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Abstract

Chronic kidney disease (CKD) is an important social health problem characterized by a

decrease in the kidney glomerular filtration rate (GFR). In this study, we analyzed genome-

wide association studies for kidney disease-related traits using data from a Korean adult

health screening cohort comprising 7,064 participants. Kidney disease-related traits analyzed

include blood urea nitrogen (BUN), serum creatinine, estimated GFR, and uric acid levels.

We detected two genetic loci (SLC14A2 and an intergenic region) and 8 single nucleotide

polymorphisms (SNPs) associated with BUN, 3 genetic loci (BCAS3, C17orf82, ALDH2) and

6 SNPs associated with serum creatinine, 3 genetic loci (BCAS3, C17orf82/TBX2, LRP2)

and 7 SNPs associated with GFR, and 14 genetic loci (3 in ABCG2/PKD2, 2 in SLC2A9, 3 in

intergenic regions on chromosome 4; OTUB1, NRXN2/SLC22A12, CDC42BPG, RPS6KA4,

SLC22A9, and MAP4K2 on chromosome 11) and 84 SNPs associated with uric acid levels.

By comparing significant genetic loci associated with serum creatinine levels and GFR,

rs9895661 in BCAS3 and rs757608 in C17orf82 were simultaneously associated with both

traits. The SNPs rs11710227 in intergenic regions on chromosome 3 showing significant

association with BUN is newly discovered. Genetic variations of multiple gene loci are associ-

ated with kidney disease-related traits, and differences in associations between kidney dis-

ease-related traits and genetic variation are dependent on the population. The meanings of

the mutations identified in this study will need to be reaffirmed in other population groups in

the future.
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Introduction

Chronic kidney disease (CKD) is an important health problem that increases the incidence of

cardiovascular disease and overall mortality [1]. Kidneys function is usually expressed as the

glomerular filtration rate (GFR) and is generally deteriorated when the GFR is decreased. Tradi-

tionally, blood urea nitrogen (BUN) and serum creatinine levels have been used as surrogate

markers of kidney function deterioration. BUN reflects the amount of nitrogen in the blood

and is produced as a waste product of protein metabolism [2,3]. Serum creatinine is a represen-

tative biochemical indicator of kidney function and is produced by the breakdown of muscle

creatine phosphate. Because the exacerbation of kidney function and the increase in serum cre-

atinine level are not directly proportional, the GFR is estimated using demographic and bio-

chemical factors, such as serum creatinine levels, age and sex. Uric acid is the last product of

purine metabolism, and hyperuricemia develops when renal function is reduced and uric acid

excretion is decreased [4]. Hyperuricemia is prevalent in patients with kidney disease, and

genetic susceptibility plays an important role in the development of hyperuricemia [5]. Risk fac-

tors for CKD and end-stage renal disease requiring dialysis are diabetes mellitus, hypertension,

glomerulonephritis, and polycystic kidney disease. However, these traditional risk factors alone

cannot completely explain the development of CKD [6]. Genetic studies have shown that

genetic factors affect approximately 36–75% of kidney function and vulnerability to CKD pro-

gression [7,8]. Genome-wide association studies have been used to identify genetic variations

associated with kidney function in various populations, and differential genetic variation was

found in each population group [9,10]. In this study, we conducted a genome-wide association

and replication study of a Korean adult population to identify multiple genetic loci associated

with kidney disease-related traits, including, BUN, serum creatinine, GFR, and uric acid levels.

Methods

Study participants

Between January 2014 and December 2014, 7,999 adults who underwent a health screening

assessment at the Seoul National University Hospital Health Care System Gangnam Center

were asked to consent to research, and their blood samples were collected and stored for fur-

ther study. Most patients voluntarily conducted a personal health check-up or submitted to a

health check-up with financial support from the company. The Institutional Review Board of

Seoul National University Hospital approved the storage of blood samples for genetic analysis

with informed consent. To investigate associations between genetic variations and kidney dis-

ease-related traits, we retrospectively enrolled 7,064 healthy participants after performing qual-

ity control analysis on the genetic samples. All participants had undergone blood sampling to

measure BUN, serum creatinine, and uric acid levels. Demographic and other clinical informa-

tion (age, sex, body mass index (BMI), comorbidities, and laboratory findings) regarding the

participants were collected through electronic medical record review at the time of the health

check-up. The Institutional Review Board of Seoul National University Hospital approved the

research plan (IRB 1603-120-750), and the study was conducted in compliance with the Hel-

sinki Declaration. Specifically, personal information was encrypted for confidentiality, and

genetic information was analyzed by professional analysts in a third space separate from per-

sonal information.
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Definition of kidney disease-related traits

The kidney function-related traits assessed in this study included BUN, serum creatinine, esti-

mated GFR, and uric acid levels. GFRs were calculated using the Modification of Diet in Renal

Disease (MDRD) estimated GFR equation.

Genotyping

Genomic DNA was extracted from venous blood samples genotyped using Affymetrix

Axiom1 Customized Biobank Genotyping Arrays (Affymetrix, Santa Clara, CA, USA), and

the PLINK program (ver. 1.07) was used for quality control procedures. Specimens with the

following characteristics were excluded from the analysis: low genotyping call rate (� 97%),

sex inconsistency, and related and cryptically related individuals (identical by descent > 0.9).

Small nucleotide polymorphisms (SNPs) with low call rates (< 97%), low minor allele fre-

quency (MAF� 0.05%), or significant deviation from the Hardy-Weinberg equilibrium per-

mutation test (HWE P< 1.0 × 10−5) were excluded (S1 Table). After performing the quality

control evaluations, 345,072 autosomal SNPs were retained for the association analysis. S2–S5

Tables summarize the HWE, MAF, and missing rates of each SNP. Targeted imputation was

performed in the validation set when SNP information could not be confirmed as significant

in the discovery set. Imputation was performed as follows: genotypes were pre-phased using

SHAPEIT2, imputed with IMPUTE2, and analyzed using 1000 genome phase 3 haplotypes as

the reference panel.

