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ABSTRACT Many ant species grow fungus gardens that predigest food as an essen-
tial step of the ants’ nutrient uptake. These symbiotic fungus gardens have long
been studied and feature a gradient of increasing substrate degradation from top to
bottom. To further facilitate the study of fungus gardens and enable the understand-
ing of the predigestion process in more detail than currently known, we applied
recent mass spectrometry-based approaches and generated a three-dimensional (3D)
molecular map of an Atta texana fungus garden to reveal chemical modifications as
plant substrates pass through it. The metabolomics approach presented in this study
can be applied to study similar processes in natural environments to compare with
lab-maintained ecosystems.

IMPORTANCE The study of complex ecosystems requires an understanding of the
chemical processes involving molecules from several sources. Some of the molecules
present in fungus-growing ants’ symbiotic system originate from plants. To facilitate
the study of fungus gardens from a chemical perspective, we provide a molecular
map of an Atta texana fungus garden to reveal chemical modifications as plant sub-
strates pass through it. The metabolomics approach presented in this study can be
applied to study similar processes in natural environments.

KEYWORDS ant fungus garden, Atta texana, chemical transformation, fungal symbiont,
metabolomics, molecular cartography, mass spectrometry

Many ant species access plant-derived nutrients with the help of fungal symbionts
(1). Ant fungus farming originated millions of years ago (2), likely triggered by

dry and inhospitable conditions (3). Leaf-cutter ants grow a specific cultivar fungus in
specialized underground structures called fungus gardens as their main food source (4,
5). This cultivar fungus breaks down forage material such as leaves provided by the
ants to obtain the necessary nutrients for its own growth (6). In turn, the ants eat the
fungus’ specialized hyphal tips, known as gongylidia, which contain degradative
enzymes from the cultivar (7) and nutrients that are metabolically available to the ants
(8). Many of these enzymes pass through the ant gut intact and then are spread
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throughout fungus gardens by the ants to facilitate the digestion of newly incorpo-
rated substrates (9–11). These complementary roles of ants and their fungal symbiont
have been demonstrated by monitoring carbon and nitrogen sources in the diet, indi-
cating that the fungal symbionts partially meet ant nutritional needs (12), perhaps
with some assistance from the fungus garden microbiome (13–15). Fungal enzymes
present in the garden are responsible for plant biomass degradation (6, 16–18), espe-
cially transforming plant metabolites such as polysaccharides and phenolic com-
pounds (19–22). Fungus gardens from leaf-cutter ants have been compared to bioreac-
tors (21) and human compost (23) and have even been described as external ant guts
(24) due to their capacity to process plant constituents. Few studies have directly
assayed small molecules from fungus gardens (24–26), though some have shown the
differential distribution of fungal metabolic enzymes in different regions of the fungus
garden (25, 27). That distribution of enzymes reflects the incorporation of fresh plant
material at the top of leaf-cutting ant fungus gardens followed by its sequential degra-
dation while moving through the garden, with recalcitrant biomass being removed by
ants from the bottom of the fungus garden as trash (28, 29). Nonetheless, maps of
small molecule diversity in ant fungus gardens have remained unavailable due to the
lack of computational workflows that go beyond the analysis of a few selected metab-
olites, which did not exist until recently.

Here, we highlighted chemical transformations in a laboratory-maintained Atta tex-
ana fungus garden using molecular networking (30–32), three-dimensional (3D) car-
tography (33), and mass shift analysis (34). The use of nontargeted metabolomics, via
liquid chromatography-tandem mass spectrometry (LC-MS/MS) (32, 35–37), and in sil-
ico annotation and classification of detected metabolites (32, 38) enabled us to identify
metabolite features that chemically differentiate fungus garden regions as plant sub-
strates pass through. Furthermore, we identified the types of chemical transformations
that are carried out based on the differential abundance of compounds that occur
among the sampled layers of the fungus garden. The observed transformations pro-
vide insight into the chemistry and the modification of molecules that result from
potential chemical transformations or differential degradation inside an ant fungus
garden.

