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Rewritable two-dimensional DNA-based data
storage with machine learning reconstruction
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DNA-based data storage platforms traditionally encode information only in the nucleotide
sequence of the molecule. Here we report on a two-dimensional molecular data storage
system that records information in both the sequence and the backbone structure of DNA
and performs nontrivial joint data encoding, decoding and processing. Our 2DDNA method
efficiently stores images in synthetic DNA and embeds pertinent metadata as nicks in the
DNA backbone. To avoid costly worst-case redundancy for correcting sequencing/rewriting
errors and to mitigate issues associated with mismatched decoding parameters, we develop
machine learning techniques for automatic discoloration detection and image inpainting. The
2DDNA platform is experimentally tested by reconstructing a library of images with unde-
tectable or small visual degradation after readout processing, and by erasing and rewriting
copyright metadata encoded in nicks. Our results demonstrate that DNA can serve both as a
write-once and rewritable memory for heterogenous data and that data can be erased in a
permanent, privacy-preserving manner. Moreover, the storage system can be made robust to
degrading channel qualities while avoiding global error-correction redundancy.
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ARTICLE

NA-based data storage systems are viable alternatives to

classical magnetic, optical, and flash archival recorders!.

Macromolecular data storage platforms are nonvolatile,
readout-compatible, extremely durable and they offer unprece-
dented data densities unmatched by other modern storage
systems?~10. Traditional DNA-based data recording architectures
store user information in the sequence content of synthetic DNA
oligos within large pools that lack an inherent ordering, and user
information is retrieved via next-generation or nanopore
sequencing®. Despite recent progress, several issues continue to
hinder the practical implementation of molecular information
storage models, including the high cost of synthetic DNA, lack of
straightforward rewriting mechanisms, large write-read latencies,
and missing oligo errors incurred by solid-phase synthesis.

Image data is typically compressed before being recorded,
and even a single mismatch can cause catastrophic error-
propagation during decompression and lead to unrecognizable
reproductions®! 12, Moreover, the rate of synthesis and sequencing
errors may vary an order of magnitude from one platform to
another, while PCR reactions and topological data rewriting may
cause additional gradual increases in sequencing errors. Therefore,
to ensure accurate reconstruction, one needs to account for the
worst-case scenario and perform extensive write-read-rewrite
experiments to estimate the error rates before adding
redundancy!3-15. Moreover, the estimated error rates have to be
accurate enough for efficient error correction due to the mismatched
decoding parameter problem!®!7. The mismatched-decoder pro-
blem is an issue mostly overlooked in prior works and it asserts that
powerful error-correction schemes such as low-density parity-check
(LDPC) codes!8 require good estimates of the channel error prob-
ability to operate properly. This is clearly hard to achieve for tra-
ditional DNA-based data storage systems due to the highly
stochastic nature of the PCR, sequencing and rewriting process.
Here, we develop and experimentally test a hybrid DNA-based

data storage system termed 2DDNA, to address the issue of
rewriting and avoid the use of worst-case error-correcting
redundancy needed to combat random and missing oligo errors
that may accumulate in time and due to content changes.
2DDNA uses two different information dimensions and com-
bines desirable features of both synthetic and nick-based
recorders!®. This is achieved by superimposing metadata (such
as ownership information, dates, clinical status descriptions)
stored via nicks onto images encoded in the sequence. Sequence
content carries large amounts of information, but rewriting is
difficult; information stored in nicks!® is usually of smaller
volume but highly amenable for efficient, permanent and privacy-
preserving erasing and rewriting. Importantly, information in
both dimensions can be read simultaneously, as locations of nicks
are determined using the nick-free strand as reference. Our
approach is based on a simple compression scheme for images
that operates separately on three different color channels and
combines newly developed and existing machine learning (ML)
and computer vision (CV) techniques for image reconstruction
and enhancement to create high-quality replicas of the original
data. For some images with highly granular details, we also
propose unequal error protection methods?® based on LDPC
codes!® that only introduce redundancy for sensitive facial fea-
tures. The 2DDNA paradigm eliminates the need for worst-case
coding redundancy and avoids problems with mismatched
decoding parameters. It offers the possibility for users to retrieve
images of quality dictated by their channel error rates, which may
be seen as a form of multiresolution coding. It also offers high
information density and simultaneously enables rewriting of data
recorded in the backbone via ligation followed by enzymatic
nicking, lending itself for use in applications with both synthetic
and native DNA substrates for the sequence content!®.