Statistical analysis

SNPs associated with kidney disease-related outcomes, including BUN serum creatinine, GFR,

and uric acid levels, were identified with multiple linear or logistical regression methods with

adjustments for age, sex, diabetes mellitus, hypertension, and BMI effects. Principal compo-

nent (PC) scores were estimated with the EIGENSTRAT approach to adjust the population

substructure, and the first five PC scores were also included as covariates [11]. A total of

345,072 SNPs that passed the quality control assessment were used for the genome-wide asso-

ciation study. Distributions of normality for BUN, serum creatinine, GFR, and uric acid levels

were evaluated with a histogram and Kolmogorov-Smirnov test. Because the continuous vari-

ables did not show normal distribution, the characteristics of the continuous variables were

displayed using median values and interquartile ranges. Categorical variables were expressed

as frequencies or percentages. The R software package (version 3.1.1., R development Core

Team; R Foundation for Statistical Computing, Vienna, Austria) was used for statistical analy-

sis and to draw the Manhattan–log10 plots. Analysis results were verified using discovery and

validation sets. The discovery set comprised 7,064 of the participants included in this study.

Significant SNPs (P< 1.45 × 10−7, value derived from the 345,072 QC-qualified SNPs and

Bonferroni correction) were tested in the validation cohort samples. BUN, serum creatinine,

and GFR validation was performed using results from participants of the genome-wide associ-

ation study of the Korea Association Resource (KARE), and uric acid validation was per-

formed using results from participants of the Health Examinee shared control (HEXA) study.

The KARE is a prospective cohort designed to identify risk factors for major chronic diseases

in Koreans, including diabetes and hypertension [12–14]. The KARE cohort consists of 10,038

adults (aged 40–69) who are representative samples of residents in two cities (Ansung and

Ansan) in South Korea. Data obtained from physical examinations and laboratory tests have

been collected since 2001, and follow-up studies have been conducted every two years. Genetic

testing results from 6,509 participants in the third phase of the KARE cohort study were used

to validate BUN, serum creatinine, and GFR. HEXA is a large-scale cohort designed for the
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general population to identify environmental genetic factors for major chronic diseases in

Koreans. Since 2004, adults 40–70 years of age representing the general population have been

recruited from health screenings and medical institutions. The cohort includes data from

health checkups and epidemiological surveys as well as follow-up data collected since 2007.

Approximately 20 medical institutions exist in Korea nationwide, and approximately 30,000

new participants are enrolled in the study every year. Currently, data from approximately

173,300 adult participants are collected. For the validation of uric acid, we used genetic test

results from 3,703 participants in the HEXA cohort study. Validation P values less than 0.05

were considered significant. We grouped significant SNPs by the linkage disequilibrium (LD)

and D’ values, and the graphs were generated using Haploview 4.2. software (S1 File, Figure A

in S1 File for BUN in chromosome 3, Figure B in S1 File for uric acid in chromosome 4,

Figure C in S1 File for uric acid in chromosome 11, Figure D in S1 File for serum creatinine in

chromosome 12, Figure E in S1 File for GFR in chromosome 17, Figure F in S1 File for BUN

in chromosome 18).

Results

Participant characteristics

Clinical and demographic characteristics of the discovery cohort participants are shown in

Table 1. A total of 7,064 participants were enrolled in this study. Median age was 51 years old

Table 1. Demographic and clinical characteristics of participants.

Whole participants (N = 7,064)

Age (years) 51.0 (44.0–56.0)

Sex (male) 4104 (58.1%)

Weight (Kg) 64.4 (55.2–72.7)

Body mass index 23.0 (21.0–25.0)

Hypertension 1659 (23.6%) (N = 7,034)

Diabetes mellitus 557 (7.9%) (N = 7,063)

Systolic blood pressure (mmHg) 114 (106–125)

Diastolic blood pressure (mmHg) 75 (69–83)

White blood cells (/mm3) 5,100 (4,300–6,100)

Hemoglobin (g/dl) 14.4 (13.4–15.4)

Calcium (mg/dl) 9.3 (9.0–9.5)

Phosphorus (mg/dl) 3.5 (3.2–3.8)

Glucose (mg/dl) 95.0 (90.0–103.0)

BUN (mg/dl) 14.0 (12.0–16.0)

Creatinine (mg/dl) 0.82 (0.68–0.94)

GFR (ml/min/1.73m2) 90.2 (81.2–100.9)

Uric acid (mg/dl) 5.4 (4.4–6.4)

Cholesterol (mg/dl) 192.0 (169.0–215.0)

Protein (mg/dl) 7.3 (7.0–7.6)

Albumin (mg/dl) 4.6 (4.4–4.7)

Bilirubin (mg/dl) 0.9 (0.7–1.2)

Alkaline phosphatase (mg/dl) 51.0 (43.0–62.0)

LDL cholesterol (mg/dl) 119.0 (99.0–141.0)

AST (IU/ml) 21.0 (18.0–26.0)

ALT (IU/ml) 16.0 (14.0–27.0)

HbA1c (%) 5.5 (5.4–5.8)

GFR, glomerular filtration rate; LDL, low-density lipoprotein

https://doi.org/10.1371/journal.pone.0194044.t001
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(interquartile range, IQR 44–56), and male was 58.1%. Median GFR was 90.2 (IQR 81.2–

100.9) ml/min/1.73m2, and, 47 patients (0.67% of whole participants) had advanced kidney

disease (GFR below 60 ml/min/1.73m2). Genetic information of the whole participants was all

included in the discovery samples.

Genome-wide association study of BUN, creatinine, GFR, and uric acid

Results of the genome-wide association study on BUN, creatinine, GFR, and, uric acid across

the discovery samples are depicted using a Manhattan plot in Fig 1. The Manhattan plot was

drawn using data from the discovery set. Genetic loci significantly associated (P < 1.45 × 10−7

in the discovery set) with BUN were found on chromosomes 3, 7, and 18, and those signifi-

cantly associated with serum creatinine were found on chromosomes 12, and 17. Genetic loci

Fig 1. Genome-wide association analysis -log10 (P-value) vs. genomic position plots (Manhattan plot) for BUN (A), serum creatinine (B), GFR (C), and uric acid

(D) in the discovery cohort. Genetic loci significantly associated (P< 1.45 × 10−7 in the discovery set) with BUN were found on chromosomes 3, 7, and 18. Genetic loci

significantly associated with serum creatinine were found on chromosomes 12 and 17. Genetic loci significantly associated with GFR were found on chromosomes 2 and

17. Genetic loci significantly associated with uric acid were found on chromosomes 4 and 11.

https://doi.org/10.1371/journal.pone.0194044.g001
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significantly associated with GFR were found on chromosomes 2 and 17. Genetic loci signifi-

cantly associated with uric acid levels were found on chromosomes 4 and 11. In addition, the

distribution statuses of the observed versus expected P values are described using quantile-

quantile (QQ) plots in Fig 2. The QQ plots showed good adherence to null expectations. Stud-

ies on specific genetic inflation factors did not show substantial inflation of the test statistics

on these traits. The calculated values (-log10 P values) are shown according to genomic posi-

tion using a regional plot chart (Fig 3), and P values were obtained from the discovery set.

