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1 |  INTRODUCTION

Obesity and diabetes are a deadly combination, compounding 
risk for cardiovascular disease, cancer, and stroke (Centers for 
Disease Control and Prevention C, 2017; Esposito, Chiodini, 
Colao, Lenzi, & Giugliano, 2012; Ninomiya et al., 2004; 
Younis et al., 2016). Obesity raises the risk of developing type 
2 diabetes 27- to 76-fold, while approximately 60% of individ-
uals with diabetes are obese (Abdullah, Peeters, de Courten, & 

Stoelwinder, 2010; Chatterjee, Khunti, & Davies, 2017; Colditz, 
Willett, Rotnitzky, & Manson,  1995). Chronic obesity exerts 
glycemic stress on pancreatic β-cells, causing dysregulation 
and dysfunction, ultimately resulting in hyperglycemia (Kolb 
& Martin,  2017; Ojha, Ojha, Mohammed, Chandrashekar, 
& Ojha,  2019; Scheen,  2003; Stumvoll, Goldstein, & Van 
Haeften,  2005). Despite the stress obesity places on β-cells, 
10%–30% of obese individuals maintain glycemic control and 
are at low risk for developing diabetes (Meigs et al.,  2006). 
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Abstract
Maintenance of functional β-cell mass is critical to preventing diabetes, but the phys-
iological mechanisms that cause β-cell populations to thrive or fail in the context of 
obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyper-
glycemic-obese to normoglycemic-obese with age, providing a unique opportunity to 
study β-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, 
and β-cell function during SM/J’s diabetic remission. As they resolve hyperglyce-
mia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels 
while improving insulin sensitivity. Immunostaining of pancreatic sections reveals 
that obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese 
SM/J mice do not show elevated β-cell mitotic index, but rather elevated α-cell mi-
totic index. Functional assessment of isolated islets reveals that obese SM/J mice 
increase glucose-stimulated insulin secretion, decrease basal insulin secretion, and 
increase islet insulin content. These results establish that β-cell mass expansion and 
improved β-cell function underlie the resolution of hyperglycemia, indicating that 
obese SM/J mice are a valuable tool for exploring how functional β-cell mass can be 
recovered in the context of obesity.
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These low-risk obese individuals have elevated β-cell mass 
and improved insulin secretion compared to BMI-matched di-
abetic-obese individuals (Aguayo-Mazzucato & Bonner-Weir,; 
Butler et al., 2003; Seino, Shibasaki, & Minami, 2011; Weir, 
Bonner-Weir, & Leahy, 1990). Understanding the differences in 
β-cell physiology between these populations may reveal thera-
peutic strategies for maintaining and improving glycemic con-
trol in obese individuals.

Recent work suggests that β-cells do not respond uniformly 
to glycemic stress, rather they experience variable fates in-
cluding dedifferentiation, replication, and apoptosis (Butler 
et  al.,  2003; Cinti et  al.,  2016; Georgia & Bhushan,  2004). 
Understanding how these changes mediate diabetic risk is 
complicated by β-cell heterogeneity. β-cell populations include 
subtypes that specialize in basal insulin secretion, β-cell repli-
cation, coordinating “hub” cells, and β-cells derived from trans-
differentiated α-cells, each of which differ in glycemic stress 
response (Farack et al., 2019; Johnston et al., 2016; Smukler 
et al., 2011). Thus, determining what differentiates nondiabet-
ic-obese and diabetic-obese populations requires connecting 
β-cell subtypes to their fate in prolonged glycemic stress.

Like in humans, diabetic risk in obese mice depends on 
genetic background (Kahle et  al.,  2013; Kobayashi, Ohno, 
Ihara, Murai, & Kumazawa,  2014; Meulen et  al.,  2017; 
Sims et  al.,  2013). Variation in β-cell heterogeneity likely 
underlies variability in islet stress response, and thus needs 
to be accounted for when comparing nondiabetic-obese and 
diabetic-obese populations. Loss of function mutations in 
leptin (ob/ob) and leptin receptor (db/db) provide insight into 
β-cell physiology in nondiabetic-obese and diabetic-obese 
states within individual mouse strains (Bock, Pakkenberg, & 
Buschard, 2003; Butler et  al.,  2003; Hummel, Coleman, & 
Lane, 1972; Keller et al., 2008; Leiter, Coleman, Eisenstein, 
& Strack, 1980); however, leptin and its receptor play a crit-
ical role in β-cell function independent of obesity, limiting 
interpretations of these studies (Covey et al., 2006). No cur-
rent mouse model is well-suited to examine physiological 
differences in β-cell health between nondiabetic-obese and 
diabetic-obese states.