Results

Sequence dimension encoding. The encoding framework of
2DDNA is shown in Fig. 1. In the sequence dimension, we
perform aggressive quantization and specialized lossless com-
pression that leads to two-fold file size reductions. Compression
is known to cause significant losses in image quality when
errors are present, so it is common practice to include up to
30% error-correction redundancy®’ which ultimately increases
the cost of the storage system. We avoid error-correction
redundancy and instead tailor our compression algorithm to
accommodate image processing techniques from ML and CV to
restore the image to its original quality. The specialized
encoding procedure involves two steps, depicted in Fig. la.
First, RGB channel separation is followed by 3-bit quantization
and separate lossless compression of the three-color channels.
The latter process is performed using the Hilbert space-filling
curve?! (Supplementary Fig. 1) which preserves local 2D image
similarity and smoothness, thereby resulting in linear strings
with small differences between adjacent string entries. More-
over, we further employ differential encoding?? that involves
taking differences of adjacent string values to create new strings
with a high probability of small symbols. Differential encoding
is followed by Huffman encoding?>23 which exploits the bias
towards small symbol values. Together, these operations are
performed separately on strings partitioned into eight subsets
according to their quantized intensity (brightness) levels. Note
that in our ML-based image reconstruction approach, we do not
try to optimize the compression scheme: One may also use a
basic 3-bit quantization scheme without lossless compression, at
the cost of slightly increased file sizes. Results pertaining to this
approach are described in the Supplementary Information (SI),
Supplementary Discussion.

Our encoding involves a second step that translates the binary
strings into DNA oligo sequences. Here, DNA oligos of length
196 nts are parsed into the following three subsequences (Fig. 1a):
(1) a pair of primer sequences, each of length 20 nts, used as
prefix and suffix, (2) an address sequence of length 10 nts, and (3)
11 information-bearing sequences of length 13 nts. Primer and
address sequences are used for PCR amplification and random
access”. In addition, a block of three nucleotides is prepended to
the address sequence to represent the RGB color information.
When converting binary data into DNA sequence content, we use
two additional constrained mappings to ensure that the
maximum run length of G symbols is limited to three (to avoid
G quadruplexes), and that the GC content is in the range of
40-60%. Overall, the mapping scheme converts blocks of 16 bits
into blocks of 10 nts for the address sequences, and blocks of 22
information bits into blocks of 13 nts. A detailed description of
each step, including the addition of synchronizing markers, is
provided in the SI, Supplementary Methods.

Topological dimension encoding. In the topological dimension,
we record the metadata in nicks created on the backbone of the
synthetic DNA molecules by transforming and generalizing our
Punch-Cards system!® that was also used for specialized in-
memory molecular computing?*. The main modifications consist
in disposing of nicking enzymes that require the additional
synthesis of specific guide sequences; native nicking endonu-
cleases are used instead by employing ON-OFF encoding across
different intensity pools. Short binary strings are converted into
combinations of native nicking endonucleases that determine the
composition of nicked/unnicked sites. More precisely, a set of
complementary nicking endonucleases is used as the writing tool
and selected based on two main criteria: (1) endonucleases must
be highly site-specific to prevent non-specific cleavage of the
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Fig. 1 Schematic of the encoding and decoding procedure of our 2DDNA system. a The encoding procedure in the first dimension (sequence content)
entails splitting the color image into the Red (R), Green (G) and Blue (B) channel; aggressively quantizing the RGB channels from 256 to 8 intensity levels;
performing lossless compression of individual channels through a combination of 2D to 1D conversion of the image data via space-filling curves followed by
differential and Huffman encoding. Note that the encoding procedure is separately applied to each intensity level, and the generated binary vector is further
augmented by channel information and addresses used to access the oligos. The scheme does not include error-correction redundancy. b For images with
granular and highly relevant image features, one can optionally use unequal error-correction coding based on low-density parity-check (LDPC) codes with
only 3.3% redundancy compared to the scheme without redundancy. ¢ The encoding procedure in the second dimension (topological content) entails
representing letters of the English alphabet in ASCII format and designating one nicking endonuclease to each of the seven bits in the format. Information is
encoded using mixtures of endonucleases for which the ASCII bit is equal to 1. Rewriting is performed by sealing the nicks using the T4 DNA ligase and
repeating the previously outlined procedure with different data. d 2D data readout through the use of two subpools, one for each storage dimension.

