinD3. 
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mitogen-dependent AP-1 activation through phosphorylation-
induced release of preexisting c-Fos from its inhibitory inter-
action with lamin A/C (Fig. 3). Future studies should address 
whether other signal transducers and AP-1 family members 
are regulated by interactions with A-type lamins and other NE 
proteins and whether disease-causing lamin A/C mutations  
affect the c-Fos–ERK1/2 interplay at the NE with consequent 
changes in AP-1 activity and cell cycle progression. In this re-
gard, both c-FOS–and LMNA-deficient mice exhibit defects in 
bone (Johnson et al., 1992; Wang et al., 1992), a tissue affected 
in several laminopathies.

Sterol regulatory element–binding protein 1 

(SREBP1). In some laminopathies such as FPLD and MAD, 
the predominantly affected tissue is adipose tissue (Capell and 
Collins, 2006; Verstraeten et al., 2007). Expression of lamin A 
mutants can perturb adipogenesis by altering the localization 
and function of SRBP1, a transcription factor that regulates the 
expression of genes involved in cholesterol biosynthesis and 
adipogenic differentiation (Raghow et al., 2008). SREBP1c 
interacts with pre–lamin A and is abnormally retained in the 
NE of NIH-3T3 fibroblasts treated with a farnesyl transferase 
inhibitor, thus hampering the proper translocation of SREBP1c 
from the endoplasmic reticulum to the nucleus. Moreover, 
SREBP1c is similarly retained in the NE of fibroblasts from 
patients with lipodystrophy-linked MAD, FPLD, and atypical 
Werner’s syndrome (Lloyd et al., 2002; Capanni et al., 2005). 
Interestingly, NE retention in FPLD fibroblasts correlates with 
weaker in vitro binding of SREBP1 to FPLD-causing lamin A  
mutants compared with binding to wild-type lamin A (Lloyd 
et al., 2002). Finally, pre–lamin A overexpression impairs preadi-
pocyte differentiation and reduces expression of the adipogenic 
transcription factor PPAR-, which is regulated by SREBP1 
(Capanni et al., 2005; Maraldi et al., 2007). Given that the ex-
pression of progerin in HGPS patients causes loss of subcutane-
ous fat and reduces the adipogenic potential of human MSCs 
(see Lamin-associated signaling pathways; Scaffidi and Misteli, 
2008), it will be of interest to assess whether progerin also af-
fects SREBP1 localization and function.

MOK2. MOK2 encodes Krüppel/TFIIIA-related pro-
teins that bind both DNA and RNA through their zinc finger 

pRb and initiates partial differentiation into adipocytes (Dorner 
et al., 2006). Moreover, LAP2- affects the targeting of lamin 
A/C to the nuclear interior, pRb function, and progenitor cell 
proliferation (Naetar and Foisner, 2009). pRb also regulates cel-
lular responses to DNA damage and senescence, two processes 
that contribute to normal and premature aging (Campisi, 2005). 
Indeed, pRb is down-regulated in a mouse model of progeria in 
which progerin, a truncated form of pre–lamin A, accumulates 
abnormally (Varela et al., 2005). Moreover, altered pRb distri-
bution and increased apoptosis are detected in fibroblasts from 
patients with Charcot–Marie–Tooth neuropathy type 2B, limb-
girdle muscular dystrophy, mandibuloacral dysplasia (MAD), 
and EDMD (Meaburn et al., 2007).

Fos. c-Fos is a member of the AP-1 family of transcrip-
tion factors, which regulate multiple cellular processes, includ-
ing proliferation and differentiation, neoplastic transformation, 
and apoptosis (Eferl and Wagner, 2003). c-Fos has a DNA-
binding domain that recognizes target sequences and a leucine 
zipper domain that mediates heterodimerization with transcrip-
tional regulators, including other AP-1 proteins. Our work sug-
gests that A-type lamins regulate AP-1 activity by sequestering 
c-Fos at the NE in an ERK1/2-dependent manner (Ivorra et al., 
2006; González et al., 2008). We showed that c-Fos and lamin 
A/C interact in vitro and in vivo through leucine residues and  
that these proteins colocalize at the NE in starvation-synchronized 
quiescent cells, which lack detectable AP-1 DNA-binding 
activity. Serum-induced up-regulation of AP-1 DNA-binding 
activity coincides with c-Fos nucleoplasmic accumulation, and 
serum stimulation rapidly releases preexisting c-Fos from the 
NE via ERK1/2-dependent phosphorylation, thus leading to fast 
AP-1 activation in advance of de novo c-Fos synthesis. More-
over, ERK1/2 interacts with lamin A/C and colocalizes with 
c-Fos and A-type lamins at the NE, and lamin A/C overexpres-
sion impairs c-Fos/c-Jun heterodimer formation, inhibits AP-1– 
dependent DNA-binding activity and transcription, and causes 
a growth arrest that can be partially rescued by c-Fos over-
expression. Conversely, LMNA-null cells exhibit scant peri-
nuclear c-Fos localization, increased AP-1 DNA-binding and 
transcriptional activity, and enhanced proliferation. NE-bound 
ERK1/2 may therefore function as a molecular switch for rapid 