The SM/J inbred mouse strain has traditionally been used 
to study interactions between diet and metabolism, and more 
recently has uncovered the genetic architecture underlying 
diet-induced obesity and glucose homeostasis (Cheverud 
et al., 2011; Lawson, Cady, et al., 2011; Lawson & Cheverud, 
2010; Lawson, Lee, et  al.,  2011; Lawson et  al.,  2010; 
Nikolskiy et  al.,  2015). After 20  weeks on a high fat diet, 
SM/J mice display characteristics of diabetic-obese mice, 
including elevated adiposity, hyperglycemia, and glucose in-
tolerance (Ehrich et  al., 2003). We have previously shown 
that by 30  weeks of age, high fat-fed SM/J mice enter di-
abetic remission, characterized by normalized fasting blood 
glucose, and greatly improved glucose tolerance and insulin 
sensitivity (Carson et al., 2019). Importantly, these changes 

occur in the context of sustained obesity. Given the central 
role of β-cell health in susceptibility to diabetic-obesity, we 
hypothesize that obese SM/J mice undergo restoration of 
functional β-cell mass during the resolution of hyperglyce-
mia. This study focuses on how insulin homeostasis, β-cell 
morphology, and β-cell function change during this remark-
able transition and establishes SM/J mice as a useful model 
for teasing apart diabetic-obese and nondiabetic-obese states.

2 |  METHODS

2.1 | Animal husbandry and tissue collection

SM/J mice were obtained from The Jackson Laboratory (Bar 
Harbor, ME). Experimental animals were generated at the 
Washington University School of Medicine and all experi-
ments were approved by the Institutional Animal Care and 
Use Committee in accordance with the National Institutes 
of Health guidelines for the care and use of laboratory ani-
mals. Mice were weaned onto a high fat diet (42% kcal from 
fat; Envigo Teklad TD88137) or an isocaloric low fat diet 
(15% kcal from fat; Research Diets D12284), as previously 
described (Carson et  al., 2019). At 20 or 30 weeks of age, 
mice were fasted for 4 hr, and blood glucose was measured 
via glucometer (GLUCOCARD). Mice were then injected 
with an overdose of sodium pentobarbital, followed by a toe 
pinch to ensure unconsciousness. Blood was collected via 
cardiac puncture and pancreas was detached from the spleen 
and duodenum.

2.2 | Serum and pancreatic insulin 
measurements

Blood obtained via cardiac puncture was spun at 6,000 rpm 
at 4°C for 20 min to separate plasma, which was collected 
and stored at −80°C. Whole pancreas was homogenized 
in acid ethanol and incubated at 4°C for 48  hr, shaking. 
Homogenate was centrifuged at 2,500  rpm for 30  min at 
4°C. Supernatant was collected and stored at −20°C. Protein 
content was measured using Pierce BCA Protein Assay kit 
(Thermo Scientific) according to manufacturer's instructions 
and read at 562 nm on the Synergy H1 Microplate Reader 
(Biotek). Insulin ELISA (ALPCO 80-INSMR-CH01) was 
used to measure plasma and pancreatic insulin levels follow-
ing manufacturer's instructions.

2.3 | Insulin tolerance test

At 19 or 29 weeks of age, mice were fasted for 4 hr prior to 
procedure. Insulin (humulin) was prepared by mixing 10-ul 
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insulin with 10-ml sterile saline. Mice were injected with 
3.75-μl insulin mixture/g bodyweight. Blood glucose levels 
were assessed from a tail nick at times = 0, 15, 30, 60, and 
120 min via glucometer (GLUCOCARD).

2.4 | Islet Histology and Analyses

At the time of tissue collection, whole pancreas was placed 
in 3 ml of neutral buffered formalin. These samples were in-
cubated at 4°C while gently shaking for 24 hr. Immediately 
afterwards, samples were placed into plastic cages and ac-
climated to 50% EtOH for 1 hr. Samples were then processed 
into paraffin blocks using a Leica tissue processor with the 
following protocol: 70% EtOH for 1  hr  ×  2, 85% EtOH 
for 1 hr, 95% EtOH for 1 hr × 2, 100% EtOH for 1 hr × 2, 
Xylenes for 1 hr × 2, paraffin wax. Pancreas blocks were sec-
tioned into 4-μm thick sections. Four samples per individual 
were randomly selected, at least 100 μm apart.