e Image decoding is performed by reversing the steps of the encoding process in the first dimension. The image37 used in this figure is courtesy of
Paramount Pictures. The original data are provided in the Source Data file.
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DNA template and hence preserve DNA integrity; and (2)
recognition sequences should be selected with sufficiently large
Hamming distances between them to prevent undesired cross-
nicking (ie., an enzyme nicking an undesired target site). The
mixture composition determines which letter is stored based on
the corresponding ASCII code, with the caveat that a 1’ is
encoded through the presence of the enzyme in the mixture
(ON), whereas a ‘0’ is encoded through the absence of the enzyme
(OFF). This method enables superimposing information on top of
data stored in the DNA sequence content, with no need to change
the synthetic platform, as shown in Fig. lc. Nevertheless, it
introduces readout challenges as the nicks break the structure of
the strands and may hence lead to assembly ambiguities. We
address this problem via an algorithmic solution that involves
searching for potential prefix—suffix substrings in the nicked pool.

DNA synthesis and sequencing. To demonstrate a proof-of-
concept, we experimentally tested the storage platform on eight
Marlon Brando movie stills, shown in Fig. 2a. The original files
were of total size 8,654,400 bits, but after the two-step encoding
procedure (Fig. 2b), they reduced to 2,317,896 nts. The corre-
sponding 11,826 DNA oligos were synthesized by Integrated
DNA Technologies (IDT). One pool was reserved for each of the
eight levels. The oPools were sequenced on an Illumina MiSeq
device following standard protocols described in the Methods.
Individual sequence reads may contain errors, so we first con-
struct a consensus sequence by aligning reads with error-free
addresses, following the approach described in our prior work®.
This process led to 11,726 perfectly recovered sequences and
22 sequences that contain errors but do not significantly com-
promise the image quality; 78 oligos were either highly corrupted
or completely missing from the pool.

Sequence dimension decoding and post-processing. The images
generated from this procedure are depicted in Fig. 2c. Upon close
inspection, it is apparent that the encoded images suffer from
visible degradation, and in particular, large blocks of discolora-
tions. These artifacts can be removed by applying a carefully
designed combination of ML and CV image processing techni-
ques (Fig. 3), tailor-made to operate on images compressed
according to our method.

To correct for image discolorations, we implement a three-step
post-processing procedure that has no matching counterpart in the
digital domain and heavily relies of using the color channels as a
natural source of redundancy. The first step includes detecting the
locations with discolorations and masking them out, as shown in
Fig. 3a and Supplementary Fig. 3. To pinpoint the discolored regions
without direct visual inspection (i.e., in an automated fashion), as
already pointed out, we leverage the separate information content in
the three distinct RGB color channels. Due to the random nature of
errors, it is highly unlikely to have correlated errors in multiple
channels for the same pixel. Hence, the three-color decomposition
acts as a 3-repetition code, because at least two of the three-color
channels are likely to be unperturbed. A detailed explanation of the
technique can be found in the SI, Supplementary Methods, which is
adapted from our preliminary approach?>. The second step involves
using an existing deep learning technique known as image
inpainting?®-2? to replace the masked pixels with values close to
the original. Neural networks are well-suited for inpainting because
they can be trained on massive datasets. For our system, we use the
state-of-the-art GatedConvolution?® and EdgeConnect?® methods.
The basic architecture of EdgeConnect is shown in Fig. 3b and
Supplementary Fig. 4, and the results after applying discoloration
detection and image inpainting are shown in Fig. 2d. Finally, the
third step involves smoothing the image to reduce blocking effects

caused by quantization and blending mismatched inpainted pixels,
as shown in Fig. 3c and Supplementary Fig. 5. Here, we use
bilateral®® and adaptive median smoothing?® on the coarsely
inpainted images, and we include additional image enhancement
features’! to further improve image quality. The image post-
processing procedure relies on storing R, G and B color channels in
different oligos and using the channels as “proxies” for repetition
codes. This ensures that it is highly unlikely to have correlated errors
in multiple channels for the same pixel and that discolorations can
be detected through majority rules. As a result, our scheme can be
used with any other type of recorder that splits images into R, G, B
subimages and stores them separately.

