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Abstract 

The accurate analytical characterization of metastatic phenotype at primary tumor diagnosis and its 
evolution with time are critical for controlling metastatic progression of cancer. Here, we report a 
label-free optical strategy using Raman spectroscopy and machine learning to identify distinct metastatic 
phenotypes observed in tumors formed by isogenic murine breast cancer cell lines of progressively 
increasing metastatic propensities.  
Methods: We employed the 4T1 isogenic panel of murine breast cancer cells to grow tumors of varying 
metastatic potential and acquired label-free spectra using a fiber probe-based portable Raman 
spectroscopy system. We used MCR-ALS and random forests classifiers to identify putative spectral 
markers and predict metastatic phenotype of tumors based on their optical spectra. We also used tumors 
derived from 4T1 cells silenced for the expression of TWIST, FOXC2 and CXCR3 genes to assess their 
metastatic phenotype based on their Raman spectra. 
Results: The MCR-ALS spectral decomposition showed consistent differences in the contribution of 
components that resembled collagen and lipids between the non-metastatic 67NR tumors and the 
metastatic tumors formed by FARN, 4T07, and 4T1 cells. Our Raman spectra-based random forest 
analysis provided evidence that machine learning models built on spectral data can allow the accurate 
identification of metastatic phenotype of independent test tumors. By silencing genes critical for 
metastasis in highly metastatic cell lines, we showed that the random forest classifiers provided 
predictions consistent with the observed phenotypic switch of the resultant tumors towards lower 
metastatic potential. Furthermore, the spectral assessment of lipid and collagen content of these tumors 
was consistent with the observed phenotypic switch.  
Conclusion: Overall, our findings indicate that Raman spectroscopy may offer a novel strategy to 
evaluate metastatic risk during primary tumor biopsies in clinical patients. 
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Introduction 
Metastasis to distant organs is the major cause 

for breast cancer-related mortality [1]. The ability to 
assess metastatic propensity during the diagnosis of 
solid primary tumors is critical to arresting future 
metastatic growth in at risk patients and to reducing 
overtreatment of patients not at risk to potentially 
harmful and costly therapies. However, the accurate 
determination of metastatic tumor phenotype is 
particularly challenging due to the involvement of 
multiple players beyond the cancer cells, such as the 
components of tumor microenvironment and the 
composition of secondary sites (pre-metastatic niches) 
[2-5]. The existing methods provide limited objective 
insights into the metastatic risk of solid tumors at the 
primary diagnosis. While emerging research is 
focused on leveraging the knowledge of mutational 
landscape of primary tumors as well as biological and 
physical characterization of circulating tumor cells 
(CTC) in vitro (e.g., microfluidic systems) and 
circulating tumor DNA (ctDNA), the clinical 
adoptions of these methods are either hindered by the 
requirement of labor-intensive processing or 
restricted by the knowledge of limited markers of 
metastatic progression [6-15]. Therefore, there is an 
urgent need for novel analytical technologies that can 
provide direct readout of the metastatic potential 
from the solid tumor samples with minimal 
perturbation.  

 Optical spectroscopy and imaging have 
emerged as attractive platforms to probe biomolecular 
composition and metabolic status of tumors and their 
stroma [16-18]. Raman spectroscopy, a non-invasive 
method based on inelastic scattering of light, is 
particularly attractive for label-free quantitative tissue 
analysis due to the adequate penetration depth of 
near-infrared (NIR) light in tissue and a lack of 
spectral interference from water content [19-21]. 
Raman spectroscopy and imaging have been 
employed previously to study a range of biomedical 
problems [20-23] including primary tumor 
composition [24-27], breast cancer microcalcifications 
[26, 28], formation of pre-metastatic niches [29], 
response to therapy [30-32], and single-cell 
phenotyping [33, 34]. Recent studies have also 
leveraged Raman spectroscopy for studying 
hallmarks of metastatic progression at the cellular 
level using breast cancer cell lines [35, 36]. However, a 
systematic study of metastatic phenotypes associated 
with tumors derived from isogenic cancer cells of 
progressively increasing metastatic propensity is 
currently lacking. Additionally, the sensitivity of 
vibrational spectroscopic markers to identify tumor 
phenotypes that result from subtle alterations in 

expression of genes implicated in metastasis has not 
been explored. 

 In this report, we evaluate the ability of Raman 
spectroscopy to identify distinct phenotypes 
associated with metastatic propensity by employing 
an isogenic panel of murine breast cancer cell lines – 
4T1, 4T07, 168FARN, 67NR – where each of the cell 
lines are only capable of accomplishing specific steps 
in the metastatic process [37] (Figure 1A). The low 
optical throughput of spontaneous Raman 
spectroscopy combined with the spectral congestion 
among many overlapping vibrational modes 
demands the use of multivariate data analysis 
methods to elucidate the subtle differences between 
phenotypes associated with disease severity and 
therapy [38]. Additionally, machine learning methods 
such as supervised random forest classification can 
leverage the wealth of molecular information in the 
fingerprint region of the Raman spectra to build 
predictive models of disease progression and 
therapeutic outcomes [32, 38]. Here, we use 
multivariate curve resolution-alternating least squares 
(MCR-ALS) decomposition of spectra and supervised 
classification analysis using random forests to reveal 
putative molecular markers of progression and 
predict the metastatic phenotype in tumors (Figure 
1B). We also used gene deletion/knockdown variants 
of the 4T1 cell line, which has the highest metastatic 
potential, to determine if targeting metastasis- 
promoting genes (TWIST1, FOXC2, CXCR3) would 
cause tumors grown from these cell lines to be 
classified differently (Figure 1C). Prior research has 
shown that silencing of TWIST1, FOXC2, and CXCR3 
genes individually in the aggressive 4T1 cell line 
results in significant loss of metastatic abilities [39-41]. 
We show that tumors grown from 4T1 cells with these 
genes silenced are classified as having lower 
metastatic potential. We also demonstrate the ability 
of Raman spectroscopy to delineate differences 
between the phenotype switches achieved via 
different biological pathways mediated by these gene 
silencing experiments. 