Slides were incubated at 60°C for 1 hr, then placed in xy-
lenes to remove remaining paraffin wax. Slides were then re-
hydrated using successive decreasing EtOH concentrations 
(xylenes  ×  2, 50% EtOH in xylenes, 100% EtOH  ×  2, 95% 
EtOH, 70% EtOH, 50% EtOH, and H2O). Slides were incubated 
in sodium citrate (pH 6) at 85°C for 30 min, then submerged 
in running water for 5 min. Slides were washed with 0.025% 
Triton X-100 in TBS and blocked in 10% normal donkey serum 
for 1 hr (Abcam ab7475), followed by incubation with primary 
antibody overnight at 4°C [primary antibodies: rat anti-insulin 
(1:100, R&D MAB1417), mouse anti-glucagon (1:100, Abcam 
ab10988), and rabbit anti-phospho-histone H3 (1:100, Sigma 
SAB4504429)]. After an additional wash, secondary antibody 
was applied for 1 hr at room temperature [secondary antibod-
ies: donkey anti-rabbit 488 (1:1000, Abcam ab150061), donkey 
anti-mouse 647 (1:1000, Abcam ab150107), and donkey an-
ti-rat 555 (1:1000, Abcam ab 150154)]. Fluoroshield Mounting 
Medium with DAPI (Abcam) was applied to seal the coverslip 
and slides were stored at 4°C. Imaging was performed using 
the Zeiss AxioScan.Z1 at 20X magnification and 94.79% laser 
intensity.

Background was subtracted from DAPI, insulin, glucagon, 
and phospho-histone H3 images using ImageJ. DAPI channel 
was used to identify total nuclei in CellProfiler. Insulin and 
glucagon channels were combined and overlaid on the DAPI 
image to identify islet nuclei. Insulin (INS+) staining overlaid 
with DAPI identified β-cells and glucagon (GCG+) staining 
overlaid with DAPI identified α-cells, based on the proximity of 
the signal to a given nuclei. Phosphohistone H3 (PHH3+) stain-
ing identified mitotic nuclei. Total nuclei, islet cells, β-cells, 
α-cells, and mitotic nuclei were summed across four slides for 
each individual. Islet, β-cell, and α-cell mass are reported as 
fraction of total nuclei. Mitotic islet index is reported as pro-
portion of β-cells and α-cells positive for phosphohistone H3. 

Mean β-cell area was calculated by dividing the total INS+ area 
by the number of INS+ cells. Mean β-cell area is reported for 
each individual. Islets with diameter <50 µm were discarded.

2.5 | Islet isolation

Pancreas was removed and placed in 8-mL HBSS buffer on ice. 
Pancreas was then thoroughly minced. Collagenase P (Roche) 
was added to a final concentration of 0.75 mg/ml. Mixture was 
then shaken in a 37°C water bath for 10–14 min. Mixture was 
spun at 1,500 rpm for 2 min. The pellet was washed twice with 
HBSS. The pellet was re-suspended in HBSS and transferred to 
a petri dish. Hand-selected islets were placed in sterile-filtered 
RPMI with L-glutamine (Gibco) containing 11-mM glucose, 
supplemented with 5% pen/strep and 10% fetal bovine serum 
(Gibco). Islets were rested overnight in a cell culture incubator 
set to 37°C with 5% CO2.

2.6 | Glucose-stimulated insulin 
secretion and islet insulin content

Islets of roughly equal size were equilibrated in KRBH buffer 
containing 2.8-mM glucose for 30 min at 37°C. Five islets 
were hand-selected and placed in 150-µl KRBH containing 
either 2.8- or 11-mM glucose. Tubes were placed in a 37°C 
water bath for 45  min. Islets were then spun at 2000  ×  g, 
hand-picked with a pipette, and transferred from the secre-
tion tube and placed in the content tube with acid ethanol. 
The content and secretion tubes were stored at −20°C over-
night. Each condition was performed in duplicate for each 
individual. Mouse insulin ELISA (ALPCO 80-INSMU-E01) 
was performed according to the manufacturer's instructions, 
with the secretion tubes diluted 1:5, and content tubes di-
luted 1:100. Normalized insulin secretion was calculated by 
dividing the secreted value by the content value. Glucose-
stimulated insulin secretion was calculated by dividing the 
normalized insulin secretion at 11-mM glucose by the nor-
malized insulin secretion at 2.8-mM glucose. Each sample 
was measured in duplicate. Total islet protein within each 
content tube was measured using Pierce BCA Protein Assay 
kit (Thermo Scientific) according to the manufacturer's in-
structions and read at 562 nm on the Synergy H1 Microplate 
Reader (Biotek). Islet insulin content was calculated by di-
viding the insulin level in the content tubes by the total pro-
tein value.