The results of image smoothing are depicted in Fig. 2e, and the
enhanced images are shown in Fig. 2f. As shown in Fig. 2e, f and
Supplementary Fig. 2, some facial details in highly granular images
remain blurred even after applying the learning methods. To address
these issues, we further propose the use of unequal error protection
for such images, which implies adding highly limited redundancy
only to oligos bearing facial features (e.g., eyes, lips), as shown in
Fig. 1b and explained in the SI, Supplementary Methods. Redundancy
is added through a regular systematic LDPC codes of rate 0.75,
resulting in 391 additional oligos and an overall overhead of 3.3%.
Images generated from this redundant pool are shown in Fig. 2g,
whereas Fig. 2h, i, j parallel the results of Fig. 2d, e, f for the case of no
unequal error-correction redundancy. Note that there exist no other
approaches to performing the same task in the signal processing and
computer vision community. Applying state-of-the-art image
enhancement method3! directly on images generated from error-
bearing DNA oligos without error-correction results in poor quality
reconstructions because classical image enhancement methods cannot
automatically correct discolorations (Fig. 2k and Fig. 4k). Both
quantitative metrics (Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM)) as well as visual inspection of the
recovered images show that our method offers significantly better
performance than direct image recovery and enhancement of the
corrupted DNA-encoded images. Processed images with correspond-
ing quality values are plotted in Fig. 2a, f, j, k and Fig. 4.

Note that our compression scheme mitigates the effects of
catastrophic error-propagation which may be otherwise present
when using a JPEG compressor (Supplementary Fig. 6). As JPEG
formats are highly sensitive to errors, they result in poor-quality
reconstructions if one does not use a coding overhead that
guarantees exact reconstruction. Furthermore, alternative meth-
ods based on joint source-channel coding!®3233 still require
introducing error-control redundancy which we are aiming to
dispose of in our learning-based approach. To demonstrate this
point, we performed extensive simulations with six combinations
of JPEG image compression qualities and matching error-control
coding schemes. For JPEG-compressed files with different quality
parameters (as defined in the Python Pillow Package for all image
formats, JPEG included, on a scale from 1 (worst) to 95 (best)),
we added LDPC redundancy to the compressed data for error-
correction to ensure that the resulting number of oligos (file size)
is as close as possible to that used in our experiment. The base
substitution error is set to 0.8%, while the missing oligo error is
set to 0.7%, matching the numbers obtained experimentally,
leading to an overall bit error of 1.9%. We decoded the binary
information from the erroneous DNA oligos using LDPC codes,
followed by JPEG reconstruction. Part of the results are shown in
Fig. 5 and full set of results are shown in Supplementary Fig. 7.
Note that since JPEG has very specific formatting rules, missing
or erroneous critical identifiers in JPEG files leads to system
errors, such as OSError in Python. Other compression methods,
such as those based on Generative Adversarial Nets (GANSs) are
discussed in the SI, Supplementary Discussion and Supplemen-
tary Fig. 10.
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For LDPC codes, it is crucial to have good estimates of the
channel error probability: LDPC belief propagation decoding
performs well in practice but is highly sensitive to incorrect initial
log-likelihood ratios, which are functions of the channel error
rate!®17, Therefore, when using mismatched channel parameters,
LDPC decoders can fail to correct all errors, which in turn can
lead to corrupted JPEG decoding, as seen in Fig. 5. It is worth
pointing out that correlations amongst errors may cause some

oligos to be disproportionally affected and others to have barely
any errors. To further mitigate this issue, oligo-level redundancy
was used? before, but here it is replaced by a concatenation of an
interleaver and LDPC codes, as interleaving renders errors
uncorrelated and helps with missing oligo content reconstruction.
We present additional results related to LDPC coding with
interleaving in the SI, Supplementary Discussion and Supple-
mentary Fig. 8).
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Fig. 2 Write-Read results for encoding information content in the sequence dimension. a Original images with 256 RGB intensity levels, encoded by
eight bits each. b Quantized images with eight RGB intensity levels, encoded by 3 bits each. ¢ Images generated directly from the information encoded in
DNA oligos without error-correction redundancy. d Images reconstructed after applying a combination of discoloration detection and image inpainting on
the results in (c). e Images refined via smoothing of the results depicted in (d). f Image enhancement results for images shown in (e). g Images
reconstructed using unequal error-correcting coding for facial features. h Images reconstructed after applying a combination of discoloration detection and
image inpainting on the results in (g). i Images refined via smoothing of the results depicted in (h). j Image enhancement results for images shown in (i).
k Image enhancement results for images shown in (c). In summary, the best quality results--obtained using our image processing techniques--are given in
(i, j) (boxed). The images in this figure are courtesy of: Paramount Pictures, Sony Pictures, MGM Studios, StudioCanal, American Zoetrope (© 1979
Zoetrope Corp. All Rights Reserved.), the Marlon Brando and Rod Steiger estates. The black and white public domain still of “A Streetcar Named Desire”

was colorized using the software Hotpot.ai.