Among the SNPs, the most significant SNP with the lowest P value is colored purple. On chro-

mosome 18, rs6507625 in SLC14A2was identified as the most significant SNP for BUN

(P = 6.20 × 10−9). On chromosome 3, rs10937329 in an intergenic locus was identified as the

most significant SNP for BUN (P = 8.00 × 10−12). On chromosome 17, rs9895661 in BCAS3
was identified as the most significant SNP for creatinine and GFR (P = 1.63 × 10−8 for creati-

nine, P = 4.34 × 10−11 for GFR). On chromosome 17, rs757608 in C17orf82was also identified

as significant SNP for both creatinine and GFR (P = 5.65 × 10−8 for creatinine, P = 3.93 × 10−10

for GFR). On chromosome 12, rs671 in ALDH2 was identified as the most significant SNP for

creatinine (P = 3.45 × 10−8). On chromosome 2, rs2390793 in LRP2 was identified as the most

significant SNP for GFR (P = 4.28 × 10−8). On chromosome 4, rs2231142 in ABCG2 (P =

3.38 × 10−39) and rs3775948 in SLC2A9 (P = 8.59 × 10−32) were identified as the most signifi-

cant SNPs for uric acid. On chromosome 11, rs77459372 in OTUB1 was identified as the most

significant SNP for uric acid (P = 9.12 × 10−21).

The most significant SNPs at each genetic locus associated with kidney disease-related traits

are summarized in Table 2. We detected 4 SNPs on chromosome 18 (SLC14A2), 4 SNPs on

chromosome 3 (intergenic loci), and 1 SNP on chromosome 7 (UNCX) associated with BUN

in the discovery set (Tables 2 and 3). After validation set analysis, 4 SNPs on chromosome 18

(SLC14A2) and 4 SNPs on chromosome 3 (intergenic loci) still showed a significant association

with BUN. The top SNPs in SCL14A2 on chromosome 18 and in intergenic loci on chromo-

some 3 were rs6507625 (P = 6.20 × 10−9 in the discovery set, P = 3.70 × 10−4 in the validation

set) and rs10937329 (P = 8.00 × 10−12 in the discovery set, P = 2.11 × 10−9 in the validation set),

respectively. rs11710227 in an intergenic region on chromosome 3 is a newly discovered SNP

that showed significant association with BUN.

Five SNPs on chromosome 17 (BCAS3, C17orf82/TBX2) and 3 SNPs on chromosome 12

(HECTD4,ALDH2) significantly associated with serum creatinine levels were found in the dis-

covery set. During validation, 4 SNPs (2 on BCAS3 and 2 on C17orf82) on chromosome 17 and

2 SNP on chromosome 12 (ALDH2/HECTD4) showed a significant association with serum

creatinine levels (Table 4). The lead SNPs in BCAS3 and C17orf82 on chromosome 17 and

ALDH2 on chromosome 12 were rs9895661, rs757608, and rs671, respectively.

Six SNPs on chromosome 17 (BCAS3, C17orf82/TBX2) and 1 SNP on chromosome 2

(LRP2) significantly associated with GFR were found in the discovery and validation sets

(Table 5). The lead SNPs in BCAS3 and C17orf82/TBX2on chromosome 17 and LRP2 on chro-

mosome 2 were rs9895661, rs757608 and rs2390793, respectively. Comparing significant

genetic loci associated with serum creatinine levels and GFR showed that 2 genetic loci

(BCAS3 and C17orf82) were simultaneously associated with both traits. A genetic locus in

ALDH2 on chromosome 12 was associated with only serum creatinine levels and not with

GFR. Genetic loci in LRP2 on chromosome 2 was associated with only GFR and not with

serum creatinine levels.

Fourteen genetic loci (3 in ABCG2/PKD2, 2 in SLC2A9, 3 in intergenic regions on chromo-

some 4; OTUB1, NRXN2/SLC22A12,CDC42BPG,RPS6KA4, SLC22A9, and MAP4K2 on chro-

mosome 11) and 84 SNPs associated with uric acid levels. According to uric acid, 74 SNPs

were identified on chromosome 4 (9 in ABCG2, 2 in PKD2, 7 in SLC2A9, 56 in intergenic

GWAS and kidney disease
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region) and 10 SNPs were identified on chromosome 11 (1 in OTUB1, 2 in NRXN2, 1 in

CDC42BPG, 2 in SLC22A12, 1 in RPS6KA4, 1 in SLC22A2, 1 in MAP4K2, and 1 in intergenic

region) (Table 6). Using linkage disequilibrium (LD) analysis, genetic loci associated with uric

Fig 2. Quantile-quantile plots of the association test results (expected vs. observed -log10 (P-value)) for BUN (A), serum creatinine (B), GFR (C), and uric acid

(D) in the discovery cohort. The red line shows the expected distribution under the null hypothesis of no association at any locus, and the gray area shows the 95%

confidence limits of the null hypothesis distribution.

https://doi.org/10.1371/journal.pone.0194044.g002
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acid levels were categorized (Figure B and Figure C in S1 File). On chromosome 4, 8 genetic

loci were associated with uric acid levels, and the lead SNPs were rs2231142 in ABCG2/PKD2
(P = 3.38 × 10−39); rs3114018 in ABCG2 (P = 2.46 × 10−16); rs12511059 in ABCG2 (P = 7.84 ×
10−8); rs3775948 in SLC2A9 (P = 8.59 × 10−32); rs13129697 in SLC2A9 (P = 1.03 × 10−15); and

rs6839820, rs59420943, and rs6823778 in intergenic regions. On chromosome 11, 6 genetic

loci were associated with uric acid levels, and the lead SNPs were rs77459372 in OTUB1, rs504

915 in NRXN2/SLC22A12, rs55975541 in CDC42BPG, rs79382056 in RPS6KA4, rs11231454 in

SLC22A9, and rs10897526 in MAP4K2.