2.7 | Statistical analyses

Phenotypes were assessed for normality by a Shapiro-Wilk 
test, and outliers were removed. ANOVA revealed that 
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sex-by-diet-by-age interactions did not contribute meaning-
ful variance to any phenotype, so males and females were 
pooled at each time point. A student's t-test was used to assess 
significance between two cohorts, while a one-way ANOVA 
with Tukey's post hoc test was used to assess significance 
among multiple cohorts. Pearson's correlation was used to 
determine strength of correlation among variables. P <  .05 
were considered significant.

3 |  RESULTS

3.1 | Obese SM/J mice increase insulin levels 
and improve insulin sensitivity

The resiliency of β-cells distinguishes nondiabetic-obese and 
diabetic-obese individuals (Bock et  al.,  2003; Keller et  al., 
2008; Klöppel, Löhr, Habich, Oberholzer, & Heitz,  1985; 
Mezza et  al.,  2014; Ogilvie,  1933; Rahier et  al.,; Saisho 
et al., 2013; Shirakawa et al., 2017). While both groups de-
velop hyperinsulinemia, diabetic-obese individuals become 
insulin resistant, leading to β-cell dysfunction, hypoinsuline-
mia, and hyperglycemia. Our previous work shows that obese 
SM/J mice spontaneously transition from hyperglycemic to 
normoglycemic with age (Carson et al., 2019). Principle to 
this is a 40 mg/dl decrease in fasting glucose levels in high 
fat-fed SM/J mice between 20 and 30 weeks (Figure 1a). We 

first sought to characterize how insulin homeostasis changes 
during this transition. Interestingly, 20-week high fat-fed 
SM/J mice have comparable levels of plasma and pancreatic 
insulin levels compared to age-matched low fat-fed mice 
(Figure 1b-c). By 30 weeks, high fat-fed SM/J mice increase 
circulating insulin levels 5.3-fold and pancreatic insulin lev-
els 1.9-fold, in line with other models of hyperinsulinemic 
nondiabetic-obesity (Fransson et al., 2013; Gupta et al., 2017; 
Liu, Jetton, & Leahy, 2002). We sought to test for peripheral 
insulin resistance via an insulin tolerance test (ITT), as insu-
lin resistance is a known mechanism for increasing circulat-
ing and pancreatic insulin levels. Surprisingly, 20-week high 
fat-fed SM/J mice display insulin resistance compared to 
low fat-fed mice; however, insulin sensitivity is restored by 
30 weeks (Figure 1d-e). The simultaneous increase in insulin 
production and improved insulin sensitivity is unprecedented 
and suggests a novel mechanism beyond insulin resistance 
for enhancing β-cell insulin secretion.

3.2 | Obese SM/J mice increase islet mass 
during resolution of hyperglycemia

In humans and mice, obesity initially increases islet mass, and 
maintenance of that mass in part differentiates nondiabetic-
obese individuals from diabetic-obese individuals (Aguayo-
Mazzucato & Bonner-Weir,; Butler et al., 2003; Dimas et al., 

F I G U R E  1  Insulin homeostasis during the resolution of hyperglycemia in obese SM/J mice. Blood glucose levels measured after 4-hr 
fast from high and low fat-fed, 20- and 30-week SM/J mice (a). Plasma insulin (b) and pancreatic insulin levels (c) assessed via insulin ELISA, 
collected after 4-hr fast. Insulin tolerance test performed via intraperitoneal insulin injection following 4-hr fast (d), summarized in the area under 
the curve (e). N = 38–50 mice per cohort for panel A, C, D. N = 10–24 mice per cohort for panel B-C, equal numbers of males and females. Bar 
represents group means, error bars represent SEM. *p < .05, **p < .01, ***p < .001, N.S. – Not Significant
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2014; Meier et  al.,  2008; Seino et  al.,  2011; Teta, Long, 
Wartschow, Rankin, & Kushner,  2005). To understand the 
source of increased insulin production in obese SM/J mice, 
we examined islet morphology during the resolution of hy-
perglycemia. To quantify islet mass and number, β-cell mass, 
α-cell mass, and mitotic index, we randomly selected four sec-
tions per fixed pancreas and stained with antibodies against 
insulin, glucagon, and phosphohistone H3. Representative 
images of immuno-stained pancreatic sections for 30-week 
high fat-fed mice and 30-week low fat-fed mice are shown in 
Figure 2a-b. Consistent with other mouse models of obesity, 
20-week high fat-fed SM/J mice have a 2.75-fold increase 
in total islet mass compared to low fat-fed mice (Figure 2c). 
This increased mass is driven by an increase in both median 
islet area and number of islets (Figure  2d-e). Islet mass is 
further elevated 2-fold between 20- and 30 weeks in high fat-
fed mice, while the islet population remains unchanged in 