Figure 3.  Fast regulation of AP-1 activity 
through interaction of lamin A/C, ERK1/2, 
and c-Fos at the NE. (left) Quiescent cells 
contain low levels of c-Fos, which is predomi-
nantly hypophosphorylated and sequestered 
at the NE through its interaction with A-type 
lamins. (right) Upon mitogen stimulation, phos-
phorylated (active) ERKs 1 and 2 interact with 
A-type lamins and phosphorylate c-Fos, releas-
ing it from the NE. The released c-Fos can 
heterodimerize in the nucleoplasm with other 
AP-1 family members (e.g., c-Jun), allowing the 
activation of AP-1 target genes before de novo 
c-Fos synthesis.
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of chromatin. This is strongly supported by loss of func-
tion experiments in Caenorhabditis elegans and Drosophila 
melanogaster that revealed aberrant chromatin organization 
and developmental alterations (Parnaik, 2008) and by in vitro 
studies showing that A-type lamins bind DNA both directly 
through their rod and globular domains and indirectly through 
interaction with core histones and BAF and LEM domain pro-
teins (Vlcek and Foisner, 2007; Dechat et al., 2009). Studies in 
mammalian cells include microscopy analyses showing a close 
association of nuclear lamins with peripheral heterochroma-
tin and the demonstration that A-type lamins and LAP2- can 
anchor heterochromatin to the NE, possibly causing transcrip-
tional repression (Verstraeten et al., 2007; Reddy et al., 2008; 
Dechat et al., 2009; Lee et al., 2009). Moreover, expression of  
mutant lamins and lamin deficiency both cause alterations of 
chromatin organization and function. For instance, loss of hetero
chromatin from the nuclear periphery or a general loss of 
heterochromatin is seen in cells from HGPS, x-linked EDMD, 
autosomal-dominant EDMD, FPLD, and MAD patients and in 
LMNA-null mouse cells (Parnaik, 2008; Dechat et al., 2009), 
and the FPLD-causing LMNA-R482W/Q mutation reduces  
lamin A/DNA binding (Stierlé et al., 2003). Finally, defects in 
the epigenetic regulation of chromatin and alterations in chromo
some positioning are a common feature of various types of 
laminopathies (Parnaik, 2008; Dechat et al., 2009). In this sec-
tion, we summarize known interactions of A-type lamins and 
associated proteins with proteins potentially involved in higher 
order chromatin organization (Fig. 4) and discuss their possible 
involvement in the etiopathogenesis of laminopathies.

BAF. BAF is a chromatin-associated protein involved in 
nuclear assembly, chromatin organization, and gene expression 
by virtue of its capacity to bind DNA, lamin A, histone H3, linker 
histones, and the LEM domain proteins LAP2, emerin, and 
MAN1 (Segura-Totten and Wilson, 2004; Wagner and Krohne,  
2007). BAF may also repress transcription through inter
action with the transcription factor cone-rod homeobox (Wang 
et al., 2002) and by competing with the transcriptional regulator 
GCL for binding to emerin (Holaska et al., 2003). It has been 
suggested that phosphorylation of BAF at serine 4 inhibits its 
binding to emerin and lamin A and weakens emerin–lamin A 
interactions during both mitosis and interphase, causing emerin 
mislocalization (Bengtsson and Wilson, 2006). However, the 
mechanisms that regulate the binding of BAF to other NE pro-
teins and the consequences of these interactions for chromatin 
organization and structure remain undefined. Likewise, it is un-
known whether laminopathy-causing mutations affect binding 
to BAF. Also, given that loss of BAF-1 in C. elegans causes 
rapid deterioration of body and tail muscles (Margalit et al., 
2007), it will be of interest to ascertain whether BAF plays a 
role in human muscular dystrophies caused by mutations in 
lamin A/C and emerin.