Results 
Raman spectroscopy reveals differences 
between isogenic breast tumors of varying 
metastatic potential 

We used the mouse mammary tumor model 
comprised of four isogenic cell lines of varying 
metastatic potential – 67NR, 168FARN (FARN), 4T07, 
and 4T1 – that were originally derived from a single 
mammary tumor in a wild-type BALB/c mouse [37]. 
Each of these cell lines form robust primary tumors in 
BALB/c mice but exhibit progressive differences in 
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their metastatic abilities (Figure 1) [39]. The 
non-metastatic 67NR cells fail to intravasate into the 
circulation. Of the remaining three cell lines, FARN 
cells fail to extravasate into the lungs. While both 4T07 
and 4T1 cells extravasate into the lungs, only 4T1 cells 
manage to establish visible metastatic nodules and 
4T07 cells have been shown to disappear from lungs 
following removal of the primary tumor. Therefore, 
these four cell lines form an excellent model to study 
distinct steps of cancer metastasis. In the current 
study, we employed tumors formed by 67NR (n = 8), 
FARN (n = 6), 4T07 (n = 5), and 4T1 (n = 8) cells in 
BALB/c mice. Our spectral dataset comprised of 6362 
spectra (average ca. 235 spectra per tumor) collected 
from these 27 tumors (Figure 2A). In addition, the 
spectral dataset also included 8589 spectra from 34 
tumors derived by using the variants of 4T1 cells with 

specific genetic modifications (described later). 
 We subjected the entire spectral dataset to 

multivariate curve resolution – alternating least 
squares decomposition (MCR-ALS) for dimension-
ality reduction and identification of spectral 
constituents [42]. Due to the positivity constraints 
imposed on the derived component spectra and their 
scores, MCR-ALS decomposition has been shown to 
provide components that resemble pure constituents 
of the specimen without prior knowledge of its 
composition. For the entire spectral dataset in the 
present study, a five-component MCR-ALS decompo-
sition (Figure 2B) provided components that resemble 
lipid (MC1) and collagen (MC2) based on their 
characteristic spectral features detailed in Table S1 
(Supporting Information). The remaining compo-
nents captured contributions due to formalin 

contamination and mixed spectral 
features (Figure S1, Supporting Informa-
tion). We compared the distribution of 
scores of each MCR-ALS component 
across the four tumor groups of varying 
metastatic potential. We observed that the 
median scores of the lipid-like component 
(MC1) increased significantly for the 
metastatic tumors formed by FARN, 
4T07, and 4T1 compared with the 
non-metastatic 67NR tumors and that the 
increase was highest for the 4T1 tumors 
(Figure 2C). Similarly, we found the 
median MCR-ALS scores for the 
collagen-like components decreased for 
the tumors in FARN, 4T07, and 4T1 
groups in comparison with 67NR tumors 
(Figure 2D). While these component 
scores show significant differences 
between the non-metastatic 67NR tumors 
and the remaining tumor groups that 
show progressively higher metastatic 
abilities, they do not vary uniformly 
across the classes. Therefore, the 
univariate analysis based on the 
component scores alone is not sufficient 
to predict the metastatic potential of the 
tumors. 

Supervised classification using 
random forests predicts 
stage-specific metastatic 
phenotypes 

We used supervised classification 
based on random forests with a 
leave-one-mouse-out approach to train 
classifier models on the spectral dataset 
and predict the metastatic phenotype of 

 

 
Figure 1. Label-free Raman spectroscopy for identifying metastatic phenotypes. (A) The 
different steps of metastatic cascade accomplished by the tumors formed by each of the cell lines of the 
4T1 tumor model employed in this study are shown. (B) The overview of Raman mapping of the tumors 
and spectral analysis is presented. MCR-ALS spectral decomposition and random forest classification using 
leave-one-mouse-out analysis were performed, where all the spectra from each mouse was excluded from 
training dataset and used as an independent test dataset. (C) The tumors formed by the 4T1 cells silenced 
for the expression of metastasis-promoting genes are employed for spectroscopic measurements. 
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the tumors. First, we trained and tested multi-class 
random forest classifiers on spectra from all the four 
tumor groups (Figure 3A). The leave-one-mouse-out 
strategy involves training the classifier on spectral 
dataset by excluding all the spectra from one mouse in 
each iteration and subjecting them as an independent 
test dataset to the developed model. By eliminating 
the representation of spectra from test mice in the 
training dataset, this approach prevents overfitting of 
the classifier and provides robust models that 
incorporate biological variability across the tumors 
obtained from different mice. The predicted class 
label is determined for each test mouse based on the 
majority voting of the spectral predictions. We 
observed that the leave-one-mouse-out approach 
provided accurate predictions for most mice in the 
non-metastatic 67NR (8/8) and highly metastatic 4T1 
tumors (7/8). The tumors in the intermediate groups 
FARN (4/6) and 4T07 (2/5) were either accurately 
classified or misclassified into their neighboring 
groups in terms of metastatic potential. An overall 
accuracy of 77.8% was achieved by the multiclass 
classifier in predicting the metastatic phenotype of 
mice in all the four classes. For 67NR, FARN, 4T07, 
and 4T1 classes, sensitivity (one vs. rest) of 100%, 