low fat-fed mice. A full summary of the islet quantification 
is presented in Table S1. Distribution of islet size is shown in 
Figure S1, along with corresponding density plot for each co-
hort. Islet mass correlates with BMI in obese humans (Dybala 
et al., 2019), a similar correlation is seen between islet mass 
and body weight in high fat-fed SM/J mice (Figure 2f).

3.3 | Obese SM/J mice increase β-cell 
mass and α-cell replication

To identify the source of the increased islet mass in high fat-
fed SM/J mice, we quantified the relative representation of 
β-cells and α-cells within each cohort. Increased islet mass in 
20-week high fat-fed mice is driven by a 3.3-fold increase in 
the number of β-cells and a 2.5-fold increase in the number 
of α-cells compared to low fat mice, while growth between 

F I G U R E  2  Changes in islet mass 
during the resolution of hyperglycemia. 
Representative pancreatic cross sections 
from 30-week high fat-fed mice (a) and 
30-week low fat-fed mice (b) stained for 
insulin (green), glucagon (white), and 
phosphohistone H3 (red). Dashed white 
box identifies location of image in inset. 
Solid yellow arrows within inset identify 
INS+:PHH3+ cells, and dashed yellow 
arrow identifies GCG+:PHH3+ cell. Islet 
mass reported as ratio of islet cells over 
total cells, summed across four pancreatic 
sections (c). Median islet area calculated 
for each individual across four sections 
(d). Total number of islets quantified per 
individual, normalized by total DAPI area 
(e). Correlation between body weight and 
β-cell mass in high fat-fed mice (f), open 
circles – 20-week high fat-fed, filled circles 
– 30-week high fat-fed. N = 12–16 mice 
per cohort for panels C-F, equal number 
of males and females. *p < .05, **p < .01, 
***p < .001, N.S. – Not Significant

a b

c d

e f
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20- and 30-week high fat-fed mice is driven by a further 2.2-
fold increase in β-cell number (Figure 3a-b). In obesity, islet 
mass expands primarily through β-cell hyperplasia (Georgia 
& Bhushan, 2004; Porat et al., 2011; Teta et al., 2005; Zhong 
& Jiang, 2019). Mean β-cell area is not different across age 
and dietary cohorts (Figure S2). We quantified mitotic index 
of β- and α-cells in our model using phosphohistone H3 and 
assessed how mitotic index relates to β-cell mass during the 
resolution of hyperglycemia in obese SM/J mice. Surprisingly, 
calculation of β-cell mitotic index reveals similar rates of 
β-cell replication across cohorts (Figure 3c), while α-cell mi-
totic index is elevated 6-fold in high fat-fed mice compared to 
low fat-fed controls (Figure 3d). Examining the relationship 
between β-cell mitotic index and β-cell mass in high fat-fed 
mice reveals that β-cell replication correlates with β-cell mass 
in 20-week mice, but not in 30-week mice (Figure 3e-f).

