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Severe burn injury is often accompanied by intestinal barrier dysfunction, which is closely associated with post-burn
shock, bacterial translocation, systemic inflammatory response syndrome, hypercatabolism, sepsis, multiple organ
dysfunction syndrome, and other complications. The intestinal epithelium forms a physical barrier that separates
the intestinal lumen from the internal milieu, in which the tight junction plays a principal role. It has been well
documented that after severe burn injury, many factors such as stress, ischemia/hypoxia, proinflammatory cytokines,
and endotoxins can induce intestinal barrier dysfunction via multiple signaling pathways. Recent advances have
provided new insights into the mechanisms and the therapeutic strategies of intestinal epithelial barrier dysfunction
associated with severe burn injury. In this review, we will describe the current knowledge of the mechanisms
involved in intestinal barrier dysfunction in response to severe burn injury and the emerging therapies for treating
intestinal barrier dysfunction following severe burn injury.

Keywords: Burn, Intestinal barrier dysfunction, Tight junction, Myosin light chain, Myosin light chain kinase, Rho-

Background

It is well known that the polarized epithelial cells of in-
testinal mucosa form a barrier to prevent luminal patho-
gens and antigenic molecules from entering the
intestinal mucosa and contacting with the immune sys-
tem, to which the tight junction (TJ) and its associated
proteins are critical. However, the intestinal epithelial
barrier disruption often develops in many diseases in-
cluding severe burn injury. The severe burn-induced dis-
ruption of intestinal barrier results in the increased
intestinal permeability and subsequent translocation of
bacteria and/or endotoxin from the gastrointestinal tract
to cause systemic inflammatory response syndrome, sep-
sis, multiple organ dysfunction syndrome, and other crit-
ical complications. Previous studies have shown a close
relationship between intestinal barrier disruption and
the incidence and severity of sepsis in critically ill pa-
tients [1, 2]. It has been demonstrated that 60% of critic-
ally ill patients suffering from multiple organ failure
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develop intestinal barrier disruption [2]. The burn vic-
tims occurring intestinal barrier disruption are at high
risk for bacterial translocation, sepsis, and mortality [3].
Thus, the intestinal barrier disruption may play a central
role in the development of multiple critical complica-
tions elicited by severe burn injury. Although the under-
lying mechanisms of intestinal barrier disruption
induced by severe burn injury are not well understood,
intensive research efforts regarding post-burn intestinal
barrier dysfunction have been ongoing. The overall goal
of this review is to describe the intestinal barrier disrup-
tion in severe burn injury, with a focus on the potential
molecular mechanisms.

Review

Overview of intestinal barrier and TJ

The basic and important function of the intestinal tract is
to digest and absorb nutrients. In addition, the intestinal
tract is not only the largest immune organ in the body,
but also the largest reservoir of bacteria and endotoxin.
Under physiological condition, the intestinal mucosa al-
lows only small molecules to pass, which relies on the in-
tact mucosa barrier to effectively prevent luminal bacteria,
endotoxins, and other antigens from translocating to other
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distant organs [4—6]. The intestinal barrier includes mech-
anical, immunological, biological, and chemical barriers.
The mechanical barrier is mainly composed of the mu-
cous layer on the surface of the intestinal mucosa, intes-
tinal epithelial cells, intercellular junctions, submucosal
lamina propria, etc. If there is no specific transporter, most
hydrophilic solutes cannot permeate the mechanical bar-
rier [5, 6]. The immunological barrier, which mainly con-
sists of a large number of immunocompetent cells,
including lymphocytes, macrophages, dendritic cells, and
plasma cells, has the functions of antigen presentation, in-
flammatory mediators secretion, and mucosal allergic re-
sponse [7]. The secretory IgA-mediated humoral immune
response plays an important role in the intestinal im-
munological barrier. Lactobacillus and Bifidobacterium,
which are the intestinal resident bacteria, mainly form the
biological barrier. The resident bacteria form biofilm on
the intestinal epithelial surfaces, resist the invasion of ex-
ogenous pathogenic bacteria, and provide the intestinal
epithelial cells with nutrients by producing short-chain
fatty acids, lactic acids, and others. The chemical barrier is
the generic name for the antibacterial substances pro-
duced by the resident intestinal bacteria and chemical
substances such as gastric acid, bile, digestive enzymes,
muramidase, and mucopolysaccharide, which can inhibit
the adherence and colonization of bacteria [8].

The mechanical barrier is a pivotal part of the intes-
tinal barrier and maintained through the intestinal epi-
thelial cells and intercellular junctions [4—6]. The
intercellular junctions comprise the tight, gap, adhesion,
and desmosome junctions. The TJ, consisting of multiple
proteins such as zonula occludens (ZO), occludin, the
claudins, and the junctional adhesion molecules (JAM),
is a complex that forms a selectively permeable seal be-
tween adjacent epithelial cells and serves as a selective
barrier between the plasma membranes of adjacent cells
[9-11]. The TJ is in a state of relatively stable dynamic
remodeling and regulated by various factors such as
Ca**-E-cadherin, Rho-GTPase, phospholipase C, protein
kinase A, tyrosine kinase, mitogen-activated protein ki-
nases (MAPK), and myosin light chain kinase (MLCK).
Among these factors, MLCK plays a critical role in the
regulation of T] dynamic. By regulating the phosphoryl-
ation of myosin light chain (MLC), MLCK is associated
with the perijunctional actomyosin ring [5].