66.7%, 40%, and 87.5%, as well as specificity of 89.5%, 
100%, 95.5%, and 84.2% were obtained. Together, 
these observations show that random forest classifiers 
are not only able to accurately distinguish between 
the non-metastatic and highly metastatic phenotypes, 
but also satisfactorily estimate the intermediate 
phenotypes characterized by relatively subtle 
differences in the spectrum of metastatic progression. 
The classification accuracy, particularly of the 
intermediate groups (FARN and 4T07), should be 
further boosted with the inclusion of more mice in the 
dataset. 

 Next, we sought to determine if the random 
forest classifiers derived from the Raman spectra can 
specifically distinguish tumors that complete specific 
steps of the metastatic cascade from those that do not. 
We trained and tested binary random forest classifiers 
with the leave-one-mouse-out analysis for 
intravasation, extravasation, and metastatic growth. 
For intravasation, we labeled spectra from the 67NR 
tumors as intravasation-negative and the spectra from 
the remaining tumors as intravasation-positive and 
subjected them to binary leave-one-mouse-out 
random forest classification (Figure 3B). We observed 
that all tumors were classified accurately as belonging 

to either negative or positive classes. Using a 
similar approach for extravasation by 
labeling 67NR and FARN tumors negative 
and 4T07 and 4T1 tumors positive, we noted 
that only two FARN tumors and one 4T07 
tumor were misclassified as positive and 
negative respectively for extravasation 
(Figure 3C). All remaining tumors were 
classified accurately according to their 
extravasation capacity. Finally, we tested the 
random forest classifiers for overt metastatic 
growth. We labeled the spectra from the 
67NR, FARN and 4T07 tumors as negative 
and spectra from 4T1 tumors as positive for 
metastatic growth (Figure 3D). We found 
that only one tumor each of the 4T07 and 4T1 
groups were respectively misclassified as 
positive and negative for metastatic growth. 
For intravasation, extravasation, and 
metastatic growth, we obtained accuracy of 
100%, 88.9%, 92.6%, sensitivity of 100%, 
92.3%, 87.5%, and specificity of 100%, 85.7%, 
94.7% respectively. The accurate prediction 
of metastatic propensity and identification of 
specific steps in the metastatic cascade show 
that Raman spectra can capture subtle 
biomolecular features of the tumor and its 
microenvironment that define its metastatic 
outcome. 

 

 

 
Figure 2. Spectral differences between tumors of varying metastatic potential. (A) The 
mean (dark line) and 1 standard deviation (shaded region) of the Raman spectra collected from 
isogenic tumors of varying metastatic potential are shown. (B) A subset of constituent spectra 
derived using MCR-ALS decomposition of Raman spectral dataset that harbor features of lipids and 
collagen are plotted. The box and whisker plots show the variation of scores of (C) lipid-like and (D) 
collagen-like MCR-ALS components with metastatic potential of the tumors. Statistical significance as 
assessed by Wilcoxon rank-sum test p-value < 0.05 for each metastatic tumor group in comparison 
with non-metastatic 67NR group are denoted using asterisks and the corresponding effect sizes (r) 
show the magnitude of differences. 
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Figure 3. Supervised classification of metastatic potential and stage-specific phenotypes. The results for leave-one-mouse-out random forest classification are 
shown as heatmaps for the prediction of – metastatic phenotype of the tumors formed by the four cell lines with differential metastatic potential (A) and stage specific metastasis 
abilities to accomplish intravasation (B), extravasation (C), and metastatic growth (D). The true labels for the analysis (negative or positive for each step) in panels C-D are 
assigned based on known behaviors of these tumors in vivo. The top and bottom rows in each heatmap, respectively, show the true labels and predicted labels of the individual 
mice (columns) in each group. The labeled central rows in the heatmaps show the distribution of the predicted labels for spectra from each mouse into the classes in the training 
dataset. The overall class prediction for each mouse is obtained by thresholding on the prediction frequencies. 