3.4 | Obese SM/J mice increase islet insulin 
secretion and insulin content

In conjunction with changing β-cell morphology, diabetic-
obesity is associated with altered β-cell function, including 

diminished first phase insulin secretion, increased basal insu-
lin secretion, and decreased β-cell insulin production (Cheng 
et al., 2013; Deng et al., 2004; Marchetti et al., 2004; Peyot 
et al., 2010). We sought to examine if changes in β-cell in-
sulin secretion and content corresponded with the resolution 
of hyperglycemia and expanded β-cell mass we observe. To 
test this, we isolated islets from high and low fat-fed 20- and 
30-week SM/J mice. After allowing islets to rest overnight, 
we performed a glucose-stimulated insulin secretion assay by 
subjecting islets to low (2.8 mM) or high (11 mM) glucose 
conditions. We find that high fat-fed SM/J mice dramatically 
improve glucose-stimulated insulin secretion between 20 and 
30  weeks of age. This includes transitioning from blunted 
insulin secretion under high glucose conditions to appropri-
ately elevated secretion (Figure 4a), and improvement in the 
ratio of insulin secreted in response to high versus low glu-
cose conditions (Figure 4b). Normalized insulin secreted in 
response to elevated glucose does not differ between cohorts 
(Figure S3a). Twenty-week high fat-fed mice have elevated 
insulin secretion in response to low glucose (Figure  4c), 
consistent with other studies of islets in type 2 diabetic hu-
mans and mice. Correspondingly, 20-week high fat-fed 
SM/J mice have decreased islet insulin content (Figure 4d), 

F I G U R E  3  Islet cell mass and mitotic 
index in obese SM/J mice. β-cell mass 
reported as ratio of INS+ cells divided 
by total cells summed across four slides 
per individual (a). α-cell mass reported as 
GCG+ cells divided by total cells summed 
across four slides per individual (b). β-cell 
mitotic index calculated by dividing 
INS+:PHH3+ cells by total INS+ cells 
summed across four slides per individual 
(c). α-cell mitotic index calculated by 
dividing GCG+:PHH3+ cells by total 
GCG+ cells summed across four slides (d). 
Correlation between β-cell mitotic index and 
β-cell mass in 20-week high fat-fed mice 
(e) and 30-week high fat-fed mice (f). Open 
circles – 20-week high fat-fed, filled circles 
– 30-week high fat-fed. N = 12–16 mice 
per cohort for all panels, equal males and 
females. *p < .05, **p < .01, ***p < .001, 
N.S. – Not Significant
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which increases 3-fold by 30  weeks. Consistent with cur-
rent understanding of the β-cell maturation process (Salinno 
et al., 2019), there is a positive correlation between islet in-
sulin content and glucose-stimulated insulin secretion in high 
fat-fed (Figure 4e) and low fat-fed (Figure S3b) SM/J mice. 
This suggests that obese SM/J mice experience β-cell matu-
ration between 20 and 30 weeks, characterized by increased 
insulin content and improved insulin secretion in response to 
high glucose. This spontaneous improvement in β-cell health 
and function in the context of obesity has not been reported 
in other mouse strains, suggesting a genetic basis unique to 
SM/J.

4 |  DISCUSSION

The ability to maintain appropriate insulin production and 
secretion, termed functional β-cell mass, is a central determi-
nant of diabetic risk. In this study, we describe insulin home-
ostasis, islet morphology, and β-cell function in obese SM/J 
mice as they transition from hyperglycemic to normogly-
cemic. We determine that increased insulin production and 
insulin sensitivity accompany improved glycemic control, 
driven by expanded β-cell mass and improved glucose-stim-
ulated insulin secretion. Our results show that obese SM/J 
mice undergo restoration of functional β-cell mass, providing 

an opportunity to explore how compensatory insulin produc-
tion can be achieved in the context of obesity.

Susceptibility to high fat diet-induced diabetes in mice de-
pends on genetic background. Several strains and sub-strains 
develop diabetic-obesity, including hyperglycemia, glucose 
intolerance, and insulin resistance, consistent with the dia-
betic phenotypes observed in obese SM/J mice at 20 weeks 
(Andrikopoulos et al., 2005; Kahle et al., 2013; Surwit, Kuhn, 
Cochrane, McCubbin, & Feinglos,  1988). Remarkably, by 
30  weeks, obese SM/J mice have characteristics of diabet-
ic-resistant obese strains, retaining glycemic control by dra-
matically increasing insulin production and improving insulin 
sensitivity (Andrikopoulos et al., 2005; Meulen et al., 2017; 
Sims et  al.,  2013; Surwit et  al.,  1988). To our knowledge, 
this is the first report of transient hyperglycemia in an inbred 
strain, although similar phenomena have been reported in 
mice with the leptin receptor (db/db) mutation. C57bl/6J (db/

db) and 129/J (db/db) mice are obese and initially develop mild 
hyperglycemia at 8–10  weeks of age, but this resolves by 
20–30 weeks, concurrent with increased insulin production 
and β-cell mass (Hummel et  al., 1972; Leiter et  al., 1980). 
Unfortunately, leptin and its receptor play an important role 
in β-cell growth and function independent of obesity, which 
confounds understanding of how genetic background me-
diates diabetic risk in obesity (Covey et  al.,). Interestingly, 
low fat-fed mice increase circulating insulin levels between 