Occludin, belonging to transmembrane proteins, is
composed of four transmembrane domains, two extra-
cellular domains, and a long cytoplasmic C-terminal tail
[12]. The intracellular C-terminus of occludin is con-
nected with ZO. Occludin has important significance in
maintaining the paracellular permeability and transe-
pithelial electricity [13—15]. The function of occludin de-
pends on the phosphorylation of serine and threonine
residues. The small GTPase- and protein kinase c
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(PKC)-related signaling pathways are involved in the
regulation of occludin phosphorylation.

The claudin family contains more than 20 members,
which have an extracellular loop structure of variable
amino acid residues and an intracellular short tail struc-
ture [16—18]. Different subtypes of claudins are expressed
in different tissues and cells. Claudins are not only the
barrier-forming components of the TJ]. There are also
pore-forming claudins including claudin-2 and claudin-10.
Thus, claudins play a critical role in the physical regula-
tion of paracellular permeability by forming the intercellu-
lar ion channel [16].

ZO is a member of the so-called membrane-
associated guanylate kinase (MAGUK) family and has
the isomers ZO-1, ZO-2, and ZO-3 [19-23]. ZOs con-
tain conserved sequences such as guanylate kinase
(GUK) structure domains, PDZ domains, the Src-
homologous SH3 domain, the acidic domain, the
arginine-rich domain and the proline-rich domain,
and these conserved sequences take part in the con-
nection between ZO and other proteins. For example,
ZO directly binds to the C-terminus of claudins
through possynaptic density protein-95/Discs-Large/
zonula occludens-1 (PDZ) domain, which initiates
and/or facilitates the polymerization of claudins and is
crucial for the formation of TJs [20]. These diverse in-
teractions determine that ZO-1 has a scaffolding func-
tion. The JAMs are glycoproteins belonging to the
immunoglobulin supergene family, which consists of
two extracellular immunoglobulin-like structures, a
transmembrane domain, and an intracellular region
with PDZ binding sequence. The JAMs have multiple
functions including the regulation of intestinal epithe-
lial paracellular permeability [24, 25].

Characteristics of intestinal barrier dysfunction in severe
burn injury

A large number of animal and clinical studies have dem-
onstrated that the intestinal mechanical barrier is often
disrupted by severe burn injury [26—29]. The reason for
intestinal mechanical barrier dysfunction induced by se-
vere burn injury is intricate and complex. Many factors
such as neuroendocrine mediators, hypoxia/ischemia,
complement activation, oxygen free radicals, inflamma-
tory mediators, proinflammatory cytokines, and other
mediators released in the stress response are directly or
indirectly involved in the occurrence and development
of intestinal mechanical barrier dysfunction associated
with severe burn injury (Fig. 1). In addition, the disrup-
tion of intestinal mechanical barrier is also closely
associated with burn shock, inflammation, infection, im-
mune disturbance, hypermetabolism, sepsis, mutiple
organ dysfunction syndrome, etc. [30, 31].
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Fig. 1 The schematic diagram illustrating the mechanisms of intestinal barrier dysfunction in severe burn injury. IFN-y interferon-y, TNF-a tumor
necrosis factor, ILs interleukins, MLCK myosin light chain kinase, ROCK rho-associated protein kinase, MLC myosin light chain, TJPs tight junction

It has already been reported that the intestinal per-
meability is increased quickly and significantly in both
patients and animals suffering from severe burn injury
[32, 33]. Once the intestinal permeability is increased,
the luminal bacteria and/or endotoxins translocate
across the disrupted intestinal barrier, and then rap-
idly spread to distant organs such as the liver, spleen,
lungs, and even the blood via the portal vein and/or
the lymphatic system. The endotoxin translocation
can arise as early as 15min post-burn and reach the
peak within 6h [34]. Our previous studies have
shown that in mice subjected to a 30% total body
surface area (TBSA) full-thickness burn, the ileal per-
meability is markedly increased at 1h, peaks at 6h,
and still significantly higher than control level at 24h
post-burn [26, 27, 35]. Similarly, in mice suffering
from 30% TBSA full-thickness scald, the intestinal
permeability is significantly increased at 2h and
reaches the peak at approximately 4—6 h, whereas the
histological structure of intestinal mucosa is not
changed at 2 h after injury [36, 37]. Thus, it is worthy
to note that after severe burn injury, the increase of
intestinal permeability does not synchronize with the
damage of mucosal histological structure although the
increased intestinal permeability is closely associated
to the changes of mucosal histological structure. The
intestinal hyperpermeability induced by severe burn
injury can arise earlier than the mucosal histological

changes. This phenomenon may be mainly attributed
to the dysfunction of intestinal epithelial T] barrier,
but the impairment of mucosal histological structure
definitely aggravates the increased permeability.