Discussion

In this study, we used genome-wide association analyses of discovery and validation popula-

tions to identify 6 genetic loci (SLC14A2 on chromosome 18 and intergenic regions on chro-

mosome 3 for BUN; BCAS3 and C17orf82 on chromosome 17, and ALDH2 on chromosome

12 for serum creatinine; BCAS3 and C17orf82/TBX2on chromosome 17, and LRP2 on chro-

mosome 2 for GFR) that were associated with BUN, serum creatinine, and GFR. rs9895661 in

BCAS3 and rs757608 in C17orf82were simultaneously associated with both serum creatinine

and GFR. rs11710227 was identified as a newly discovered SNP in an intergenic region on

chromosome 3 that showed significant association with BUN. For uric acid, 8 genetic loci on

Fig 3. Genetic architecture of genome-wide susceptibility loci significantly associated with kidney disease-related traits in the discovery cohorts. (A) SLC14A2 on

chromosome 18 for BUN. (B): Null intergenic region on chromosome 3 for BUN. (C) BCAS3 on chromosome 17 for creatinine. (D) ALDH2 and HECTD4 on

chromosome 12 for creatinine. (E) BCAS3 on chromosome 17 for GFR. (F) LRP2 on chromosome 2 for GFR. (G) ABCG2 on chromosome 4 for uric acid. (H): SLC2A9
on chromosome 4 for uric acid. (I) intergenic region on chromosome 4 for uric acid. (J) OTUB1 on chromosome 11 for uric acid. (K) NRXN2/SLC22A12 on

chromosome 11 for uric acid. (L) SLC22A9 on chromosome 11 for uric acid. The calculated -log10 P values are shown according to genomic position. P values were

obtained from the discovery set. Among the SNPs, the most significant SNP with the lowest P value is colored purple. LD values (based on the HapMap CEU sample)

are displayed as different colors is marked in colors: red (r2 to top SNP 0.8–0.0), orange (0.4–0.6), green (0.4–0.6), sky blue (0.2–0.4), and dark blue (<0.2). Gene

annotations are based on Build 36. The directions of the arrows indicate the direction of transcription.

https://doi.org/10.1371/journal.pone.0194044.g003
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chromosome 4 (2 in ABCG2, 1 in ABCG2/PKD2, 2 in SLC2A9, and 3 in intergenic regions)

and 6 genetic loci on chromosome 11 (OTUB1, RPS6KA4,NRXN2/SLC22A12,CDC42BPG,

SLC22A9,MAP4K2) were significantly associated with uric acid levels. Among the 345,072

SNPs that met the clustering quality control criteria, 101 SNPs in 20 genetic loci were related

to kidney disease-related traits.

Table 2. Lead SNPs in each genetic loci associated with kidney function-related traits.

‘ Discovery set Validation set

Traits rsIDα Chromosome Position (base pair) Gene A1 β(SE) P β(SE) P

BUN rs6507625� 18 43186842 SLC14A2 G/A -0.4115(0.0714) 6.20 × 10−9 -0.3318(0.0983) 3.70 × 10−4

rs10937329� 3 187713718 Intergenic A/T -0.4044(0.0590) 8.00 × 10−12 -0.4695(0.0798) 2.11 × 10−9

Creatinine rs9895661� 17 59456589 BCAS3 C/T 0.0121(0.0021) 1.63 × 10−8 0.0098(0.0045) 1.38 × 10−2

rs757608� 17 59497277 C17orf82 A/G 0.0130(0.0024) 5.65 × 10−8 0.0109(0.0043) 5.34 × 10−3

rs671� 12 112241766 ALDH2 A/G 0.0158(0.0029) 3.45 × 10−8 0.0116(0.0053) 1.41 × 10−2

GFR rs9895661� 17 59456589 BCAS3 C/T -1.705(0.2583) 4.34 × 10−11 -0.4283(0.2478) 4.20 × 10−2

rs757608� 17 59497277 C17orf82/TBX2 A/G -1.800(0.2873) 3.93 × 10−10 -0.6187(0.2064) 1.37 × 10−3

rs2390793� 2 170205123 LRP2 T/C 1.772(0.3231) 4.28 × 10−8 0.9836(0.2326) 1.19 × 10−5

Uric acid rs2231142� 4 89052323 ABCG2/PKD2 T/G 0.2804(0.0213) 3.38 × 10−39 0.2031(0.0286) 7.49 × 10−13

rs3114018� 4 89064581 ABCG2 A/C -0.1648(0.0201) 2.46 × 10−16 -0.1548(0.0267) 3.62 × 10−9

rs12511059� 4 89126193 ABCG2 T/C -0.1081(0.0201) 7.84 × 10−8 -0.0912(0.0493) 3.22 × 10−2

rs3775948� 4 9995182 SLC2A9 G/C -0.2208(0.0187) 8.59 × 10−32 -0.1936(0.0259) 4.55 × 10−14

rs13129697� 4 9926967 SLC2A9 G/T -0.1502(0.0187) 1.03 × 10−15 -0.1318(0.0254) 1.14 × 10−7

rs59420943� 4 10384278 Intergenic T/C 0.1473(0.0189) 8.02 × 10−15 0.1153(0.0262) 5.60 × 10−6

rs6839820� 4 10296114 Intergenic C/T -0.1424(0.0189) 4.73 × 10−14 -0.0942(0.0252) 9.55 × 10−5

rs6823778� 4 10158163 Intergenic C/T -0.1481(0.0188) 3.79 × 10−15 -0.1061(0.0254) 1.52 × 10−5

rs77459372� 11 63762330 OTUB1 A/G -0.3815(0.0407) 9.12 × 10−21 -0.5629(0.209) 3.56 × 10−3

rs55975541� 11 64597201 CDC42BPG A/G -0.1858(0.0245) 3.49 × 10−14 -0.238(0.0633) 8.61 × 10−5

rs504915� 11 64464085 NRXN2/SLC22A12 A/T -0.179(0.0226) 2.45 × 10−15 -0.1367(0.0306) 3.96 × 10−6

rs79382056� 11 64154676 RPS6KA4 C/T -0.2361(0.0327) 6.02 × 10−13 -0.1565(0.0829) 2.96 × 10−2

rs11231454� 11 63170735 SLC22A9 T/C -0.2221(0.0413) 7.48 × 10−8 -0.1035(0.051) 2.12 × 10−2

rs10897526� 11 64559898 MAP4K2 T/C -0.1222(0.0222) 3.67 × 10−8 -0.0879(0.036) 7.36 × 10−3

�Lead SNP in each genetic loci

https://doi.org/10.1371/journal.pone.0194044.t002

Table 3. Loci associated with kidney function-related traits (blood urea nitrogen).