F I G U R E  4  Islet insulin secretion and insulin content. Islet insulin secretion in response to low (2.8 mM) and high (11 mM) glucose 
conditions, normalized by islet insulin content (a), reported as a ratio of high glucose to low glucose insulin secretion (b). Comparison of islet 
insulin secretion under low glucose conditions in 20- and 30-week, high and low fat-fed mice (c). Islet insulin content normalized by total protein 
measured via protein BCA (d). Correlation between insulin secretion ratio and islet insulin content (e). Open circles – 20-week high fat-fed, closed 
circles – 30-week high fat-fed. N = 8–19 mice per cohort for panels A-C, n = 5–11 mice per cohort for panel D, n = 22 mice for panel E. *p < .05, 
**p < .01, ***p < .001, N.S. – Not Significant
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20- and 30  weeks, despite no change in pancreatic insulin 
levels, insulin sensitivity, or β-cell mass.

High fat diet-induced obesity in mice can result 
in increased islet mass, no change, or decreased mass 
(Andrikopoulos et  al.,  2005; Hull et  al.,  2005; Meulen 
et  al.,  2017; Peyot et  al.,  2010; Sims et  al.,  2013). Across 
these studies, inability to expand islet mass is associated with 
hyperglycemia. In humans, islet mass correlates with BMI in 
nondiabetic-obese individuals, while diabetic-obese individ-
uals have low islet mass compared to nondiabetic individuals 
(Dybala et al., 2019; Klöppel et al., 1985; Lencioni, Lupi, & 
Del Prato, 2008). High fat-fed SM/J mice are unique because 
they have expanded islet mass at 20 weeks, yet normal insulin 
levels and insulin resistance. By 30 weeks, islet mass contin-
ues to expand, driven by increased islet area and increased 
islet number, corresponding with increased insulin produc-
tion and improved insulin sensitivity. Islet neogenesis may 
contribute to the increased islet number, and fission of large 
islets has been reported during development, suggesting that 
islets have mechanisms to maintain an appropriate size (Jo 
et al., 2011; Seymour, Bennett, & Slack, 2004).

β-cell hyperplasia is the primary driver of islet expansion 
in mouse models of obesity (Bock et al., 2003; Keller et al., 
2008). Some nondiabetic-obese mice experience increased 
β-cell number, but do not show evidence for elevated β-cell 
replication in immunostaining of pancreatic sections (Hull 
et al., 2005; Sims et al., 2013). This has been attributed to 
islets in the tail of the pancreas being substantially more pro-
liferative in response to high fat diet than the body and head 
regions (Ellenbroek et al., 2013); thus, technical artifacts in 
sampling could result in inflated variances which mask bio-
logical differences. This could be the case here, given that high 
fat-fed SM/J’s β-cell number is far above low fat-fed controls, 
that their β-cell number expands 2-fold during the resolu-
tion of hyperglycemia, yet we find no evidence for increased 
β-cell replication. However, α-cell number also expands in 
obesity (Ellenbroek et  al.,  2017; Henquin & Rahier,  2011; 
Merino et al., 2015). While α-cell mass is elevated in high 
fat-fed SM/J mice compared to low fat-fed controls, we find 
that it does not change between 20 and 30 weeks, despite sub-
stantial elevation of α-cell mitotic index.

Retention of β-cell function separates diabetic-obesity 
and nondiabetic-obesity (Basu et  al.,  2009; Guillausseau 
et al., 2008; Kahn, 1998). Twenty-week high fat-fed SM/J mice 
have an insulin secretion profile similar to diabetic-obese mice 
and humans, including blunted glucose-stimulated insulin re-
lease, elevated basal insulin secretion, and low islet insulin 
content, which resolves by 30 weeks. Underscoring this transi-
tion is the positive correlation between glucose-stimulated in-
sulin release and islet insulin content. Care was taken to select 
normal-sized islets across all cohorts for functional assessment 
(~100 µm in diameter), indicating this robust improvement in 
β-cell functional mass is due to changes to β-cell physiology.