RESULTS AND DISCUSSION
Molecular cartography in the fungus garden. A colony of Atta texana fungus-grow-

ing ants was maintained in the laboratory environment and provisioned with maple
leaves, which the ants cut and incorporated into their fungus garden to predigest
these materials. Following this predigestion by the cultivar fungus, recalcitrant plant
biomass became trash that the ants removed from the garden (Fig. 1). Our metabolo-
mics approach enabled us to chemically differentiate regions of the fungus garden
(see Fig. S1 to S3 in the supplemental material) and visualize the distribution of
detected molecules, such as ergosterol peroxide (compound 1) (Fig. 1), ginnalin A
(compound 2) (Fig. 2), (E)-9-oxo-11-(3-pentyloxiran-2-yl)undec-10-enoic acid (com-
pound 3) (Fig. 2), phytosphingosine (compound 4) (Fig. 2), and other representative
members from the molecular families described below (see Fig. S4 to S9). The relative
abundance of molecules from the maple leaves, such as saccharide-decorated flavo-
noids and phenolic compounds (Fig. S4 to S6), decreased when moving from the top
to the bottom of the fungus garden, in contrast to other compounds that increased in
relative abundance across these layers (Fig. S2). These gradients are due to either
chemical modifications or preferential degradation of less abundant compounds
(Fig. S4 to S9). We observed that fungus garden and trash samples were enriched with
phytosphingosines (Fig. 2 and S7), amino alcohols that are also present in plants (39),
whereas features (metabolites) associated with the trash material were enriched in ste-
roids, such as the fungal metabolite ergosterol peroxide (compound 1) (40, 41), (Fig. 1
andS7), and features m/z 498.3932 and m/z 453.3341 that are consistent with molecu-
lar formulas of C32H52NO3 (calculated [calc.] m/z 498.3941; error, 1.9 ppm) and C30H45O3
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(calc. m/z 453.3363; error, 4.9 ppm) and belong to the same molecular family (Fig. 1).
Common and highly reactive plant metabolites known as oxylipins were also detected
in the fungus garden and trash material (Fig. S8). Oxylipins, such as compound 3, are
signaling molecules that originate from the oxidation of polyunsaturated fatty acids
and that are involved in plant defense (42, 43). Their presence is consistent with oxida-
tion processes occurring in the fungal garden, where the oxylipins provide carbon
sources that are available to the fungi.

Figure 2 shows gradients of other plant-derived metabolite abundances from the
top to the bottom of the fungus garden. These gradients were also observed for triter-
penoid derivatives (Fig. S9), leading to the highest abundances of these compounds at
the bottom of the fungus garden and in the trash. These gradients parallel the meta-
bolic transformations of food components in the digestive tracts of animals, such as
those involving the metabolism of flavonoids, steroids (molecules with steroidal cores),
and fatty acids (44–46). These gradients are consistent with known gradients of poly-
saccharide degradation in leaf-cutting ant fungus gardens, where fresh leaves are
incorporated at the top of the garden and then sequentially digested before recalci-
trant material is removed from the garden as trash (7, 25, 27, 28). Maple leaves, fungus
garden layers, and trash were each chemically distinct, consistent with their distinct
roles in the system as the substrate, the site of active predigestion, and spent waste,
respectively (Fig. S3).

Chemical modifications in the fungus garden. Digestive processes generate modi-
fied products whose precursors are consumed. To provide an overview of putative