 

Random forest analysis reveals stage-specific 
Raman spectral markers of metastatic 
progression 

Random forests provide intrinsic capacity to 
rank spectral features based on their contribution to 
the prediction accuracy. We performed random forest 
classification on the entire spectral dataset for each 
step of metastasis and determined the top five spectral 
features that contribute the most to the classification 
accuracy. For intravasation, we found that the 
classification is governed by spectral features at 1042 
cm-1, 1213 cm-1, 1330 cm-1, 1432 cm-1, and 1566 cm-1 
(Figure 4A). We observed that the classification for 
extravasation is governed by a distinct set of spectral 

makers at 670 cm-1, 962 cm-1, 1372 cm-1, and 1664 cm-1 

in addition to the overlap with the intravasation 
markers at 1213 cm-1 (Figure 4B). Similarly, the 
classification of the spectra based on the metastatic 
growth step were governed by features at 862 cm-1, 
1098 cm-1, 1254 cm-1, 1462 cm-1, and an overlapping 
feature with extravasation set at 1664 cm-1 (Figure 
4C). We plotted these top five discriminating 
wavenumbers for each step as a Venn diagram 
(Figure 4D) and observed overlap in the sets of 
spectral markers only between the neighboring steps 
of the metastatic cascade (between intravasation and 
extravasation sets as well as extravasation and 
metastatic growth sets). The band assignments for the 
identified predictors for all the steps are tabulated in 
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Table S2 (Supporting Information). Together with 
the lack of overlap between intravasation and 
metastatic growth sets, the random forest derived 
spectral markers provide evidence that distinct 
metastatic abilities are governed by different 
biomolecular constituents of the tumors and that 
Raman spectroscopy can delineate the differences and 
similarities in their spectral signatures. 

Raman spectroscopy allows identification of 
metastatic phenotype of tumors formed by 
silencing genes that drive metastatic 
progression in 4T1 cells 

We used 4T1 cells after CRISPR/Cas9 knockout 
of TWIST1 gene (TWIST-KO, n = 8) and shRNA 
knockdown of FOXC2 and CXCR3 genes (FOXC2-KD, 
n = 7 and CXCR3-KD, n = 6) to grow tumors in 
BALB/c mice and determine the accuracy of Raman 
spectroscopy in identifying the metastatic potential of 
the resultant tumors. We also used the vector control 
cells for the shRNA knockdowns to grow respective 
control tumors (FOXC2-VC, n = 7 and CXCR3-VC, n = 
6). Prior studies have shown that silencing of TWIST1, 
FOXC2, and CXCR3 genes in 4T1 cells resulted in a 

reduction of the metastatic potential of the resultant 
tumors in mice and a lower lung metastatic burden 
[39-41]. To test if the Raman spectra of the tumors 
derived from the silenced cells capture these 
phenotypic changes, we subjected the spectra 
acquired from these tumors as test datasets to the 
random forest classifier models trained on the spectra 
from the four original tumors classes – 67NR, FARN, 
4T07, and 4T1 (Figure 5A). The per-mouse predictions 
for the TWIST-KO tumors revealed that a majority 
(6/8) of them were classified as non-metastatic 67NR 
tumors and neither were classified as tumors derived 
from 4T1 cells, from which the silenced cells were 
derived. Next, we inspected the per-mouse 
predictions for FOXC2-KD tumors and compared 
them with their vector control FOXC2-VC tumors. We 
observed that most of the FOXC2-KD tumors were 
classified as the lower metastatic FARN (3/7) or 4T07 
(2/7) tumors than the parental 4T1 tumors (2/7). In 
the vector control FOXC2-VC tumors, however, we 
found that most tumors were classified as 4T1 (4/7) 
and 4T07 (2/7) tumors. Similarly, we noted that the 
CXCR3-KD tumors were classified largely as FARN 
(2/6) and 4T07 (3/6) tumors whereas the vector 

control CXCR3-VC tumors were 
predominantly classified as the parental 4T1 
(4/6) tumors. Our results, here, provide the 
first evidence that optical spectroscopic 
signatures can potentially capture functional 
differences in the tumor states that arise 
from alterations in gene expression at 
cellular level. 

 To further verify that the metastatic 
phenotype identification of the tumors is 
driven by the changes in the tumor 
microenvironment that result from 
alterations in gene expression, we compared 
the MCR-ALS scores of the Raman spectra 
obtained from the TWIST-KO, FOXC2-KD, 
and CXCR3-KD tumors with their respective 
controls. We found a significant reduction in 
the scores of the lipid-like component (MC1) 
in the TWIST-KO tumors in compared to 
their control 4T1 tumors (Figure 5B). Similar 
decreases in the scores of the lipid-like 
component were observed for the 
FOXC2-KD and CXCR3-KD tumors when 
compared to their respective vector controls 
FOXC2-VC and CXCR3-VC. For the 
collagen-like component (MC2), we found 
that the scores of the TWIST-KO and 
CXCR3-KD tumors increased significantly 
when compared to their respective controls 
(Figure 5C). The decrease and increase, 
respectively, in scores of the lipid-like and 

 

 
Figure 4. Stage-specific spectral markers of metastatic progression. The predictor 
importance estimates derived from random forest classification of Raman spectra based on their 
stage-specific metastatic abilities are shown for intravasation (A), extravasation (B), and metastatic 
growth (C). The five most important (non-neighboring) Raman features (cm-1) are highlighted on 
these plots and presented as a Venn diagram (D) to visualize the overlap between different steps. Null 
sets are denoted by Φ. 
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collagen-like components due to the knockdown of 
genes essential for metastasis in the highly metastatic 
4T1 cells are consistent with the observed differences 
between non-metastatic 67NR and variably metastatic 
FARN, 4T07, and 4T1 tumors in Figure 2. Together 
with the random forest classification results, the 
consistent changes in the MCR-ALS scores of the pure 
component-like constituents improve our confidence 
in the ability of Raman spectroscopy to identify 
biomolecular differences in the tumors that result 
from a phenotypic switch due to alterations in gene 
expression. 