Factors contributing to the burn-induced intestinal

barrier dysfunction

Stress

After severe burn injury, a variety of stressors such as
mental stimulation, local tissue damage, ischemia/hyp-
oxia, inflammation, and surgical operation can enhance
the activities of both hypothalamic-pituitary-adrenal axis
and sympathetic nerve system, leading to severe sys-
temic stress responses. The stress may play an important
role in the intestinal barrier dysfunction and hyperper-
meability in some diseases including burn injury [38,
39]. An animal experiment has demonstrated the intes-
tinal permeability, bacterial translocation, and proinflam-
matory cytokines such as interferon-y (IFN-y) are
significantly increased by stress stimulation in C57BL/6]
mice, but not in the severe combined immunodeficiency
(SCID) and IFN-y-deficient mice [40], indicating that
the stress-induced intestinal barrier dysfunction depends
on the presence of CD4 + T lymphocytes and IFN-y. In
addition, inhibiting the phosphorylation of MLC by
MLCK inhibitor ML-7 can significantly alleviate the
stress-induced intestinal barrier dysfunction, suggesting
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that the MLCK-mediated MLC phosphorylation is in-
volved in the stress-induced intestinal barrier dysfunc-
tion. Similarly, other investigators have also shown that
acute stress can decrease the mRNA expression of T]
proteins (TJPs) ZO-2 and occludin, which in turn
leads to intestinal barrier dysfunction [41].

Ischemia/hypoxia and ischemia-reperfusion injury
Extensive burn injuries cause extravasation of plasma,
and then lead to hypovolemic shock, resulting in the is-
chemia and hypoxia of tissues. It is well recognized that
ischemia/hypoxia is the most fundamental reason for
systemic damages in the early stage of severe burn in-
jury. Thus, ischemia/hypoxia is believed to play an im-
portant role in the pathogenesis of intestinal barrier
dysfunction induced by severe burn injury. Previous
studies have revealed that systemic or intestinal ische-
mia/reperfusion causes the intestinal barrier disruption,
resulting in the increase of paracellular permeability
[42—-44]. 1t has been reported that the intestinal perme-
ability is significantly increased 30 min after hemorrhagic
shock, and the luminal bacteria translocate to the mes-
enteric lymph nodes, liver, and spleen [45]. The intes-
tinal barrier disruption induced by hemorrhagic shock is
accompanied by the activation of actin depolymerizing
factor/cofilin, the increase of G-actin, and the decreases
of F-actin, ZO-1, and claudin-3 in intestinal epithelia.
Our previous study has shown that in mice subjected to
30% TBSA full-thickness flame burn, the intestinal per-
meability is significantly increased during the shock
stage of burn and simultaneously accompanied by the
decrease and redistribution of ZO-1 and the rearrange-
ment of cytoskeleton F-actin [26]. Similarly, the intes-
tinal permeability is significantly increased in severely
scalded mice and also accompanied by the decreased ex-
pression and redistribution of both ZO-1 and occludin
[35, 46]. In addition, our previous in vitro study has re-
vealed that hypoxia alone can increase the permeability
of cultured intestinal epithelial cell monolayers and
cause the morphological changes of ZO-1 [47]. Thus, is-
chemia and/or hypoxia arising in the early stage of se-
vere burn injury causes intestinal barrier dysfunction by
disrupting the epithelial TJ, leading to the increase of
permeability.

It has been well recognized that reperfusion after is-
chemia can produce large amounts of free radicals. The
free radicals, on the one hand, can directly interact with
the polyunsaturated fatty acid of the phospholipid mem-
brane to form lipid peroxides, causing the impairment of
intestinal epithelial cells. They, on the other hand, can
also activate complements, mediate the release of in-
flammatory mediators, and induce cell apoptosis, leading
to the disruption of the intestinal epithelial barrier. The
free radicals have been demonstrated to induce the
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depolymerization and rearrangement of cytoskeleton F-
actin and disrupt the intestinal epithelial barrier, in
which PKC-\ activation is involved [48]. Moreover, re-
perfusion following ischemia not only damage the struc-
ture of intestinal epithelial TJ, but also alter the
expression and localization of TJPs. Animal studies have
shown that at 1 h post-reperfusion, the intestinal perme-
ability is increased significantly while the histological
structure of mucosa is obviously damaged as evidenced
by the appearance of denuded villi, focal necrosis, ulcer,
and bleeding. Meanwhile, the intestinal epithelial T7J is
disrupted, and the expression and localization of ZO-1,
occludin, and claudin-1, claudin-2, claudin-3, claudin-4,
and claudin-5 are remarkedly changed following intes-
tinal ischemia/reperfusion injury [49, 50].

Proinflammatory cytokines

After severe burn injury, large amounts of proinflammatory
cytokines are released from both gastrointestinal tract and
other organs [51]. Among these proinflammatory cytokines,
IFN-y, tumor necrosis factor-a (TNF-a), interleukin-1f (IL-
1pB), and IL-6 are believed to be the most important in indu-
cing the intestinal epithelial barrier dysfunction and leading
to increased intestinal permeability.