‘ Discovery Set Validation Set

rsIDα Chromosome Position (base pair) Gene A1/A2 β(SE) P β(SE) P

rs6507625� 18 43186842 SLC14A2 G/A -0.4115(0.0714) 6.20 × 10−9 -0.3318(0.0983) 3.70 × 10−4

rs1825475 18 43182006 SLC14A2 A/G -0.4106(0.0715) 9.85 × 10−9 -0.3339(0.0983) 3.43 × 10−4

rs1484873 18 43206985 SLC14A2 A/G -0.3982(0.0728) 4.57 × 10−8 -0.3232(0.1057) 1.12 × 10−3

rs7232775 18 43202404 SLC14A2 C/T -0.3877(0.0711) 5.02 × 10−8 -0.3255(0.0980) 4.52 × 10−4

rs10937329� 3 187713718 Intergenic A/T -0.4044(0.0590) 8.00 × 10−12 -0.4695(0.0798) 2.11 × 10−9

rs4686914 3 187717540 Intergenic T/C -0.3891(0.0591) 4.74 × 10−11 -0.4716(0.0798) 1.78 × 10−9

rs16862782 3 187687890 Intergenic A/C -0.4411(0.0746) 3.44 × 10−9 -0.5377(0.1033) 9.90 × 10−8

rs11710227† 3 187753995 Intergenic G/A -0.3512(0.0611) 9.34 × 10−9 -0.3683(0.0844) 6.53 × 10−6

�Lead SNP in each genetic loci
†Newly discovered SNP.

https://doi.org/10.1371/journal.pone.0194044.t003
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rs6507625 in SLC14A2 on chromosome 18 was the lead SNP associated with BUN.

rs6507625 in SLC14A2was previously reported to be associated with anthropometric parame-

ters, including BMI and waist circumference, and kidney function-related traits, including

serum creatinine and GFR [15]. Other 3 SNPs (rs1825475, rs1484873, and rs7232775) in

SLC14A2 on chromosome 18 were known to be associated with serum creatinine and GFR

[15]. rs1484873 and rs7232775 in SLC14A2 on chromosome 18 were also associated with BUN

and hypertension [16,17]. rs10937329 in an intergenic region was the lead SNP on chromo-

some 3 associated with BUN. rs10937329 was previously proven to be associated with BUN in

an analysis of 71,149 Asian populations [18]. In their study, rs10937329 was not related to

serum creatinine, GFR, or uric acid levels, and these findings were similar to ours. The SNPs

rs11710227, rs16862782, and rs4686914 were identified as novel SNPs on chromosome 3

(intergenic region) that were significantly associated with BUN. Although rs16862782 was

reported to be associated with myopia [19], and rs4686914 with metabolic traits [20], the asso-

ciation of these SNP with BUN or other kidney disease-related traits have not been reported.

SNPs rs11710227 on chromosome 3 (intergenic region) is a novel SNP that has not been

shown to be related to a particular phenotype, and the relationship with BUN was newly

revealed in this study.

The SNP rs9895661 in BCAS3 and SNPs rs757608 in C17orf82 on chromosome 17 on chro-

mosome 17 were the top SNPs associated with both serum creatinine and GFR. A genetic

locus in BCAS3 on chromosome 17 was previously reported to be associated with serum creati-

nine and GFR [18,21,22]. Franceschini et al. reported that BCAS3was associated with albu-

minuria [23], and rs9895661 in BCAS3was reported to be associated with height [24,25]. The

Table 4. Loci associated with kidney function-related traits (serum creatinine).

Discovery Set Validation Set

rsIDα Chromosome Position (base pair) Gene A1/A2 β(SE) P β(SE) P

rs9895661� 17 59456589 BCAS3 C/T 0.0121(0.0021) 1.63 × 10−8 0.0098(0.0045) 1.38 × 10−2

rs9905274 17 59450441 BCAS3 T/C 0.0117(0.0022) 6.52 × 10−8 0.0094(0.0047) 2.21 × 10−2

rs757608� 17 59497277 C17orf82 A/G 0.0130(0.0024) 5.65 × 10−8 0.0109(0.0043) 5.34 × 10−3

rs9907379 17 59489893 C17orf82 T/C 0.0128(0.0024) 9.33 × 10−8 0.0101(0.0043) 9.96 × 10−3

rs671� 12 112241766 ALDH2 A/G 0.0158(0.0029) 3.45 × 10−8 0.0116(0.0053) 1.41 × 10−2

rs2074356 12 112645401 HECTD4 A/G 0.0159(0.0030) 7.58 × 10−8 0.0135(0.0053) 5.17 × 10−3

�Lead SNP in each genetic loci

https://doi.org/10.1371/journal.pone.0194044.t004

Table 5. Loci associated with kidney function-related traits (glomerular filtration rate).

Discovery Set Validation Set

rsIDα Chromosome Position (base pair) Gene A1/A2 β(SE) P β(SE) P

rs9895661� 17 59456589 BCAS3 C/T -1.705(0.2583) 4.34 × 10−11 -0.4283(0.2478) 4.20 × 10−2

rs9905274 17 59450441 BCAS3 T/C -1.656(0.2592) 1.78 × 10−10 -0.4848(0.2517) 2.71 × 10−2

rs757608� 17 59497277 C17orf82 A/G -1.800(0.2873) 3.93 × 10−10 -0.6187(0.2064) 1.37 × 10−3

rs9907379 17 59489893 C17orf82 T/C -1.768(0.2872) 7.90 × 10−10 -0.5381(0.2090) 5.04 × 10−3

rs8068318 17 59483766 TBX2 T/C 1.510(0.2593) 6.05 × 10−9 0.3816(0.1865) 2.04 × 10−2

rs2079795 17 59496649 C17orf82 T/C -1.527(0.2763) 3.35 × 10−8 -0.5887(0.1947) 1.25 × 10−3

rs2390793� 2 170205123 LRP2 T/C 1.772(0.3231) 4.28 × 10−8 0.9836(0.2326) 1.19 × 10−5

�Lead SNP in each genetic loci

https://doi.org/10.1371/journal.pone.0194044.t005
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Table 6. Loci associated with kidney function-related traits (uric acid).