FIG 1 Deconstruction and molecular signatures from A. texana fungus garden. (a) Plastic containers containing an Atta texana fungus garden (left) and
trash material removed by ants (right). Ants have free access to both chambers. (b) Location of the removed portion of the fungus garden used for mass
spectrometry analysis (lower right corner), shown in panel c. (c) The green fragments at the top of the fungus garden are freshly incorporated maple
leaves. (d) Chamber containing the trash material removed from the fungus garden by the ants. Three sampling locations from the trash are highlighted as
“TB,” “TM,” and “TT.” (e) Deconstruction of the fungus garden portion shown in panel c that was used for mapping detected molecules, including maple
leaves (left side, labeled as “L”) placed in the outer colony box that ants cut and incorporated into the top of the fungus garden, layers of the fungus
garden from top to bottom (A, B, C, and D), and, at the right side of the figure, the three sampled locations from the trash chamber, from top to bottom
(TT, TM, and TB). (f) Distribution of ergosterol peroxide (compound 1) in the deconstructed fungus garden, detected as m/z 429.3350. (g) Abundances of
features associated with trash material belonging to the sterol molecular family (ergosterol peroxide [compound 1], feature m/z 498.3932 and feature m/z
453.3341). Boxes represent the 25%, 50%, and 75% quartiles, and the whiskers extend 61.5 times the interquartile range. The molecular cartography of
this deconstructed Atta texana fungus garden visualized in 9ili (33) is shown in the online video available at https://youtu.be/_ikhKelfrY8 (see “Atta texana
fungus garden deconstruction” in Materials and Methods for details).
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metabolic transformations occurring in ants’ fungus gardens, we combined mass shift
analysis (34) and calculated the relative metabolite abundances for metabolite pairs
from each fungus garden section by using a proportionality score (see Materials and
Methods) (47). By considering the proportions between the relative abundances of two
chemically related molecules (i.e., connected nodes in a network), their mass shifts and
the modifications that these imply (e.g., a 15.996-Da shift indicates a gain or loss of ox-
ygen, and a 2.015-Da shift indicates an oxidation or reduction via the loss or addition
of H2), and their distribution between two locations (maple leaves, layers of fungus gar-
den, and layers of trash material), we can discover related molecules that have the larg-
est differential abundance between the compared locations (see Materials and
Methods) (Fig. 1 and 3; Fig. S10). It should be noted that this approach cannot differen-
tiate between different types of changes in the absolute abundance of each molecule,
e.g., chemical transformation leading to the accumulation of a molecule or the com-
plete degradation of a molecule leading to its decreased abundance. However, the
chemical similarities and relative abundances between each pair of molecules that are
identified using molecular networking imply relationships between these molecules
that are consistent with each molecule belonging to the same molecular family (48).
We interpret abundance changes that occur across layers to be largely driven by ana-
bolic or catabolic pathways, potentially linked to enzymatically mediated transforma-
tions. Absolute molecular concentrations might also be altered by additions from the
external environment, but the closed nature of the laboratory-maintained ant fungus
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gardens means that such additions essentially only occur directionally via the leaves
when they are incorporated into the fungus garden by the ants.

In this study, we applied the chemical proportionality approach (47) by modifying
the meta-mass shift analysis (34) to also consider the relative abundances of the
detected molecules, which quickly highlights features that are potentially involved in
chemical transformations. Proportionality scores highlighted such changing pairs of
nodes occurring in various locations in the A. texana fungus garden, and the associated
mass shifts provided evidence of the types of modifications occurring in the sampled
locations. An example of this proportionality approach presented in Fig. 3 shows the
feature corresponding to m/z 469.0971 (calc. m/z 469.0976; error, 1.2 ppm), annotated
as the bioactive phenolic compound ginnalin A (compound 2) (49), to be involved in
chemical transformations. Based on the information regarding mass shifts and the sim-
ilarity of fragmentation spectra (MS/MS), structural modifications involving compound
2 were suggested. All the fragmentation spectra from the nodes that are directly con-
nected to compound 2 in the molecular network shared the m/z 153.02 base peak cor-
responding to a phenolic substructure (gallic acid moiety, compound 5 in Fig. 3), indi-
cating that a putative double bond is located in the sugar moiety (compound 6 in
Fig. 3). Compound 2 was detected in the leaves and in the fungus garden, while the

FIG 3 Potential transformations of phenolic compounds related to ginnalin A. Chemical features are highlighted from a molecular network (right) based on
their high proportionality scores (red edges, edge labels are in black). The spatial distributions of the highlighted features chemically related to compound
2 by the proportionality approach are also shown in the 3D model of the Atta texana fungus garden (relative abundances are shown following the color
code in the figure). Chemical structures of representative candidates from this molecular family (compounds 2 and 7) and substructures (compounds 5 and
6) are shown.

Chemical Modifications in a Fungus Garden

July/August 2021 Volume 6 Issue 4 e00601-21 msystems.asm.org 5

https://msystems.asm.org


features corresponding to m/z 299.0762 (calc. m/z 299.0761; error, 20.2 ppm) and m/z
467.0818 (calc. m/z 467.0972; error, 20.7 ppm) were only detected in the plant mate-
rial, possibly indicating both molecules are transformed in the fungus garden to either
compound 2 or a related molecule, such as features m/z 315.0717 (calc. m/z 315.0710;
error, 21.7 ppm; compound 7) and m/z 771.1034 (calc. m/z 771.1039; error, 0.7 ppm).
Modification of phenolic compounds in fungus gardens has been described as a mech-
anism of detoxifying these common plant defenses against defoliating herbivores (6,
20, 50, 51). Additionally, gallic acid (compound 5) can be produced by endophytic
microorganisms (52), suggesting another interesting source of these phenolic
derivatives.