IFN-y Many previous in vivo and in vitro studies have
confirmed that IFN-y alone or in combination with
other cytokines can induce intestinal epithelial barrier
dysfunction, which is mainly associated with the altered
expression and/or localization of TJPs in intestinal epi-
thelial cells. IFN-y has been reported to activate Rho-
GTPase, upregulate the expression of Rho-associated
protein kinase (ROCK), and induce the endocytosis of
TJPs and the relocalization of occludin, claudin-1, and
JAM-A via the RhoA/ROCK pathway, resulting in the
intestinal epithelial barrier dysfunction [52]. Our in vitro
studies have demonstrated that by inducing the expres-
sion of TNF receptor 2 (TNFR2) in the intestinal epithe-
lial cells, IEN-y synergizes with TNF-a to induce the
expression of MLCK protein and to activate the MLCK-
MLC phosphorylation pathway, which in turn results in
the relocalization of TJPs ZO-1, occludin, and claudin-1,
leading to the disruption of intestinal epithelial barrier
function [53]. In addition, IFN-y also downregulates the
expressions of both ZO-1 and occludin by activating ad-
enosine monophosphate-activated protein kinase, result-
ing in intestinal epithelial barrier dysfunction [54].
Moreover, IEN-y induces the intestinal barrier dysfunc-
tion in vitro as assessed by the drop of transepithelial
electrical resistance and the increases of both permeabil-
ity and Escherichia coli transcytosis. However, inhibiting
phosphatidylinositol 3’-kinase (PI-3K) activity with
LY294002 and wortmannin, the PI-3 K inhibitors, com-
pletely blocks the intestinal barrier dysfunction evoked
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by IFN-y, suggesting the involvement of PI-3K in the
IFN-y-induced intestinal barrier dysfunction [55]. Ac-
cordingly, IFN-y disrupts intestinal epithelial barrier
function via multiple signal transduction pathways.

TNF-a A large number of previous studies have docu-
mented that TNF-«, alone or with other proinflamma-
tory cytokines, can induce intestinal epithelial barrier
disruption both in vivo and in vitro [56—59]. The under-
lying mechanisms involved in the TNF-a-induced
intestinal epithelial barrier dysfunction include the apop-
tosis of intestinal epithelial cells, changes of the lipid
composition in cell membrane, activation of MLCK by
Ca**-calmodulin, induction of MLC phosphorylation by
upregulated MLCK protein expression, and inhibition of
TJP expression, among which the MLCK-mediated MLC
phosphorylation pathway is considered to play a critical
role in the TNF-a-induced intestinal epithelial barrier
dysfunction. It has been revealed that upon activated by
TNF-a, nuclear factor of activated B cells protein kinase
(NF-kB) binds to the NF-kB motif in the MLCK gene
promoter, which initiates the MLCK gene transcription
and then upregulates the MLCK protein expression,
subsequently leading to intestinal epithelial barrier dys-
function [60]. Our previous in vitro studies have demon-
strated that TNF-a acts synergistically with IFN-y to
induce intestinal epithelial barrier dysfunction in a dose-
dependent manner, which is mediated by TNFR2 but
not TNFR1. The molecular mechanism involves the acti-
vation of activator protein-1, which induces MLCK gene
transcription, the upregulation of MLCK protein expres-
sion and MLC phosphorylation, and the relocalization of
Z0O-1, occludin, and claudin-1, resulting in the disrupted
intestinal epithelial barrier [53, 61, 62]. In addition, our
recent in vitro studies have demonstrated that hypoxia-
inducible factor-la (HIF-1a) is involved in the intes-
tinal epithelial barrier dysfunction, the alteration of
TJPs, and the increase of permeability induced by the
synergistic action of TNF-a and IFN-y, as evidenced by
that the TNF-a and IFN-y-induced intestinal epithelial
barrier dysfunction is alleviated by both 3-(5'-hydroxy-
methyl-2'-furyl)-1-benzylind azole (YC)-1 and oligomy-
cin, the specific chemical inhibitors of HIF-1a [63, 64].
We have also shown that lymphotoxin-like inducible
protein that competes with glycoprotein D for herpes
virus entry on T cells (LIGHT), a superfamily member
of TNF (TNFSF14), disrupts the intestinal epithelial
barrier by activating the MLCK-MLC phosphorylation
pathway, which is mediated by the lymphotoxin f re-
ceptor (LTBR) belonging to the TNF receptor super-
family and the caveolin-1-dependent endocytosis of
occludin [65]. The caveolin-1-dependent endocytosis of
occludin is reported to be very important in the TNF-
a-induced alteration of TJ [57].
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Interleukins Among the numerous ILs, IL-1p is the
most studied in the regulation of intestinal epithelial
barrier function. IL-1p has been well documented to be
able to disrupt the intestinal epithelial barrier, leading to
increased permeability [66—69]. The intestinal barrier
disruption induced by IL-1p is most likely associated
with the decreased expression and the relocalization of
TJP occludin. The upregulated MLCK gene transcription
triggered by NF-«B activation is also part of the mechan-
ism by which IL-1f disrupts the intestinal epithelial bar-
rier. It has been reported that the IL-1p-evoked increase
of intestinal epithelial permeability is mediated by activa-
tion of extracellular signal-regulated kinases 1/2 (ERK1/
2) signaling pathway and that inhibition of ERK1/2 activ-
ity inhibits the IL-1B-induced increase in intestinal epi-
thelial permeability. The IL-1p-induced activation of
ERK1/2 pathway leads to a downstream activation of nu-
clear transcription factor Elk-1. The activated Elk-1
translocates to the nucleus and binds to the cis-binding
motif on MLCK promoter region, triggering MLCK gene
activation, MLCK mRNA transcription, MLCK protein
synthesis, and MLCK catalyzed opening of the intestinal
epithelial TJ [70]. The p38 MAPK is also reported to be
involved in the process of MLCK gene transcription in-
duced by IL-1p. The IL-1B-induced increase of intestinal
epithelial permeability is accompanied by the activation
of p38 MAPK. The activated p38 MAPK then induces
the phosphorylation and activation of activating tran-
scription factor-2 (ATF-2), a substrate of p38 MAPK.
The activated ATF-2 translocates to the nucleus where it
attaches to its binding motif on the MLCK promoter re-
gion, leading to the activation of MLCK promoter activ-
ity and gene transcription. The IL-1(3-induced activation
of MLCK promoter and MLCK mRNA transcription is
prevented by small interfering RNA induced silencing of
ATEF-2, or mutation of the ATF-2 binding motif on the
MLCK promoter region [71]. Therefore, multiple signal
transduction pathways are involved in the intestinal
epithelial barrier dysfunction evoked by IL-1f, but the
upregulation of MLCK gene transcription is the most
critical.