Discovery Set Validation Set

rsIDα Chromosome Position

(base pair)

Gene A1/A2 β(SE) P β(SE) P

rs2231142� 4 89052323 ABCG2 T/G 0.2804(0.0213) 3.38 × 10−39 0.2031(0.0286) 7.49 × 10−13

rs4148157 4 89020934 ABCG2 A/G 0.2527(0.0221) 6.64 × 10−30 0.1981(0.0296) 1.26 × 10−11

rs2231164 4 89015857 ABCG2 C/T 0.1344(0.0191) 1.98 × 10−12 0.0832(0.0257) 6.17 × 10−4

rs2725220 4 88959922 PKD2 C/G 0.2383(0.0222) 9.40 × 10−27 0.1831(0.0296) 3.47 × 10−10

rs2725201 4 88999306 PKD2 T/G 0.1050(0.0189) 2.95 × 10−8 0.1558(0.0394) 3.96 × 10−5

rs3114018� 4 89064581 ABCG2 A/C -0.1648(0.0201) 2.46 × 10−16 -0.1548(0.0267) 3.62 × 10−9

rs17731799 4 89068455 ABCG2 G/T -0.1598(0.0208) 1.77 × 10−14 -0.1304(0.0277) 1.35 × 10−6

rs3114020 4 89083666 ABCG2 T/C -0.1534(0.0209) 2.33 × 10−13 -0.1380(0.0278) 3.72 × 10−7

rs3109823 4 89064602 ABCG2 C/T -0.1781(0.0261) 9.30 × 10−12 -0.1012(0.0337) 1.34 × 10−3

rs2622604 4 89078924 ABCG2 T/C -0.1729(0.0265) 7.07 × 10−11 -0.0955(0.034) 2.48 × 10−3

rs12511059� 4 89126193 ABCG2 T/C -0.1081(0.0201) 7.84 × 10−8 -0.0912(0.0493) 3.22 × 10−2

rs3775948� 4 9995182 SLC2A9 G/C -0.2208(0.0187) 8.59 × 10−32 -0.1936(0.0259) 4.55 × 10−14

rs733175 4 10050141 SLC2A9 C/T -0.1502(0.0187) 1.03 × 10−15 -0.1318(0.0254) 1.14 × 10−7

rs6834555 4 10062326 SLC2A9 G/A -0.1415(0.0187) 4.30 × 10−14 -0.129(0.0252) 1.70 × 10−7

rs62295971 4 9978142 SLC2A9 A/G 0.1216(0.0188) 1.11 × 10−10 0.1188(0.0261) 2.65 × 10−6

rs13129697� 4 9926967 SLC2A9 G/T -0.1667(0.0187) 7.18 × 10−19 -0.1406(0.0259) 3.15 × 10−8

rs3733591 4 9922130 SLC2A9 C/T 0.1756(0.0205) 1.27 × 10−17 0.1545(0.0276) 1.20 × 10−8

rs4292327 4 9943700 SLC2A9 A/G 0.1991(0.0376) 1.25 × 10−7 0.1103(0.0494) 1.28 × 10−2

rs59420943� 4 10384278 Intergenic T/C 0.1473(0.0189) 8.02 × 10−15 0.1153(0.0262) 5.60 × 10−6

rs9990427 4 10388313 Intergenic A/G -0.148(0.0195) 3.63 × 10−14 -0.1355(0.0264) 1.44 × 10−7

rs11732092 4 10377405 Intergenic T/G -0.1402(0.0189) 1.31 × 10−13 -0.1037(0.0253) 2.17 × 10−5

rs1544599 4 10349168 Intergenic G/A -0.1393(0.0188) 1.38 × 10−13 -0.0972(0.0253) 6.02 × 10−5

rs9990701 4 10388610 Intergenic A/G -0.1371(0.0188) 3.55 × 10−13 -0.1239(0.0273) 2.93 × 10−6

rs6839820� 4 10296114 Intergenic C/T -0.1424(0.0189) 4.73 × 10−14 -0.0942(0.0252) 9.55 × 10−5

rs7670709 4 10288932 Intergenic C/T -0.1405(0.0188) 8.53 × 10−14 -0.0935(0.0252) 1.06 × 10−4

rs6449450 4 10311887 Intergenic A/G -0.1462(0.0196) 9.33 × 10−14 -0.1365(0.0264) 1.17 × 10−7

rs11945358 4 10287559 Intergenic G/T -0.1396(0.0188) 1.14 × 10−13 -0.0934(0.0252) 1.07 × 10−4

rs4697744 4 10298147 Intergenic A/G -0.1402(0.0189) 1.20 × 10−13 -0.0939(0.0252) 9.82 × 10−5

rs6856707 4 10297330 Intergenic A/G -0.1386(0.0189) 2.21 × 10−13 -0.0942(0.0252) 9.55 × 10−5

rs757628 4 10290297 Intergenic T/C -0.1387(0.0189) 2.22 × 10−13 -0.0944(0.0252) 9.19 × 10−5

rs10014800 4 10302493 Intergenic G/A -0.1378(0.0189) 3.18 × 10−13 -0.0948(0.0253) 9.13 × 10−5

rs4698017 4 10298094 Intergenic G/A -0.1372(0.0189) 3.71 × 10−13 -0.0939(0.0252) 9.88 × 10−5

rs10939818 4 10286962 Intergenic G/T -0.1362(0.0188) 4.92 × 10−13 -0.0889(0.0259) 3.08 × 10−4

rs9291683 4 10324160 Intergenic A/G 0.1119(0.0201) 2.74 × 10−8 0.0962(0.027) 1.84 × 10−4

rs6823778� 4 10158163 Intergenic C/T -0.1481(0.0188) 3.79 × 10−15 -0.1061(0.0254) 1.52 × 10−5

rs11724092 4 10186604 Intergenic T/C -0.1445(0.0188) 1.68 × 10−14 -0.0906(0.0253) 1.72 × 10−4

rs11723976 4 10186251 Intergenic T/C -0.1442(0.0188) 1.88 × 10−14 -0.0906(0.0253) 1.72 × 10−4

rs4697972 4 10201503 Intergenic C/A -0.1435(0.0188) 2.37 × 10−14 -0.0904(0.0252) 1.69 × 10−4

rs4697973 4 10203152 Intergenic G/A -0.1418(0.0188) 4.78 × 10−14 -0.0904(0.0252) 1.69 × 10−4

rs2159865 4 10193287 Intergenic T/G -0.1422(0.0188) 4.84 × 10−14 -0.0718(0.0261) 2.97 × 10−3

rs55878266 4 10199948 Intergenic C/T -0.1418(0.0188) 5.07 × 10−14 -0.0902(0.0252) 1.73 × 10−4

rs11734623 4 10208303 Intergenic C/T -0.1418(0.0188) 5.09 × 10−14 -0.0904(0.0252) 1.69 × 10−4

rs4697962 4 10188832 Intergenic G/A -0.1419(0.0188) 5.57 × 10−14 -0.0919(0.0252) 1.33 × 10−4

rs2868420 4 10202997 Intergenic G/A -0.1415(0.0188) 5.67 × 10−14 -0.0904(0.0252) 1.69 × 10−4

rs28496435 4 10190318 Intergenic T/C -0.1418(0.0188) 5.97 × 10−14 -0.0876(0.0253) 2.71 × 10−4