Raman spectroscopy can distinguish between 
similar metastatic phenotype that result from 
distinct alterations in gene expression 

Prior microarray analysis of the tumors formed 
by 67NR, FARN, 4T07, and 4T1 cell lines has 
identified key genes are important drivers of each step 
of the metastatic cascade [39]. Weinberg and 
coworkers have performed the same stage-specific 
comparisons of the microarray data obtained from the 
four tumors and identified unique sets of genes that 
are most significantly upregulated or downregulated 
in groups that show differential intravasation, 
extravasation and metastatic growth [39]. Their gene 

expression analysis showed that TWIST1 and CXCR3 
genes are overexpressed in tumors formed by cell 
lines capable of intravasation - FARN, 4T07, and 4T1 – 
compared with the non-metastatic 67NR cells. Similar 
analysis showed that FOXC2 is overexpressed in the 
highly metastatic 4T1 tumors compared with the 
67NR, FARN, and 4T07 tumors. In addition to these 
genes, the microarray analysis revealed several other 
genes that are overexpressed in tumors with distinct 
metastatic capabilities. Based on these results, we 
selected 24 genes overexpressed in metastatic tumors 
to build a protein-protein interaction network and 
explore their roles in different biological processes 
responsible for cancer metastasis using the 
STRING-11 (http://string-db.org) analysis software. 
The network in Figure 6A shows the protein-protein 
interactions between the overexpressed genes and a 
subset of biological processes that are governed by 
them. We found evidence of co-expression of TWIST1 
and FOXC2 as well as evidence of experimentally 
determined relationship between TWIST1 and CXCR3 
via MMP9. We also found that the three genes 
contributed to overlapping, yet different, biological 
processes involved in cancer metastasis. 

 

 
Figure 5. Raman spectroscopic identification of metastatic phenotypes due to subtle alterations in gene expression. (A) Heatmap representation of random 
forest classification of tumors from the three 4T1-variant cell lines (knockdown and control). The classifier model was trained on data from the original tumor panel - 67NR, 
168FARN, 4T07, and 4T1. The overall class prediction in the bottom row for each mouse is obtained by thresholding on the prediction frequencies of the four classes in the 
labeled intermediate rows. A comparison of the MCR-ALS scores between the knockdown and control tumors for the components resembling lipids (B) and collagen (C) is 
shown using box and whisker plots. Statistical significance as assessed by Wilcoxon rank-sum test p-value < 0.05 for each genetically altered tumor group in comparison with their 
respective control groups is denoted using asterisks and the effect sizes (r) show the magnitude of differences. 
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 To test if the differential regulation of breast 
cancer metastasis due to TWIST1, FOXC2, and CXCR3 
genes results in spectroscopically distinct phenotypes, 
we performed a three-class random forest 
classification using the leave-one-mouse-out routine 

with spectral data from just the three altered tumor 
groups (Figure 6B). While all the TWIST-KO and 
FOXC2-KD tumors were classified accurately, two 
CXCR3-KD tumors were misclassified as TWIST-KO 
and FOXC2-KD tumors, respectively. The overall high 

accuracy of the three-class classifier 
shows that Raman spectroscopy has 
the potential to distinguish between 
similar phenotypic states achieved 
via different biological pathways. 
These differences were further 
corroborated by the assessment of 
macrometastatic nodules (Figure 
6C) in lungs of the mice bearing 
tumors grown from the cell lines 
silenced for the expression of 
TWIST1, FOXC2, and CXCR3, that 
showed distinct differences in the 
metastatic burden. The significantly 
larger reduction in the metastatic 
burden observed in TWIST-KO 
group compared to the FOXC2-KD 
and CXCR3-KD groups and the 
relative misclassification of the 
CXCR3-KD spectra could also be 
partially attributed to the relatively 
more robust silencing of TWIST1 
due to CRISPR/Cas9 knockout at 
the genome level in comparison of 
shRNA knockdown of FOXC2 and 
CXCR3 at the mRNA level. 

Discussion 
Clinical intervention of cancer 

metastasis and choice of treatment 
are dependent on our ability to 
recognize the metastatic phenotype 
of primary tumors at initial 
diagnosis. While prior optical 
spectroscopic studies of benign and 
malignant tumors have attempted to 
assess metastatic potential in 
spectral terms, the differences in 
genetic backgrounds of the patient- 
derived samples limit our ability to 
delineate the spectral features asso-
ciated with metastatic phenotypic 
differences from inter-patient 
heterogeneity [26, 43]. In the current 
study, we employed a panel of 
isogenic breast cancer cells of known 
but progressively increasing 
metastatic propensities to grow 
tumors in mice for molecular pheno-
typing using Raman spectroscopy 

 