Topological dimension recording and post-processing. As a
proof of concept for storage in the topological dimension, we
superimposed information on the same Marlon Brando images
(Fig. 7). In the writing experiment, we recorded the word “ILLI-
NOIS,” comprising 56 bits in ASCII code, across eight different
intensity-level DNA pools. We selected seven nicking endonu-
cleases, each representing one bit of the 7-bit ASCII code. These
enzymes have recognition sites that exist in at least one oligo of
each of the eight pools, and the sites are used as recording positions.
In the ASCII code, ‘1’ translates into inclusion, whereas ‘0" trans-
lates into exclusion of the corresponding enzyme. Upon nicking,
the pools are sequenced using the procedure described in Fig. 1d. In
this way, the nicked oligos were denatured, resulting in ssDNA
fragments of various lengths dictated by the position of the nicks.
The fragments were subsequently converted into a dsDNA library
and sequenced via Illumina MiSeq. To verify the existence of short-
length fragments capped at both ends by enzyme recognition sites,
we developed a detection algorithm with a flowchart depicted in
Fig. 6. The gist of the algorithm is to detect if a nick was created or
not based on a search for two fragments corresponding to the prefix
and suffix of the sequences recognized by the enzyme. Note that
our algorithm counts the number of appearances of all possible
(potential) nicking events for the sets of enzymes used. The deci-
sion regarding which enzymes are included in a certain pool is
based on the counts of each prefix-suffix pair. To rewrite the data,
we performed the process outlined in Fig. lc, which involves
treatment of the nicked DNA with the T4 DNA ligase. This erasure
method completely removed the recorded metadata. Note that the
ligase was perfectly effective in so far that each original oligo was
accounted for in the sequenced pool. We then rewrote the word
“GRAINGER” using the same topological nicking process with
error-free reconstruction.

As outlined above, decoding the information stored in the two
dimensions requires nontrivial approaches, involving new pattern
search algorithms. To hence read the content stored in both
dimensions, two separate subpools are retrieved for each level. The
sequence content is reconstructed by first sealing the nicks in one
of the two subpools via ligation, as done during rewriting, followed
by sequencing. Alternatively, to avoid ligation for the sequence
content readouts, one may choose to only record the topological
information on a subpool of oligos. This resolves the problem of
sorting the nicked oligo fragments. The content in the nicks is
retrieved using the second subpool. After sequencing, the reads are
aligned to the now known full-length reads obtained from the first
subpool in which the nicks were sealed. The results of the
alignment are used in the algorithmic procedure to determine
which enzymes were used for nicking and consequently, for
reconstruction of the ownership metadata (Fig. 7).

Discussion

Existing technologies for DNA synthesis, editing, and sequencing
allow for writing and reading diverse information in multiple
dimensions or molecular features. Our 2DDNA platform exploits

these tools to enable recording data in two DNA dimensions,
including sequence context and backbone structure, thereby opening
the door for multidimensional macromolecular storage systems that
can use multiple molecular properties (including molecular con-
centration). Our results show that the 2DDNA system takes
advantage of our automatic discoloration detection approach and
powerful state-of-the-art deep learning methods for image inpainting
and enhancement to substantially improve the quality of the stored
images without error-control redundancy. This represents a funda-
mental advancement in molecular storage which departs from prior
techniques in the field and reduces the cost of data storage by greatly
minimizing or eliminating the need for synthesizing redundant oli-
gos. The tailor-made learning methods also overcome reliability
issues that cannot be addressed by off-the-shelf JPEG compression
and joint source-channel coding methods.

Our storage system also offers a simple means for permanently
erasing metadata information. The ligation-based approach dif-
fers substantially from the existing rewriting methods>34. In the
first setting, overlap-extension PCR is used to rewrite blocks of
texts corresponding to words. This is a tedious, multi-step
approach and much more complex to perform than ligation. In
the second approach, one requires additional DNA synthesis and
multiple hybridization and strand displacement steps to rewrite
the content. Note that in our system metadata is automatically
sequenced during the sequencing of the actual image-—no sepa-
rate sequencing for the nick-based information is needed. This is
the case since we can always use the strand that is free of nicks as
reference for sequence alignment to determine the locations
(positions) of the nicks.