LEM domain proteins. The LEM domain is a 40-aa 
structural motif shared by many inner nuclear membrane and 
intranuclear proteins, including emerin, MAN1, several LAP2 
isoforms, LEM-2/NET25, and LEMs 3, 4, and 5, which mediate 
their interaction with lamin A/C and BAF (Wagner and Krohne, 
2007). There is evidence that LEM domain proteins regulate 

motifs (Arranz et al., 1997). MOK2 is partially associated with 
the nuclear matrix and binds A-type lamins in vitro and in vivo, 
resulting in transcriptional repression of MOK2 target genes 
(Dreuillet et al., 2002). One possible scenario is that lamin A/C– 
MOK2 complexes stabilize a repressive complex on DNA 
and that release of MOK2 from A-type lamins is required for 
gene activation. This might take place through aurora A/PKA– 
dependent phosphorylation of MOK2 at serine 46, which is 
located in the lamin A/C–binding N-terminal acidic domain of 
MOK2; phosphomimetic substitution of this residue markedly 
decreases the binding of ectopically expressed MOK2 to GST–
lamin C in vitro and prevents its colocalization with lamin A/C 
in vivo (Harper et al., 2009). Moreover, because aurora A kinase 
is specifically activated before mitosis, aurora A–dependent 
MOK2 dissociation from A-type lamins at MOK2-regulated 
loci might contribute to the cytoplasmic dispersion of lamin A/C  
in early mitosis. Little is known about the potential pathologi-
cal implications of these findings except that none of six tested 
disease-causing LMNA mutations located in the MOK2-binding 
domain affect the lamin A/C–MOK2 interaction in vitro or in 
vivo but do cause aberrant MOK2 nuclear aggregation (Dreuillet 
et al., 2007).

Other transcription factors that  
interact with A-type lamins and  
associated NE proteins
Lamin A/C can interact with polycomb group ring finger pro-
tein 2 (also named MEL18 and ZNF144; Zhong et al., 2005), a 
transcriptional repressor involved in the development, differen-
tiation, and self-renewal of stem cells (Gil et al., 2005). More-
over, emerin coimmunoprecipitates with the transcriptional 
repressor germ cell less (GCL) and forms stable complexes with 
either lamin A–GCL or lamin A barrier to autointegration factor 
(BAF; Holaska et al., 2003). GCL also binds DP3, thereby 
repressing E2F-DP–dependent gene transcription in a pRb-
independent manner (de la Luna et al., 1999; Nili et al., 2001). 
Therefore, the GCL–lamin A interaction might provide a pRb-
independent mechanism for controlling cell proliferation or 
differentiation. There is also evidence of an association be-
tween lamin A and tonicity-responsive enhancer-binding pro-
tein (TonEBP; also called NFAT5), a transcriptional activator of  
hypertonicity-induced gene transcription (Favale et al., 2007). 
Physical interaction of lamin A/C and TonEBP is demonstrated 
by immunoprecipitation, and hypertonicity increases lamin A/C 
expression and its distribution in TonEBP-containing nucleo-
plasmic speckles. Functional evidence comes from TonEBP 
silencing, which causes redistribution of lamin A/C from nucleo-
plasmic speckles to the perinuclear rim followed by a decline  
in A-type lamin levels. Thus, lamin A/C–containing speckles 
might provide a scaffold for TonEBP, promoting its role in hy-
pertonicity responses (Favale et al., 2007).

Interactions of A-type lamins and 
associated proteins with  
chromatin complexes
Nuclear lamins play an important role in the control of gene 
expression through effects on the organization and regulation 
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order chromatin organization and epigenetic gene regulation 
that should be explored.

X-linked EDMD cells carrying mutated EMD exhibit al-
tered expression of 60 genes, 28 of which are rescued by emerin 
overexpression (Tsukahara et al., 2002). Moreover, the follow-
ing EMD mutations affect binding of emerin to proteins that 
regulate gene expression: 95–99 disrupts binding to lamin A 
(Lee et al., 2001), GCL (Holaska et al., 2003), and Btf (Haraguchi 
et al., 2004); S54F impairs binding to Btf (Haraguchi et al., 2004); 
P183H decreases binding to Lmo7 (Holaska et al., 2006) and 
increases binding to YT521-B (Wilkinson et al., 2003); P183H 
and Q133H alter affinity for nesprin-1 and nesprin-2 (Wheeler 
et al., 2007); and 95–99 and Q133H alter affinity for MAN1 
(Mansharamani and Wilson, 2005). Further work is needed to 
determine the pathophysiological consequences of these altera-
tions at the cellular and organismal level.

Titin. The giant sarcomeric protein titin is generally known 
as a provider of elasticity to striated muscles (Granzier and 
Labeit, 2004). However, studies with human, D. melanogaster, and  
C. elegans nonmuscle cells have identified titin as a nuclear protein 
involved in the control of chromosome dynamics, gene expression, 
signal transduction, and cell proliferation (Machado and Andrew, 
2000; Zastrow et al., 2006; Qi et al., 2008). Using the yeast two-
hybrid system and several biochemical assays with recombinant 
proteins, Zastrow et al. (2006) found that human titin interacts 