 
Figure 6. Differences between metastatic phenotype switches due to distinct alterations in gene 
expression. (A) Protein-protein interaction network of genes identified as overexpressed in the tumors 
accomplishing intravasation, extravasation, metastatic growth is shown. The network nodes are colored by their 
pathway membership and the interactions between nodes are colored by type, as listed in the respective legends. 
(B) The results of leave-one-mouse-out random forest classification of the spectra from tumors obtained by 
silencing TWIST1, FOXC2, and CXCR3 expression in 4T1 cells are shown. The overall class prediction in the 
bottom row for each mouse is obtained by thresholding on the prediction frequencies of the three classes in the 
labeled intermediate rows. (C) Representative photographs of metastatic lungs of mice harboring tumors obtained 
by silencing TWIST1, FOXC2, and CXCR3 expression in 4T1 cells are shown along with their corresponding 
controls. 
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[37]. The 4T1 mammary tumor model was employed 
in the current study due to its ability to spontaneously 
metastasize to lungs and recapitulate the key steps of 
metastatic progression in human patients [39]. The 
MCR-decomposition of spectral dataset from 67NR, 
FARN, 4T07, and 4T1 tumors revealed significant 
differences in lipid and collagen content of the 
non-metastatic 67NR tumors compared to the tumors 
in the remaining groups (Figure 2). The observed 
higher lipid content (Figure 2C) in metastatic tumors 
is in agreement with emerging evidence of an 
important role of lipid metabolism in cancer 
metastasis [44, 45]. A recent study by Pascual et al. 
showed that metastasis-initiating cells rely on dietary 
lipids and express high levels of fatty acid receptor 
CD36 and genes necessary for lipid metabolism [46]. 
Similarly, the lower collagen content observed in the 
metastatic tumors (Figure 2D) could potentially be 
attributed to the extracellular matrix remodeling due 
to collagen degradation by stromal cell-derived 
matrix metalloproteinases [47]. More detailed 
investigations are necessary to understand the roles of 
lipid and collagen content in determining the 
metastatic phenotype of breast tumors due to the 
multiple roles of these molecules at each step in 
primary tumor growth and metastatic progression. 
The lipid and collagen scores, however, did not show 
monotonic trends with the increasing metastatic 
potential of the tumor groups. The deviation from 
monotonic increase for the scores of lipid-like MCR 
component (Figure 2C) resulted from a jump 
observed for the FARN tumors. Similar deviation 
from the monotonic decrease of the collagen-like 
component scores (Figure 2D) has been observed due 
to an anomalous increase for 4T1 tumors at the end of 
the spectrum. These deviations, however, do not 
undermine the significance of the MCR-ALS derived 
putative markers of metastatic progression. 

 To utilize the latent information from the entire 
Raman spectra, we employed random forest 
classification analyses using a leave-one-mouse-out 
approach, which permits the treatment of each tumor 
as an independent test sample against the classifiers 
trained on the spectral data from the remaining 
tumors. The near-perfect classification of the tumors 
in the 4T1 and 67NR groups with vastly different 
metastatic propensity (Figure 3A), and the 
classification of the misclassified tumors in the 
intermediate metastatic groups – 4T07 and FARN – 
exclusively into their neighboring classes demonstrate 
the power of Raman spectroscopy and random forest 
classifiers in identifying subtle differences in 
metastatic phenotypes, despite modest differences 
observed in the univariate MCR-ALS scores. It is also 
important to verify if the classifiers can identify 

differences in tumors derived from cell lines lacking 
gene expression associated with critical steps of the 
metastatic process. The high prediction accuracy 
obtained for the leave-one-out random forest 
classifiers trained on the outcomes for intravasation, 
extravasation, and metastatic growth (Figure 3B-D) 
demonstrated the feasibility of using Raman 
spectroscopy for accurate localization of the primary 
tumors in the metastatic cascade. These results also 
show that while several 4T07 tumors were 
misclassified as 4T1 in Figure 3A due to their 
phenotypic proximity in the metastatic cascade, they 
were classified with higher accuracy in Figure 3D 
when the classifier included other tumor groups that 
do not support metastatic growth in the lungs 
alongside 4T07 tumors in the negative set. 
Furthermore, the intrinsic feature importance ranking 
provided by random forests showed that the 
stage-specific identification is driven by distinct sets 
of spectral markers with minimal overlap instead of a 
universal set of markers (Figure 4). It is interesting to 
note that the spectral marker overlap can only be seen 
between adjacent steps in the metastatic cascade. This 
observation is consistent with the complexity of 
metastatic process, which is characterized by various 
stage-specific molecular biological processes. 