For selective amplification and PCR-based random access,
the oligos we used to store image content contain carefully
designed primers. The primers satisfy Hamming distance,
sequence correlation, sequence balance and so-called primer-
dimer constraints®®. Note that once nicks are added to the sugar-
phosphate backbone, one cannot run PCR reactions on the oligos
directly. To randomly access an image, a certain amount of DNA
from the oPools has to be isolated, sealed using the T4 ligase and
then amplified via PCR. Consequently, metadata is removed from
the selected subpool to enable random access to the image itself,
but it remains intact in the global pool of oligos. In order to avoid
first sealing the nicks and then running the PCR, one can also use
other methods for random access, involving magnetic beads with
attached primers corresponding to the address sequences of the
image of interest3°.

Our 2DDNA platform was tested on eight images of total size
1.082 MB. The only oligo content that does not correspond to
actual raw image information includes primers, pixel/color/image
identifiers, constrained redundancy for balancing the GC content
and removing long runs of Gs as needed for synthesis. The
average sequencing coverage used is 112x, which is small com-
pared to the 3000x coverage reported in? and the 370x coverage
from?. It is higher than the coverage of 5x reported in!° but in
that case, error-control coding redundancy is used. We did not
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PSNR: 14.07, SSIM: 0.62
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Fig. 3 Comparison of our automatic discoloration detection and inpainting approach with the state-of-the-art image enhancement technique3'.

The results shown include quantitative performance metrics computed with respect to (a). The column labels refer to the corresponding rows in Fig. 2. Column
(a): The original, uncompressed images. Column (f): The images reconstructed using our method, without unequal protection redundancy for facial features.
Column (j): The images reconstructed using our method, with roughly 3.3% redundancy for facial features. Column (k): Results obtained after image
enhancement, applied directly to the decoded DNA oligo images with errors. The pictures in this figure are courtesy of: Paramount Pictures, Sony Pictures, MGM
Studios, StudioCanal, American Zoetrope (© 1979 Zoetrope Corp. All Rights Reserved.), the Marlon Brando and Rod Steiger estates. The black and white public
domain still of “A Streetcar Named Desire” was colorized using the software Hotpot.ai. The original data are provided in the Source Data file.
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Fig. 4 Diagram of the ML post-processing techniques used to reconstruct images encoded in oPools. a Automatic discoloration detection based on the
natural redundancy in the three RGB color channels. The histograms reflect the frequency counts of the pairwise differences in channel intensity levels
which are used to assess which color channel may contain errors (S, Supplementary Methods). b Pixel masking and inpainting via deep learning

architectures. ¢ The smoothing and image enhancement procedures. The pictures in this figure are courtesy of: Paramount Pictures, Sony Pictures, MGM

Studios, StudioCanal, American Zoetrope (© 1979 Zoetrope Corp. All Rights Reserved.), the Marlon Brando and Rod Steiger estates. The original data are
provided in the Source Data file.
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Fig. 5 Performance of a joint source-channel coding method using JPEG compression and LDPC-based error-correction. a The original, uncompressed
images. b An example illustrating why single-value metrics for assessing image quality are inadequate. Left: An image compressed by JPEG with quality
parameter 20. Right: The same image, after simple 3-bit quantization and image enhancement3!. The image on the right is visually superior yet has
consistently worse numerical quality metrics compared to the image on the left. ¢ Images are compressed with JPEG quality parameter 40 and encoded
with an LDPC code of rate R =0.125. The two images in the first column: No errors are added, so the decoding procedure is successful. Images in the
remaining three columns represent pairs of decoded images with LDPC channel error rate parameters (probabilities) 0.5%, 1%, and 5%, respectively; in
these cases, the base substitution error equals 0.8%, the missing oligo error rate equals 0.7%, resulting in an overall bit error rate of 1.9%. The channel
parameter for LDPC decoding is assumed not to be known beforehand. The OSError is caused by the failure of the combined JPEG decompression and
error-correction algorithm. d Images compressed with JPEG quality parameter set to 30 and encoded with an LDPC code of rate R = 0.108. The two images
in the first column: No errors are added, so the decoding procedure is successful. Images in the remaining three columns presenting pairs of decoded
images with LDPC channel error rate parameters (probabilities) 0.5%, 1%, and 5%, respectively; in these cases, the base substitution error equals 0.8%,
the missing oligo error rate equals 0.7%, resulting in an overall bit error rate of 1.9%. The pictures in this figure are courtesy of: Paramount Pictures, Sony

Pictures, MGM Studios, StudioCanal, the Marlon Brando and Rod Steiger estates. The original data are provided in the Source Data file.

try to optimize the sequencing coverage——our coverage values are
dictated by the sequencing protocol used and are not needed for
high-quality reconstruction. Supplementary Fig. 9 in the SI shows
that low-coverage and hence high error-rates can be accom-
modated within our system, even when the error rate is as
high as 7%.