(Continued)
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SNP rs9895661 in BCAS3was also reported to be associated with CKD [26]. By contrast,

Chambers et al. reported that BCAS3was not associated with CKD but was associated with

serum creatinine levels and GFR [21]. The SNP rs671 in ALDH2 on chromosome 12 was also

Table 6. (Continued)

Discovery Set Validation Set

rsIDα Chromosome Position

(base pair)

Gene A1/A2 β(SE) P β(SE) P

rs4697974 4 10205718 Intergenic A/G -0.1411(0.0188) 6.35 × 10−14 -0.0904(0.0252) 1.71 × 10−4

rs2215691 4 10192108 Intergenic C/T -0.1414(0.0188) 6.58 × 10−14 -0.0875(0.0253) 2.71 × 10−4

rs10000104 4 10191766 Intergenic G/A -0.1413(0.0188) 6.59 × 10−14 -0.0884(0.0253) 2.37 × 10−4

rs6836606 4 10198086 Intergenic G/A -0.1408(0.0188) 7.10 × 10−14 -0.0903(0.0252) 1.70 × 10−4

rs6449351 4 10192744 Intergenic T/C -0.1408(0.0188) 8.00 × 10−14 -0.0851(0.0254) 4.07 × 10−4

rs4697963 4 10189483 Intergenic T/C -0.1411(0.0189) 8.29 × 10−14 -0.0894(0.0253) 2.09 × 10−4

rs11726987 4 10190792 Intergenic C/T -0.1408(0.0188) 8.64 × 10−14 -0.0876(0.0253) 2.71 × 10−4

rs6826185 4 10208656 Intergenic G/A -0.1396(0.0188) 1.13 × 10−13 -0.0905(0.0253) 1.81 × 10−4

rs55775442 4 10200204 Intergenic T/G -0.1422(0.0191) 1.22 × 10−13 -0.0902(0.0252) 1.73 × 10−4

rs6832085 4 10194270 Intergenic T/C -0.1396(0.0188) 1.26 × 10−13 -0.0778(0.0263) 1.55 × 10−3

rs11726996 4 10199139 Intergenic G/T -0.1411(0.019) 1.32 × 10−13 -0.0902(0.0252) 1.73 × 10−4

rs7690319 4 10207061 Intergenic T/C -0.1394(0.0188) 1.37 × 10−13 -0.0903(0.0252) 1.75 × 10−4

rs10025980 4 10185799 Intergenic G/A -0.1391(0.0188) 1.54 × 10−13 -0.0906(0.0253) 1.72 × 10−4

rs62285986 4 10189213 Intergenic A/G -0.1393(0.0188) 1.57 × 10−13 -0.0942(0.0252) 9.37 × 10−5

rs4697726 4 10187395 Intergenic T/C -0.1399(0.0189) 1.61 × 10−13 -0.0836(0.0259) 6.35 × 10−4

rs66769576 4 10197663 Intergenic G/T -0.139(0.0188) 1.76 × 10−13 -0.0902(0.0252) 1.73 × 10−4

rs11724760 4 10254162 Intergenic C/T -0.1393(0.0189) 1.83 × 10−13 -0.0929(0.0253) 1.20 × 10−4

rs56391253 4 10187580 Intergenic G/A -0.1385(0.0188) 2.04 × 10−13 -0.0847(0.0258) 5.15 × 10−4

rs4697731 4 10200718 Intergenic G/A -0.1388(0.0189) 2.11 × 10−13 -0.0904(0.0252) 1.68 × 10−4

rs1860895 4 10250779 Intergenic C/T -0.1378(0.0188) 2.76 × 10−13 -0.0932(0.0253) 1.16 × 10−4

rs11735623 4 10251925 Intergenic G/T -0.1375(0.0188) 3.01 × 10−13 -0.0931(0.0253) 1.18 × 10−4

rs10017447 4 10175536 Intergenic C/A -0.1378(0.0189) 3.08 × 10−13 -0.0976(0.0252) 5.59 × 10−5

rs887734 4 10182913 Intergenic T/C -0.1371(0.0189) 4.00 × 10−13 -0.089(0.0254) 2.27 × 10−4

rs4697961 4 10187373 Intergenic G/A -0.1375(0.019) 4.39 × 10−13 -0.0841(0.0259) 5.89 × 10−4

rs1990469 4 10201652 Intergenic G/T -0.1383(0.0191) 4.78 × 10−13 -0.0904(0.0252) 1.69 × 10−4

rs4697950 4 10171644 Intergenic G/T -0.1361(0.0188) 5.00 × 10−13 -0.099(0.0252) 4.42 × 10−5

rs4697724 4 10177818 Intergenic C/T -0.1358(0.0189) 6.66 × 10−13 -0.0935(0.0252) 1.03 × 10−4

rs10026434 4 10208128 Intergenic C/T -0.1345(0.0188) 8.27 × 10−13 -0.0904(0.0252) 1.69 × 10−4

rs9990501 4 10204593 Intergenic A/G -0.1318(0.0186) 1.46 × 10−12 -0.0896(0.0248) 1.50 × 10−4

rs77459372� 11 63762330 OTUB1 A/G -0.3815(0.0407) 9.12 × 10−21 -0.5629(0.209) 3.56 × 10−3

rs55975541� 11 64597201 CDC42BPG A/G -0.1858(0.0245) 3.49 × 10−14 -0.238(0.0633) 8.61 × 10−5

rs504915� 11 64464085 NRXN2 A/T -0.179(0.0226) 2.45 × 10−15 -0.1367(0.0306) 3.96 × 10−6

rs471618 11 64465403 NRXN2 C/T 0.1307(0.0193) 1.29 × 10−11 0.1032(0.0257) 2.93 × 10−5

rs11231825 11 64360274 SLC22A12 C/T -0.1745(0.0227) 1.75 × 10−14 -0.1361(0.0306) 4.43 × 10−6

rs9734313 11 64358311 SLC22A12 T/C -0.1654(0.0229) 5.96 × 10−13 -0.1365(0.0306) 4.22 × 10−6

rs505802 11 64357072 Intergenic T/C -0.1689(0.0226) 9.49 × 10−14 -0.1364(0.0306) 4.30 × 10−6

rs79382056� 11 64154676 RPS6KA4 C/T -0.2361(0.0327) 6.02 × 10−13 -0.1565(0.0829) 2.96 × 10−2

rs11231454� 11 63170735 SLC22A9 T/C -0.2221(0.0413) 7.48 × 10−8 -0.1035(0.051) 2.12 × 10−2

rs10897526� 11 64559898 MAP4K2 T/C -0.1222(0.0222) 3.67 × 10−8 -0.0879(0.036) 7.36 × 10−3