Among the other ILs, IL-4 has been reported to dis-
rupt intestinal barrier function via the PI-3 K signaling
pathway [72], whereas the effect of IL-6 on intestinal
barrier function is still controversial. On the one hand, it
has been shown that IL-6 can induce intestinal barrier
dysfunction and increase the permeability and that in-
hibition of IL-6 or knockout of the IL-6 gene can pre-
vent the damage of intestinal mucosa and the increase of
permeability in intestinal ischemia/reperfusion injury,
sepsis, and hemorrhagic shock [73, 74]. An in vitro study
has shown that IL-6 can only cause the increase of intes-
tinal permeability to ions but not to large-molecule ma-
terials. This characteristic of IL-6 on the intestinal
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barrier is associated with the induced expression of
claudin-2, but not ZO-1, ZO-2, occludin, JAM-1, or
claudin-1, claudin-3, and claudin-4, in which the MEK/
ERK and PI-3 K/Akt signal pathways are involved [75].
On the other hand, however, IL-6 has been reported to
protect intestinal epithelial barrier function, and the
potential mechanism may be related to the IL-6-induced
upregulation of keratin-8 and 18 in intestinal epithelial
cells [76]. Similarly, an in vivo study has demonstrated
that IL-6 neutralizing antibody treatment can signifi-
cantly reduce the ileal mucosa damage, bacterial
translocation to the mesenteric lymph node, and reloca-
lization of ZO-1 and occludin following the combined
insult of ethanol exposure and burn injury; however, IL-
6 gene knockout has no similar effects [77]. These find-
ings suggest that maintaining the appropriate amount of
IL-6 may be helpful to restore intestinal barrier function
in inflammation, whereas complete loss of IL-6 seems
not to be beneficial to maintain the intestinal barrier. In
addition, IL-13 has also been reported to play an import-
ant role in the pathogenesis of intestinal barrier dysfunc-
tion. A recent study has shown that IL-13 induces the
increased permeability of intestinal epithelium to ions in
a dose-dependent manner, in which the IL-13-induced
increase and redistribution of claudin-2 via signal trans-
ducers and activators of transcription 6 (STAT6) signal-
ing pathway is involved [78].

Bacteria and endotoxins

Severe burn injury has been reported to be able to alter
intestinal microbiota composition in both animals and
patients, resulting in the intestinal microbiota dysbiosis
[79-81]. The intestinal flora disturbance may increase
the conditional pathogenic bacteria. Among the bacteria,
enteropathogenic Escherichia coli (EPEC) is the most
studied in the regulation of intestinal epithelial barrier
function. Previous studies have determined that EPEC is
capable of inducing the intestinal epithelial barrier dys-
function [82-84]. Utilizing its type III secretion system
(T3SS), EPEC injects pathogenic effector proteins such
as EspF, EspG, EspH, and Map into the intestinal epithe-
lial cells, causing the cytoskeleton collapse and relocali-
zation of TJPs. The resulting compromised barrier and
increased intestinal permeability may be responsible for
the clinical symptoms of EPEC infection. Some in vivo
studies have revealed that EPEC infection causes the dis-
ruption of the intestinal barrier and the relocalization of
TJPs. The disruptive effect of EPEC on the intestinal epi-
thelial barrier is dependent on the pathogenic effector
protein EspF [85-87]. Notably, the EPEC-induced intes-
tinal barrier dysfunction is also related to the activation
of the MLCK-MLC phosphorylation pathway, because
that inhibition of MLCK with ML-9, a specific chemical
inhibitor of MLCK, can prevent the intestinal barrier
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defects induced by EPEC infection [88]. The PKCe
signaling pathway is also reported to be involved in
the intestinal epithelial barrier disruption induced by
EPEC infection [89]. In addition, enteroinvasive
Escherichia coli (EIEC) has also been demonstrated to
evoke the relocalization and reduced expression of
Z0-1, occludin, claudin-1, and JAM-1 in the intes-
tinal epithelial cells, resulting in the intestinal epithe-
lial barrier dysfunction [90].