The information density of our platform equals the number of
bits stored divided by the number of nucleotides used for
encoding. Since quantization is used during the encoding pro-
cedure, there are two ways to compute this density: If calculated
with respect to the number of bits in the raw image files, the
information density equals 3.73 bits/nt. Clearly, this exceeds the
maximum 2bits per nucleotide density dictated by the 4-alphabet

size, but may be seen as a consequence of the fact that we get a
distorted image back, which allows for an increase from 2 to 3.73
bits/nt. If the information density is calculated with respect to the
number of bits of the quantized image files, the information
density equals 1.40 bits/nt. The reason why this value is smaller
than 1.57 bits/bp reported in® and 1.72 bits/bp reported in®, is
that in the latter two works gBlocks of length 1000 bps were used,
while in this work we used oPools of length 196 nts. To allow
for random access, one has to include primers and address
sequences which amount to 53 nts per oligo, ie., per 196
nucleotides——an overhead of 27%. This is to be compared to
roughly 50 bps per 1000 bps>®, resulting in a significantly smaller
overhead of 5%. When converted into bytes/gram, the two
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) ¢
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Fig. 6 A prefix-suffix pattern search method for decoding the information in the topological dimension. Each fragment obtained from the nicked pool is
searched for the presence of a prefix-suffix substring pair that can indicate that a specific enzyme was included in the combinatorial mixture used for the
given intensity pool. Since undesired nicking reactions may occur, some counts corresponding to recognition sites of enzymes that were not actually
present in the pool may be nonzero; in this case, we make the decision based on how large the counts are relative to others (i.e., we use thresholding with a
threshold determined based on the largest count values for the pool).

ILLINOIS

Number of

GRAINGER

Number of
Nicks

Enzymes
Used

Enzymes
Nicks Used

Pool Number of

Enzymes

Letter_Pool Letter_Pool

Nicks Used

1

L1 473,0,1,233,1,4,81 1 0000000  NA R_1 0,18,0,0,0,94,0 2,6
L2 210057700 2 0000000 NA R_2 0,20,0,0,0,20,0 2,6
L3 13300,16,830,0 . 3 N/A - G3 0.0,0,26,23,0,0 45
Writing 14 6.0.0.4.00.4 Erasing 4 N/A Rewriting N_4 0.0,3,55.0,44.0 34,6
e 05 1262,0.1.40.70¢ > 5 N/A > G5 0,0,0,136,45,0,0 45
N_5 1262,0,1,40,708,232,5 T4DNA : _ 0,0,136,45,0, :
0.6 41,0,0,19,239,162,399 Ligase 6 0000000 “/2 I_6 0,0,9,0,0,0,0 3
17 47,0,0,23,0,0,4 DADADADADADA 7 ggggg Olg N;A E_7 0,0,0,32,0,0,0 4
S8 150800251 8 000000 L A8 0,0,0,0,0,0,0 NIA
A>ADa =
| 1001001 "1 | Nb.Btsl G 0001100 1 INb.BbvCl
L 1001100 2 Nt.BstNBI R 0100010 2 |Nb.Bsml
N 1001110 3 Nb.BssSI A 0000000 3 NtBbvCl
o 1001111 4 | NtAlwl | 0010000 4 Nb.BssSI
s 1010011 5 Nt.BsmAl N 0011010 5 |NtBspQl
6 |Nb.Bsml E 0001000 6 | Nb.Btsl
7 |Nb.BsrDI 7 \ Nt.Alwl

Fig. 7 Schematic of metadata encoding and identification using DNA nicking. The numbers in the middle column of the leftmost and rightmost tables
represent the number of oligos in the sequenced pool capped by the recognition sequences of the nicking enzymes. The numbers listed in red correspond
to the labels of nicking enzymes not used in the encoding of the letter to the left. As may be seen from both tables, the largest red numerical value is
significantly smaller than the smallest black value for all encodings (e.g., 4 < 81, 5 <« 40 in the leftmost table) and the second round of writing resulted in
no spurious nicks whatsoever. The quality of the results in the rewriting experiment may be attributed to a more suitable choice of nicking enzymes
determined upon inspection of the results of the first round. Hence it is recommendable to use the second collection of enzymes for recording purposes.
Also note that we shuffled the symbol encodings for the rewriting experiment in order to test more combinations of nicking enzymes. In the erasure step,
the T4 DNA ligase was used in a single step reaction to seal all the nicks. No nicks were found after the ligation reaction, showing that the ligase perfectly
erased the data (middle table). Note that when recording “ILLINOIS” and “GRAINGER" only six and five enzymes were effectively used for the ASCII code,
respectively, due to the choice of the letters in the words.