gene expression through interaction with BAF, DNA, or tran-
scription factors. For example, in addition to its participation 
in TGF-–mediated signaling (see Lamin-associated signaling 
pathways), MAN1 can regulate gene expression through inter-
action with BAF, Btf, and GCL (Furukawa, 1999; Segura-Totten 
and Wilson, 2004; Gruenbaum et al., 2005; Mansharamani and 
Wilson, 2005). Likewise, aside from its involvement in MyoD/
pRb-dependent signaling (see Lamin-dependent regulation of…), 
emerin interacts with proteins that directly or indirectly control 
gene transcription, such as BAF, Btf, GCL, Lmo7, and the 
splicing factor YT521-B (Lee et al., 2001; Nili et al., 2001; 
Holaska et al., 2003, 2006; Wilkinson et al., 2003; Bengtsson 
and Wilson, 2004; Haraguchi et al., 2004; Markiewicz et al., 
2006). Emerin can also indirectly regulate gene expression 
through interaction with myosin I and nuclear actin (Bengtsson 
and Wilson, 2004; Holaska et al., 2004; Holaska and Wilson, 
2007), which in turn regulate RNA polymerase II–dependent 
transcription (Vlcek and Foisner, 2007). In addition, a role for 
LAP2- in chromatin organization is suggested by its reloca-
tion from throughout the nucleus during interphase (Dechat 
et al., 1998; Vlcek et al., 1999) to telomeric regions during mito-
sis (Dechat et al., 2004; Gajewski et al., 2004). The interaction 
of LAP2- with chromatin (Cai et al., 2001) and BAF (Vlcek 
et al., 1999, 2002; Dechat et al., 2004) suggests a function of 
LAP2-–lamin A/C–BAF complexes in the control of higher 

Figure 4.  Interactions of A-type lamins and 
NE-associated proteins with DNA, chromatin 
complexes, and related transcription factors. 
(A) Schematic illustration of the mammalian 
NE showing proteins involved in the organi-
zation and regulation of chromatin and gene 
expression. (B) Network of NE-associated 
chromatin complexes. The thick lines indi-
cate direct interactions with lamin A/C. CRX, 
cone-rod homeobox.
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given that with age, cell nuclei accumulate progerin and acquire 
HGPS-like defects (Scaffidi and Misteli, 2006), research into 
laminopathies promises to yield a better understanding of nor-
mal physiological aging.
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of aberrantly shaped nuclei and the formation of NE herniations 
in HeLa cells. As pointed out by Zastrow et al. (2006), it will 
be important to define the splicing pattern and subnuclear local-
ization of titin during different phases of the cell cycle. Future 
studies should also assess whether endogenous titin and lamins 
interact and, if they do, unravel the molecular mechanisms that 
regulate this interaction and determine the extent and nature of 
titin’s nuclear roles.

Conclusions and perspectives
It has become clear that the NE can no longer be viewed as a 
merely structural element but should be regarded as a highly 
dynamic structure involved in the regulation of gene expression, 
at least in part through the interaction of A-type lamins and as-
sociated proteins with components of signaling pathways, tran-
scriptional regulators, and chromatin-associated proteins both 
in adult stem cells and differentiated cells in health and disease. 
The NE appears to function as a docking platform for the bind-
ing of regulatory proteins, thus providing a powerful and simple 
mechanism for the control of gene expression at several levels. 
These mechanisms include sequestration of transcription fac-
tors into inactive complexes, regulation of their concentration 
and posttranslational modifications, modulation of transcrip-
tional complexes, and regulation of the activity or availability of 
signaling pathway components and regulators of chromatin or-
ganization. A major challenge for cellular and molecular biolo-
gists is to determine how the interactions of lamins with these 
regulatory proteins are regulated and how they affect cell func-
tions in health and disease.

The discovery that NE-dependent interactions affect the 
function of myogenic and adipogenic transcription factors sheds 
light on the muscular and adipose tissue alterations associated 
with some laminopathies. More work is now needed to further 
delineate how laminopathy-causing mutations trigger cell- and 
tissue-specific phenotypes through perturbations in cell sig-
naling and gene transcription. Research efforts should also 
focus on identifying novel proteins anchored to and regulated 
by lamins and associated proteins. A better understanding of 
the NE-associated interactome will not only improve our basic 
knowledge of the regulatory functions of the NE but should also 
stimulate the development of new approaches to the treatment 
of laminopathies. Indeed, the discovery that the accumulation 
of farnesylated progerin in HGPS is caused by the generation of 
an aberrant splicing site in LMNA has already led to strategies to 
reverse nuclear abnormalities in HGPS cells. These approaches 
include antisense oligonucleotides to prevent abnormal splic-
ing, farnesyl transferase inhibitors, and other inhibitors of pro-
tein prenylation such as statins and aminobisphosphonates, 
and some are currently under test in clinical trials (Scaffidi and 
Misteli, 2005; Pereira et al., 2008; Varela et al., 2008). Finally, 
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