A huge number of studies have determined the disrup-
tive effect of endotoxin on intestinal epithelial barrier
both in vivo and in vitro. On the one hand, endotoxin
disrupts the intestinal barrier by inducing a variety of
cells to produce proinflammatory mediators such as
TNF-a and IL-1B. On the other hand, endotoxin also
directly impairs intestinal epithelial cells to cause the
barrier dysfunction. An in vivo study has shown that in-
testinal permeability and bacterial translocation is sig-
nificantly increased and the intestinal epithelial TJs are
obviously opened in lipopolysaccharide (LPS)-challenged
rats. This disruptive effect of LPS on intestinal barrier
depends on MLCK, because that inhibiting MLCK activ-
ity with ML-7, a specific inhibitor of MLCK, can allevi-
ate the intestinal barrier dysfunction and bacterial
translocation in rats challenged with LPS [91]. Moreover,
LPS has been reported to cause the relocalization of ZO-
1, occludin, and claudin-1 and claudin-4 and reduce the
expression of ZO-1, in which c-Src, toll-like receptor 4
(TLR4), and LPS binding protein are involved [92]. Our
latest in vitro study has revealed that LPS also induces
epithelial barrier disruption by activating Nod-like re-
ceptor protein 3 (NLRP3) inflammasome and autophagy
in Caco-2 intestinal epithelial monolayers [93].

Mechanisms involved in the burn-induced intestinal
barrier dysfunction

Alteration of TJPs

It is well known that the structural basis of intestinal
epithelial barrier integrity is T] and its associated pro-
teins such as ZOs, occludin, and claudins. However, the
changes in intestinal epithelial TJPs after severe burn in-
jury are not well defined so far. In general, there are
mainly two aspects about the changes in intestinal epi-
thelial TJPs after severe burns: one is the relocalization
or redistribution of the TJPs in intestinal epithelial cells,
and the other is the altered expression of TJPs. Our pre-
vious study has demonstrated that there is an obvious
relocalization of ZO-1, occludin, and claudin-1 in the
ileal mucosa of mice inflicted with 30% TBSA full-
thickness flame burns [94]. Other investigators have also
shown that the protein expression of occludin in intes-
tinal epithelial cells is not significantly changed in rats
subjected to a 30% TBSA burn, but the relocalization of
occludin is evident after burn injury. There is a clearly
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decreased expression and relocalization of occludin in
the ileum of burned rats combined with Enterococcus
faecalis infection [95]. It has been reported that the ex-
pressions of ZO-1 and occludin in intestinal epithelia
are decreased to the lowest at 6 h post-burn, with reduc-
tions of 68% and 43% respectively, and still significantly
lower than control level at 24 h post-burn [46]. Further-
more, simple hemorrhagic shock can also induce the de-
creased expression and relocalization of ZO-1 and
claudin-3, leading to intestinal T] barrier dysfunction
and bacterial translocation [45]. Therefore, both the de-
crease and relocalization of TJPs in intestinal epithelial
cells after severe burn injury are bound to impair the
structure and function of intestinal epithelial T7J, result-
ing in barrier disruption and hyperpermeability.

Role of MLC phosphorylation

It is well established that the TJs are connected to cyto-
skeleton actin through ZOs [22, 96-98]. Thus, the integ-
rity of the intestinal T] barrier also depends on the
structural assembly and functional status of the intes-
tinal epithelial cytoskeleton actin as well as the inter-
action between myosin and actin. A critical step in the
regulation of epithelial T] permeability may be myosin
ATPase-mediated contraction of the perijunctional acto-
myosin ring and subsequent physical tension on the T]
[99], to which MLC phosphorylation is critical. It is well
known that MLC phosphorylation is regulated by both
MLCK and MLC phosphatase (MLCP) [100], which is
more commonly called myosin phosphatase. On the one
hand, MLCK phosphorylates MLC, resulting in an in-
crease of MLC phosphorylation. On the other hand,
MLCP dephosphorylates MLC, leading to a reduction of
MLC phosphorylation. It has been reported that the in-
duction of MLC phosphorylation in intestinal epithelial
cells alone is sufficient to change the TJPs ZO-1 and
occludin, leading to the increased permeability of the in-
testinal epithelial TJ [101]. Our previous animal studies
have shown that the remarkably increased intestinal per-
meability and the redistribution of TJPs following severe
burn injury are accompanied by the significantly increased
MLC phosphorylation [26, 27, 94]. Similarly, our in vitro
studies have also revealed that the barrier disruption
caused by burn sera or hypoxia is accompanied by a sig-
nificant increase of MLC phosphorylation in cultured in-
testinal epithelial cell monolayers [47, 94]. Thus, the
increased MLC phosphorylation may be a central molecu-
lar mechanism involved in the severe burn-induced intes-
tinal barrier disruption and hyperpermeability.