 The 4T1 family of isogenic mammary tumors has 
been used by several researchers to identify important 
genes that drive breast cancer metastasis such as 
TWIST1, FOXC2, and CXCR3 [39-41]. Inhibition of 
these genes, via siRNA and shRNA, in 4T1 cells 
resulted in substantial reduction of metastatic nodules 
in the lungs. Therefore, these observations provided a 
rationale for our investigation into the spectral 
characteristics of tumors formed by 4T1 cells after 
silencing the expression of TWIST1, FOXC2, and 
CXCR3 genes. The classification of the majority of 
tumors silenced for critical genes responsible for 
metastasis into the lower metastatic groups and their 
respective controls into the high metastatic 4T1 group 
(Figure 5A) shows that Raman spectroscopic 
measurements are capable of capturing the phenotype 
switches associated with subtle alterations in gene 
expression. Furthermore, the statistically significant 
changes in the MCR-ALS scores of lipid-like and 
collagen-like components (Figure 5B-C) in the 
direction consistent with their phenotype switch 
validates the existence of a direct relationship 
between the spectral markers obtained by MCR-ALS 
analysis and the target tumor phenotype. While the 
silencing of TWIST1, FOXC2, and CXCR3 genes is 
known to reduce metastatic burden, their contribution 
to metastasis is driven by different biological 
pathways. For example, TWIST1 and FOXC2 
contribute to metastasis by regulating epithelial to 
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mesenchymal transition (EMT) [40, 48]. However, 
while TWIST1 regulates EMT by suppressing the 
expression of epithelial marker E-cadherin, FOXC2 
does not alter E-cadherin levels and is responsible for 
the induction of mesenchymal phenotype [48, 49]. 
CXCR3, on the other hand, regulates metastasis 
through impairment of host anti-tumor immunity due 
to suppression of IFN-γ production and T cell 
expansion [41]. The differential metastatic burden 
observed in the lungs of mice bearing TWIST-KO, 
FOXC2-KD, and CXCR3-KD tumors compared to 
their controls are in agreement with these prior 
observations. Furthermore, the accuracy of three-class 
random forest classifiers trained on the spectra 
obtained from TWIST-KO, FOXC2-KD, and 
CXCR3-KD in our current study (Figure 6) hints at the 
potential of Raman spectroscopy to capture the 
differences between similar metastatic phenotypes 
that result from loss of metastatic abilities via distinct 
biological pathways. 

Conclusion 
In summary, our results show that Raman 

spectroscopy and machine learning can provide a 
potent combination for identification of differences in 
metastatic phenotypes that result from subtle 
alterations in gene expression. The rich molecular 
information captured by the spectra can be leveraged 
to determine important markers of metastatic 
progression. Our strategy coupled the uniform 
genetic background provided by the isogenic mouse 
model of breast cancer metastatic progression with 
gene silencing for known mediators of metastasis in 
this model. This allowed us to attribute the observed 
differences in the spectral patterns to distinct steps in 
the metastatic cascade. We envision that this approach 
will be adopted to study other disease systems where 
phenotypic differences are guided by subtle 
alterations in gene expression. Future studies will 
leverage the molecular specificity of Raman 
spectroscopy for monitoring the evolution of 
metastatic risk in response to primary tumor therapy 
by inspecting pre-treatment and post-treatment 
biopsies. In addition, we plan to build on the current 
results to develop new label-free analytical solutions 
for identifying the best gene targets to assist the 
development of novel cancer gene therapeutics. 

Material and Methods 
Cell culture and tumor xenografts 

The cell lines, 67NR, 168FARN, 4T07, and 4T1 
were originally derived from a spontaneous breast 
tumor growing in a Balb/c mouse and were kindly 
provided by Dr. Fred Miller (Karmanos Cancer 

Institute, Detroit, MI) [37]. The TWIST-KO cells were 
generated by deleting the TWIST1 gene in 4T1 cells 
using CRISPR/Cas9 system. The 20-base pair sgRNA 
targeting the TWIST gene (5’-TTGCTCAGGCTGTC 
GTCGGC-3’) was identified using the sgRNA guide 
tool by Zhang laboratory at MIT (Cambridge, MA). 
The sgRNA was cloned into pCasGuide-EF1a-GFP 
plasmids by OriGene (Rockville, MD), which were 
expanded in E. coli bacteria and isolated using the 
QIAGEN Plasmid Maxi Kit. The 4T1 cells were seeded 
in a 6-well plate at a density of one million cells per 
well and 10 μg of plasmids in lipofectamine 3000 were 
added for transfection and verified using a Nikon TiE 
fluorescence microscopy after 24 to 48 hours. The 
transfected 4T1 cells suspended in phosphate 
buffered saline (PBS) were filtered through a 50 μm 
filter into a FACS tube for sorting based on GFP 
expression through BD Biosciences (San Jose, CA) 
Aria III FACS system. The 5% of transfected cells with 
the highest GFP expression were selected and 
incubated for 7 to 14 days. From the 13 clones 
obtained from the cell colonies, the clone expressing 
least TWIST1 gene were selected. The previously 
characterized FOXC2-KD shRNA knockdown clones 
and their vector controls FOXC2-VC clones derived 
from 4T1 cells were obtained from Dr. Sendurai A. 
Mani (MD Anderson Cancer Center, Houston, TX) 
[40, 49]. The previously characterized CXCR3-KD 
shRNA knockdown clones and their vector controls 
CXCR3-VC clones derived from 4T1 cells were 
obtained from Dr. Li Yang (National Cancer Institute, 
Bethesda, MD) [41]. The cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM) with 
the addition of 10% (v/v) fetal bovine serum (FBS), 2 
mM L-glutamine, 1% (v/v) nonessential amino acids, 
and 1% (v/v) penicillin-streptomycin and maintained 
in a humidified incubator at 5% CO2 and 37oC. For 
each cell line, about 150,000 to 250,000 cells (4 million 
cells for the 168FARN cells) suspended in 100 µl of 
saline were injected into the flanks of Balb/c mice to 
grow xenografts. Tumors were excised when they 
reached an average volume of 200 mm3 or if they 
started to show signs of necrosis. The snap-frozen 
lungs for metastasis assessment were thawed by 
placing them in 20-30ml of PBS at 4 °C for 15 min at 
room temperature. To remove the OCT surrounding 
the lung tissue, the submerged samples were 
occasionally agitated at 10 rpm. Subsequently, each 
lung was placed in a centrifuge tube in 5 mL of 
Bouin’s Solution at room temperature and incubated 
for 3 days. All experiments were approved by the 
Institutional Animal Care and Use Committee at the 
University of Arkansas (IACUC protocol 18062). 
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Raman spectroscopy 
The excised tumors were snap-frozen in liquid 