Three current, nonmutually exclusive components of 
β-cell stress response may shed light on the perplexing im-
provement in glycemic control seen in SM/J mice: β-cell 
dedifferentiation, nascent β-cell maturation, and changes in 
β-cell subtype proportions. While early studies concluded that 
overworked β-cells undergo apoptosis (Butler et  al.,  2003; 
Maclean & Ogilvie, 1955; Pipeleers & Ling, 1992; Sakuraba 
et al., 2002), recent studies have suggested that β-cells dediffer-
entiate into a dysfunctional, progenitor-like state, potentially 
as a defense mechanism against prolonged glycemic stress 
(Cinti et al., 2016; Jonas et al., 1999; Marselli et al., 2014; 
Talchai et al., 2012). These dedifferentiated β-cells have low 
insulin content and poor glucose-stimulated insulin secretion. 
Further, the dedifferentiated state is reversible in cultured 
conditions, revealing potential for therapeutic intervention 
(Diedisheim et al., 2018). It is feasible that obese SM/J mice 
have β-cells in the dedifferentiated state at 20 weeks, which 
would explain the low insulin content and poor functionality 
despite the elevated β-cell mass. Improvement in insulin sen-
sitivity could ease glycemic stress, allowing dedifferentiated 
β-cells to redifferentiate by 30 weeks, reestablishing insulin 
production and secretion.

Work from several groups suggests that β-cells can be di-
vided into two broad categories: functionally immature and 
functionally mature cells. Immature β-cells have greater pro-
liferative potential and are resistant to stress, at the expense 
of functional maturity (Bader et al., 2016; Blum et al., 2012; 
Puri et  al.,  2018). These immature β-cells have low insu-
lin content, high basal insulin secretion, and a lack of glu-
cose-stimulated insulin secretion. The large β-cell expansion 
seen in obese SM/J mice suggests that nascent β-cells must 
undergo maturation at some point. We have no evidence of 
enhanced β-cell replication at 20 weeks, but it is possible that 
these β-cells are still functionally immature and reach matu-
rity by 30 weeks. This could explain why islets from these 
mice lack glucose-stimulated insulin release, show elevated 
basal insulin secretion, and have low insulin content, despite 
elevated mass.

Recent advances in single-cell technology have allowed 
for identification of β-cell subtypes, based on functional 
characteristics and gene expression. These include β-cells 
that specializes in basal insulin secretion, characterized 
by low mature insulin content, and enriched in db/db dia-
betic islets (Farack et al., 2019). While these cells are not 
equipped to respond to elevated glucose, they are enriched 
for maturity markers, including Ucn3 and Glut2, distin-
guishing them from immature β-cells. Pancreatic multi-
potent progenitors (PMPs) are rare insulin-positive cells 
capable of generating endocrine cells in vivo including 
functionally mature β-cells (Razavi et  al.,  2015; Smukler 
et al., 2011). These cells resemble immature β-cells, with 
low insulin content and Glut2 expression, whose prolif-
eration is stimulated by glycemic stress in STZ-treated 
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and NOD mouse models. Lastly, β-cell hub cells coordi-
nate calcium signaling and insulin release of surrounding 
β-cells (Johnston et al., 2016). These cells have markers for 
both mature and immature β-cells, including expression of 
Gck and Pdx1, but low insulin content, and are especially 
sensitive to glycemic and inflammatory stress. Ablation of 
these cells results in loss of coordinated insulin release, 
suggesting that they are necessary for mature islet function. 
Given the elevated β-cell mass, poor insulin secretion, and 
low insulin content in 20-week high fat-fed SM/J mice, it is 
possible that islets are enriched for basal insulin secretors 
and PMP’s, while devoid of hub cells. At 30 weeks, as gly-
cemic stress diminishes, basal insulin secretors and PMP 
populations decline, while hub cells rise, reestablishing 
β-cell functionality.

Clearly, the interplay between β-cell dedifferentiation, 
nascent β-cell maturation, and β-cell subtype identity in di-
abetic-obesity needs to be clarified. SM/J mice are a useful 
model because they allow for appropriate comparisons across 
diabetic-obese, nondiabetic-obese, and nondiabetic-lean pop-
ulations. The improvement in β-cell function and increase in 
insulin production in obese SM/J mice could be explained 
by a combination of these innate and stress response β-cell 
mechanisms. Future studies interrogating how SM/J β-cells 
change over time will provide insight into the physiological 
mechanisms that allow β-cell functionality to be maintained 
and improved in the context of obesity.
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