Role of MLCK

It is well known that MLCK, a member of the serine/
threonine protein kinase family, is a Ca>*/calmodulin-
dependent kinase responsible for the phosphorylation of
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a specific serine in the N-terminus of MLC. Upon acti-
vated by upstream signals such as Ca®*, histamine,
bradykinin, free radicals, and proinflammatory cytokines,
MLCK can induce the phosphorylation of serine 18/
threonine 19 of MLC in nonmuscle cells. It has been
well documented that MLCK is a central determinant in
the intestinal epithelial barrier dysfunction under various
pathological conditions, and the underlying mechanism
involves the induction of MLC phosphorylation. Based
on the reported studies, it is believed that MLCK also
plays a critical role in intestinal barrier dysfunction after
severe burn injury. Some previous studies have shown
that MLCK is critical to intestinal epithelial barrier dys-
function, increased permeability, and the relocalization
of TJPs ZO-1, occludin, and claudins induced by a num-
ber of pathophysiological conditions associated with se-
vere burns such as stress, shock, ischemia/hypoxia,
inflammation, and infection [5, 39, 47, 97, 101-104].
The previous animal studies have revealed that MLCK
chemical inhibitor ML-9 or peptide inhibitor PIK could
significantly alleviate the barrier dysfunction, the
changes of TJPs, the increase of MLC phosphorylation,
and the hyperpermeability of intestinal epithelia in mice
subjected to severe burns [94, 105]. Similarly, in MLCK
knockout mice inflicted with 40% TBSA full-thickness
burn, there was only slight elevation of intestinal perme-
ability at 4 h after the injury, without obvious damage to
the intestinal mucosa [106]. Therefore, after severe burn
injury, MLCK upregulates the phosphorylation of MLC
in intestinal epithelial cells, thereby leading to the barrier
dysfunction and hyperpermeability.

Role of ROCK

Rho, which belongs to the Ras superfamily of low mo-
lecular weight GTPases, is also an important regulator
of the intestinal epithelial barrier. It regulates the perme-
ability of the intestinal barrier by mainly affecting the
interaction between actin and myosin in epithelial cells.
The downstream effector of RhoA is ROCK, a serine/
threonine protein kinase. The activated ROCK phos-
phorylates the myosin phosphatase target subunit
(MYPT), which is also called the myosin-binding subunit
(MBS) of myosin phosphatase, and consequently inacti-
vates myosin phosphatase, thereby increasing the phos-
phorylation of MLC. In other words, the activation of
ROCK results in an increase of MLC phosphorylation.
At present, there are few data about the involvement of
ROCK in post-burn intestinal barrier dysfunction. How-
ever, some studies have determined that ROCK is in-
volved in the intestinal epithelial barrier disruption
caused by proinflammatory cytokines, inflammation, and
bacteria [52, 107, 108]. For example, ROCK has been
reported to mediate the bacteria-induced increase of in-
testinal epithelial permeability and the decreased
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expression and relocalization of claudin-4 and claudin-5
[108]. Our previous study has demonstrated that intes-
tinal permeability, ROCK protein expression, and MLC
phosphorylation are elevated in mice subjected to 30%
TBSA full-thickness burns. However, intraperitoneal in-
jection of ROCK-specific inhibitor Y-27632 immediately
after the injury can significantly alleviate the severe
burn-induced increases of intestinal permeability and
MLC phosphorylation [27]. Similarly, burn sera can in-
duce barrier dysfunction and upregulate ROCK protein
expression and MLC phosphorylation in cultured intes-
tinal epithelial cell monolayers, whereas inhibiting
ROCK activity with Y-27632 can also alleviate the burn
sera-induced barrier dysfunction and the increase of
MLC phosphorylation in cultured intestinal epithelial
cell monolayers [109]. Therefore, ROCK is believed to
be involved in the severe burn-induced intestinal barrier
dysfunction and hyperpermeability by inducing MLC
phosphorylation.

Therapeutic strategies for the burn-induced intestinal
barrier dysfunction

It is well recognized that the treatment of post-burn in-
testinal barrier dysfunction is an important part of the
burn treatment and directly related to the level of com-
prehensive treatment of severe burns. The factors or
pathophysiological processes affecting intestinal barrier
function after severe burns are multiple and complex.
Thus, the appropriate therapeutic measures should cor-
respondingly be taken to every critical pathophysio-
logical process, such as stress, shock, ischemia/hypoxia,
inflammation, infection, and surgical operation. Many
clinical and experimental studies in the past have sug-
gested that taking some positive and reasonable mea-
sures is beneficial to the intestinal barrier in the early
stage of severe burns. These measures include positive
anti-shock to improve the oxygen supply to organs
including intestine, control of inflammation and infec-
tion, wound management, early enteral nutrition,
immunonutrition, ecoimmunonutrition, and supple-
mentation of some special nutrients such as glutam-
ine and arginine [2, 30, 31].