nitrogen and stored at -80 oC. The frozen tumors were 
thawed in PBS and fixed in 10% neutral buffered 
formalin prior to the Raman measurements. The 
formalin fixed tumors were washed in PBS and 
sandwiched between a quartz coverslip and an 
aluminum plate for Raman mapping measurements. 
A previously described fiber probe-based portable 
clinical Raman spectroscopy system was used to 
perform Raman mapping in the current study [50]. 
Briefly, the system is comprised of an 830 nm diode 
laser (Process Instruments, maximum power: 500 
mW) for excitation, a spectrograph (Holospec f/1.8i, 
Kaiser Optical Systems), and a thermoelectrically 
cooled CCD camera (PIXIS 400BR, Princeton 
Instruments). The laser power of ca. 20 mW was 
delivered to the tissue via a fiber-optic probe mounted 
on a motorized 2-D translational stage (T-LS13M, 
Zaber Technologies Inc., travel range: 13 mm) to 
acquire spectra from distinct points on the flattened 
tumors approximately 1 mm apart. Each spectrum 
from spatially distinct points was acquired for 5 
seconds (10 accumulations of 0.5 seconds each to 
prevent CCD saturation). 

Data analysis 
All Raman spectroscopic data analyses were 

performed in MATLAB (Mathworks, Natick, MA) 
environment. The wavenumber axis for the Raman 
spectra was calibrated using the known features of 
acetaminophen spectra. The spectra in the 600-1800 
cm-1 fingerprint region were used for analysis. The 
spectra were subjected to background removal by 
iterative fitting and subtraction of a fifth order 
polynomial and median filtering. Finally, the spectra 
were vector normalized to ensure that the Euclidean 
norm of each spectrum is unity.  

 Multivariate curve resolution-alternating least 
squares (MCR-ALS) analysis was used to identify 
pure component-like constituent spectra by reducing 
the dimensionality of the dataset [42]. MCR-ALS 
decomposition produces the component loading 
spectra and their scores for each spectrum in the 
dataset under positivity constraints on both without 
necessitating prior knowledge of mixture 
composition. The MCR-ALS derived scores, which 
provide surrogates for concentrations of the 
pure-components, were plotted using box and 
whisker plots to understand the evolution of each 
component concentration with the metastatic 
potential. The few outliers outside the whiskers were 
not plotted for improved visualization. The statistical 
significance of the differences in the medians of the 
MCR-ALS scores across various tumor groups were 

determined using a two-sided Wilcoxon rank-sum 
test. The differences in medians were considered 
significant at a p < 0.05 level. The differences between 
the groups were quantified using effect sizes 
determined by the Wendt formula for rank biserial 
correlation [51].  

 We employed random forests for supervised 
classification in this study. The TreeBagger class in 
MATLAB was implemented with 100 trees to invoke 
Breiman’s original algorithm [52]. We used the entire 
spectra in the fingerprint region for training and 
testing random forests in this study. We used a 
leave-one-mouse-out training strategy to prevent 
representation of test mice in the training dataset. The 
random forests classifiers are trained on the entire 
spectral dataset by excluding all the spectra from one 
mouse at a time and the obtained models are used to 
test the spectra of the left-out mouse. The majority 
predicted label among all the spectra determines the 
final predicted label for the test mouse. For each left 
out mouse, 100 iterations of training were performed 
by random equalization of the study classes in the 
training set to ensure equal representation. The mode 
of the predictions obtained by subjecting each 
spectrum in the test dataset to these 100 models was 
used as the predicted label for robustness. The 
multiclass classifier using leave-one-mouse-out 
approach and 100 iterations of class equalization of 
training dataset took approximately 8 hours to 
complete on a computer with two cores. By leveraging 
the intrinsic capacity of random forests to rank 
features in the order of their contribution to the 
prediction accuracy, the predictor importance 
estimates were derived by training and testing 
random forest model on the entire spectral dataset 
using the OOBPredictorImportance argument in the 
TreeBagger class. Random forests are less prone to 
overfitting, provide predictor importance estimates 
and are advantageous over other classifiers such as 
support vector machines for large spectral datasets in 
the current application. 

Protein-protein interaction network 
The prominent genes previously identified to be 

overexpressed in the tumors derived from 4T1 family 
of cell lines that accomplished each step of metastasis 
were used to visualize protein-protein interactions 
using the STRING-11 (http://string-db.org) analysis 
software with a medium confidence interval of 0.4. 
The STRING network is composed of the functional 
protein associations based on genomic context, 
high-throughput experiments, co-expression, and 
scientific reports. Functional enrichments in the 
network were identified and a subset of the identified 
biological processes and pathways that are relevant 
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for metastasis were selected for visualization. The 
nodes in the network are colored according to their 
membership in each of the identified pathways. 

Supplementary Material  
Supplementary figure and tables. 
https://www.thno.org/v12p5351s1.pdf  
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