�Lead SNP in each genetic loci

https://doi.org/10.1371/journal.pone.0194044.t006
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associated with serum creatinine levels but not with GFR. A genetic locus in ALDH2 on chro-

mosome 12 was previously reported to be associated with BUN and serum creatinine but not

with GFR [18]. The SNP rs671 in ALDH2 was reported to be associated with metabolic traits,

including diabetes mellitus, and blood pressure [27–29]. The SNP rs671 in ALDH2 also affects

acute rejection after kidney transplantation and drug metabolism in end-stage renal disease

patients [30,31]. C17orf82was previously reported to be associated with serum creatinine and

GFR [21]. The lead SNP rs757608 in C17orf82 on chromosome 17 was reported to be associ-

ated with height [24]. The other SNPs in C17orf82/TBX2 (rs9907379, rs8068318, and

rs2079795) was also reported to be associated with height [24,25,32–34]. In this study, the rela-

tionship between the C17orf82/TBX2genetic loci on chromosome 17 and GFR has been newly

discovered, but this may be due to the relationship between height and GFR. Therefore, in sub-

sequent studies, it is necessary to reconfirm the relevance of GFR by correcting the height fac-

tor among other population groups. The SNP rs2390793 in LRP2 on chromosome 2 was

associated with GFR but not with serum creatinine levels. A genetic locus in LRP2 was previ-

ously reported to be associated with BUN, GFR, and proteinuria [21,35,36]. The SNP

rs2390793 in LRP2 was previously reported to be associated with uric acid levels [37].

Uric acid was significantly associated with 84 SNPs in 14 genetic loci on chromosomes 4

(74 SNPs in 8 genetic loci) and 11 (10 SNPs in 6 genetic loci). Five genetic loci (2 in ABCG2, 1

in ABCG2/PKD2, 2 in SLC2A9) and 3 intergenic regions were associated with uric acid on

chromosome 4. In ABCG2 on chromosome 4, 9 SNPs were significant. ABCG2 (ATP-binding

cassette subfamily G member 2) is a protein-coding gene on chromosome 4. Mutations in

ABCG2 are known to be associated with hyperuricemia and the risk of gout [38–40]. The two

lead SNPs rs2231142 and rs3114018 in ABCG2 on chromosome 4 was associated with hyper-

uricemia or gout [41–50]. In the PKD2 gene region, SNP rs2725220 and rs2725201 were asso-

ciated with uric acid levels. PKD2 is a protein-coding gene at 4q22.1 that encodes a member of

the polycystin protein family. Association of the PKD2 gene with uric acid levels was proven in

other previous studies [51]. SLC2A9 (solute carrier family 2 member 9) is located at 4p16.1 and

encodes a member of the SLC2A facilitative glucose transporter family. The SCL2A9 gene was

previously reported to be associated with uric acid levels and CKD progression [52–62]. The

two lead SNPs rs3775948 and rs13129697 in SLC2A9 on chromosome 4 was associated with

hyperuricemia or gout [4,41,46,48–50,63–71]. The major 3 SNPs (rs6839820, rs59420943, and

rs6823778) on the intergenic region of chromosome 4 were also found to be significantly

related to uric acid levels in this study; these findings are novel, as they have not been previ-

ously reported.

Six genetic loci (OTUB1, NRXN2/SLC22A12,CDC42BPG,RPS6KA4, SLC22A9, and
MAP4K2) were associated with uric acid on chromosome 11. The SNPs rs55975541 in

CDC42BPG [72], and rs11231825/rs9734313 in SLC22A12/NRXN2[46,49,50,72–77],and

rs10897526 in MAP4K2 [72] on chromosome 4 were previously reported to be associated with

hyperuricemia or gout. In general, OTUB1 is known to be associated with the development

and metastasis of colorectal cancer, ovarian cancer, and lung cancer, and increased OTUB1
expression is associated with worsening prognosis [78–81]. Using a genome-wide association

study, Mells et al. reported that a genetic locus in RPS6KA4 at 11q13 is associated with the

development of primary biliary cirrhosis through NF-κB activation [82]. In this study, lead

SNPs rs77459372 in OTUB1, rs79382056 in RPS6KA4, and rs11231454 in SLC22A9 on chro-

mosome 11 were associated with uric acid levels, which is also a new investigational finding.

Despite the clinical significance of this study, some limitations do exist. Relatively few

patients in advanced kidney disease (N = 47, who showed GFR below 60 ml/min/1.73m2) were

enrolled due to the health screening patients being relatively healthy. In this study, researchers

could adjust for only age, sex, diabetes mellitus, hypertension, and BMI as covariates for the
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analysis of genetic mutations associated with kidney disease-related traits, but many other vari-

ables could affect kidney disease-related traits.

In conclusion, we found 20 genetic loci and 101 SNPs that were associated with the kidney

disease-related traits serum creatinine, BUN, GFR, and uric acid in the Korean population.

SNPs rs11710227 on chromosome 3 (intergenic region) associated with BUN is a novel SNP

that has not been reported to be related with specific phenotype. In this study, we also found

the six novel genetic loci (3 intergenic region in chromosome 4, and OTUB1, RPS6KA4, and

SLC22A9 on chromosome 11) associated with uric acid. Studies on genetic mutations have

identified genetic risk factors for kidney disease. In addition to clinical findings, such as the

degree of proteinuria and kidney biopsy results, results of genetic analysis may be used as risk

factors for CKD progression. Because genetic impacts may vary from population to popula-

tion, additional validation is needed to confirm whether these findings are similar in other

populations.
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