reported densities theoretically equal 0.91 zettabytes/gram and
0.34 zettabytes/gram.
In conclusion, 2DDNA provides the foundations for storage of

All oPools were diluted to 5 ng/ul. The primers were diluted to 10uM. Each
oPool was amplified in separate reactions using forward and reverse primers for
each of the eight levels. Reactions were set up with 5 ng of oPool, 1 pl of each
forward and reverse primer diluted to 10 uM, 22 pl of water and 25ul of Kapa HiFi

heterogeneous datasets with rewriting capabilities and at the same
time empowers the use of DNA media for nontraditional appli-
cations such as parallel in-memory computing.

Methods

oPool PCR amplification and sequencing. The list of primers used in our
experiments is shown in Supplementary Table 1. The oPools and corresponding
primers were ordered from Integrated DNA Technologies (IDT):
https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-
oligos/opools-oligo-pools.

DNA Polymerase (Roche, CA) with the following PCR cycling conditions:
denaturation at 98 °C for 45 s, 8 cycles of 98 °C for 15 s, annealing at 51 °C for 30 s
and extension at 72 °C for 30 s, followed by a final extension at 72 °C for 1 min and
hold to 4°C.

After PCR, the individual reactions were cleaned up with 50 ul of AMPure
beads (Agilent, CA) and eluted in 20 ul of 10 mM Tris. The PCR products were
quantitated with the Qubit 3.0 fluorometer and run on a Fragment Analyzer
(Agilent, CA) to determine the presence of a band of the correct size and the
absence of free primers or primer-dimers. The PCR products from each level were
pooled in equimolar concentration and the pool was converted into a sequence-
ready library with the Kapa Hyper Library Construction kit (Roche, CA) with no
PCR amplification. The final library was quantitated with Qubit and evaluated in a
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Fragment analyzer and further quantitated by qPCR. The library was loaded on a
MiSeq (Illumina, CA) and sequenced for 250 cycles from each end of the library
fragments with a Nano V2 500 cycles kit (Illumina). The raw fastq files were
generated and demultiplexed with the bcl2fastq v2.20 Conversion Software
(Illumina).

ssDNA nicking products preparation for MiSeq sequencing. All nicked pro-
ducts were purified using the Qiaquick PCR purification kit (QIAGEN) and eluted
in ddH,O. They were then denatured at 98 °C for 5 min and immediately cooled
down to 4 °C. The ssDNA samples were first quantified via the Qubit 3.0 fluo-
rometer. Next, the Accel-NGS® 1§ plus DNA library kit (Swift Biosciences) was
used for library preparation following the manufacturer’s recommended protocol.
Prepared libraries were quantitated using Qubit and then run on a DNA Fragment
Analyzer (Agilent, CA) to determine fragment sizes, pooled in equimolar con-
centration. The pool was further quantitated by qPCR. All steps were performed
for each sample separately and no nicked DNA samples were mixed. The pooled
libraries were loaded on an MiSeq device and sequenced for 250 cycles from each
end of the library fragments with a Nano V2 500 cycles kit (Illumina). The raw
fastq files were generated and demultiplexed with the bcl2fastq v2.20 Conversion
Software (Illumina).

Nicking experiments. The list of enzymes used in our experiments is shown in
Supplementary Table 2. 1 pg of each amplified library pool was mixed with the
appropriate nicking enzymes, determined based the content being encoded and was
incubated in proper buffer conditions and temperature for 1h based on the
manufacturer’s protocols available at: https://www.neb.com/products/restriction-
endonucleases/hf-nicking-master-mix-time-saver-other/nicking endonucleases/
nicking endonucleases. SnapGene Viewer 5.1.7 was used to visualize DNA
sequences and detect nicking sites.

Machine learning and computer vision methods. A detailed description of our
compression algorithms and the supporting automatic discoloration detection,
inpainting, smoothing and enhancement methods is relegated to the SI, Supple-
mentary Methods, due to the technical nature of the methodology used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequencing and image data generated in this study have been deposited in Figshare
repository at: https://doi.org/10.6084/m9.figshare.17162546.v1. Source data, used to
create the figures, accompany the online version of this article. Source data are provided
with this paper.

Code availability
All scripts are available in Zenodo repository at: https://doi.org/10.5281/zenodo.5774385.
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