In addition to the aforementioned therapeutic measures,
an animal study has recently demonstrated that zinc finger
aspartate-histidine-histidine-cysteine (DHHC) domain-
containing protein-21 (ZDHHC21), a particular palmitoyl
acyltransferase, mediates the intestinal epithelial hyperper-
meability in mice subjected to a 40% TBSA full-thickness
scald injury [110]. The thermal injury-induced intestinal
barrier dysfunction is significantly attenuated in mice with
genetic ablation of ZDHHC21 or by intraperitoneal injec-
tion of 2-bromopalmitate, a pharmacological inhibitor of
palmitoyl acyltransferases, suggesting that targeting palmi-
toyl acyltransferase ZDHHC21 can effectively attenuate
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the intestinal epithelial barrier disruption caused by severe
burn injury. Moreover, endoplasmic reticulum stress
(ERS)-autophagy pathway has recently been demonstrated
to be associated with intestinal epithelial T] barrier dys-
function induced by severe burn injury [35]. Inhibiting
ERS or autophagy with specific inhibitor can significantly
ameliorate the severe burn-induced intestinal T] barrier
dysfunction [111]. It is implied that blocking ERS-
autophagy pathway may be beneficial to restoring intes-
tinal epithelial TJ barrier dysfunction induced by severe
burn injury. Furthermore, it is very interesting that mesa-
lazine, which is also known as 5-aminosalicylic acid and a
common clinical anti-inflammatory drug used to treat in-
flammatory bowel disease, has recently been reported to
be able to treat the intestinal barrier disruption resulting
from burn injury [112]. Treatment with mesalazine after
burn injury prevents the burn-induced increase of
intestinal permeability, normalizes the levels of pro-
inflammatory cytokines, and restores the expression of
TJPs claudin-4 and occludin, which indicates that mesala-
zine can potentially be used as the therapeutic drug for in-
testinal barrier disruption induced by severe burn injury.
With the deepening understanding of the regulatory
mechanisms of intestinal epithelial T], new therapeutic
strategies aiming at the regulation of intestinal epithelial
TJ] may be the direction for the prevention and treat-
ment of post-burn intestinal barrier dysfunction, espe-
cially the measures targeting at MLC phosphorylation.
This may be more important for controlling increased
permeability when the histological structure of intestinal
mucosa has not yet been damaged obviously. The previ-
ous animal studies have already demonstrated that inhi-
biting MLCK and ROCK activity by using specific
inhibitors to reduce MLC phosphorylation in intestinal
epithelial cells can significantly alleviate the severe burn-
induced intestinal barrier dysfunction and hyperperme-
ability [27, 94, 105]. Moreover, it has been reported that
both phosphodiesterase inhibitor pentoxifylline and p38
MAPK inhibitor SB203580 can reduce intestinal perme-
ability and protect intestinal barrier function in severe
burn injury, the underlying mechanism of which is
proved to be mediated by inhibiting the MLCK-
mediated upregulation of MLC phosphorylation [36,
113]. Another in vivo study has also revealed that inhi-
biting MLCK-mediated MLC phosphorylation by MLCK
inhibitor ML-7 can prevent the increase of intestinal
permeability, opening of TJ, bacterial translocation, and
intestinal inflammatory response in rats challenged with
endotoxin [91]. Most notably, the latest study has re-
vealed that divertin, a domain-binding small molecule
that blocks MLCK1 recruitment without inhibiting en-
zymatic function, is capable of blocking acute, TNEF-
induced MLCK1 recruitment as well as downstream
MLC phosphorylation, barrier loss, and diarrhea both in
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vitro and in vivo, suggesting that MLCK1 diversion can
reverse intestinal epithelial barrier loss [114]. Thus, al-
though there are still many issues that require to be fur-
ther clarified, such as the effectiveness, safety, and
feasibility on clinical applications, the therapeutic strat-
egies targeting at MLC phosphorylation pathway may be
the direction of future efforts in the prevention and
treatment of intestinal barrier dysfunction after severe
burn injury.

Conclusions

The integrity of intestinal barrier function is essential to
maintain the homeostasis of the intestinal mucosa. How-
ever, the intestinal barrier is disrupted after severe burn
injury. A broad range of pathogenic factors is known to
induce the disruption of epithelial T] barrier, thereby
leading to the intestinal hyperpermeability. The mechan-
ism of intestinal barrier disruption induced by severe
burn injury is extremely complex, involving numerous
signaling molecules and related pathways. A better basic
understanding of the mechanism might be helpful for
the prevention or treatment of intestinal barrier disrup-
tion following severe burn injury.
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