Proportionality scoring is a logarithmic expression, and we selected an absolute
value of 1 as prioritization cutoff, because a score close to zero indicates a low ratio of
differing abundance between two chemically related molecules in two sample loca-
tions resulting from a small change in abundances between the two features (see the
definition and calculation of the proportionality scores in Materials and Methods).
Differences representing a gain or loss of H2 (2.015Da) were the predominant type of
chemical transformation observed throughout the data set, being one of the most fre-
quent mass shifts with a proportionality score of .1 among leaves, the fungus garden,
and trash layers (Fig. 4). This common modification was observed in molecular families
that contain phenolic compounds (Fig. 3) and phytosphingosines (Fig. S7). Mass shifts
corresponding to CH2 (14.015Da) and C2H4 (28.031Da) were other common changes
observed in the top layer of the fungus garden and between the bottom layer of the
fungus garden and the trash (Fig. 4). Oxidation or dehydroxylation combined with
reduction results in the gain or loss of oxygen that can be detected as a mass differ-
ence of 15.995Da. The transformations corresponding to these differences were more
frequently observed at the top layer of the fungus garden during the breakdown of fla-
vonoids and phenolic compounds (Fig. 4; Fig. S4 to S6). Chemical transformations con-
sistent with the addition or removal of sugar moieties in the A. texana fungus garden
were also highlighted by proportionality scores of .1. These transformations, corre-
sponding to mass differences of 162.053Da (C6H10O5), were associated with plant ma-
terial and the top layers of the fungus garden (Fig. 4) and involved plant metabolites
belonging to the acylglycerol molecular family (compounds 8 and 9) (Fig. 5 and
Fig. S10) and flavonoids such as quercetin-3-O-pentoside (compound 10) and querce-
tin (compound 11).

The existence of chemical gradients in the fungus garden resembles a predigestion
process where substrates are modified to facilitate their consumption by the ants and
residues are generated for removal as trash, as exemplified here by plant constituents
that pass through an ant fungus garden ecosystem. Our study enabled us to detect
molecular families and chemical transformations occurring in a fungus garden. These
results will enable further investigations concerning the roles of these metabolites, as
has been recently demonstrated for fatty acids in fungus gardens (24) and for plant
volatile compounds that are modified by fungus garden-associated bacteria (26).
Because previous reports have shown that the enzymes produced in the fungus gar-
den vary depending on the available substrates (53), we expect that the chemical mod-
ifications and the types of transformations observed in this study will also vary based
on changes in the substrates available for the colony. Additionally, environmental fac-
tors such as temperature or humidity and the composition of microbiomes that are
associated with ants and their fungus gardens (26) will likely also influence these modi-
fications in natural ecosystems.

In summary, the 3D cartographic analyses performed in this study provide an over-
view of chemical changes occurring in an A. texana fungus garden. Complementary to
other studies exploring the capacity of fungus gardens to metabolize plant substrates
(22, 24), our results also show that specific chemical transformations of plant compo-
nents are associated with certain regions of the fungus garden and that the number of
modifications are more extensive than previously described (24, 53). These results
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agree with the metabolic role of fungus gardens, where fungal predigestion of biomass
complements ant-associated enzymes (20, 54). We also captured the known gradients
in the metabolism of plant-derived molecules from top to bottom of the fungus garden
(25), where plant material is predigested starting when leaves enter the fungus garden
and continuing through to the bottom layer of the fungus garden, after which some re-
calcitrant molecules are removed from the system as trash (Fig. 5). We provided a way to
retrieve chemical information that will help understand these predigestion processes and
also to potentially identify chemical cues associated with ant behaviors, such as how the
ant chooses unwanted fungal garden material to discard. Capturing these chemical trans-
formations in detail is a fundamental step to understanding the influence of molecules in
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fungus gardens on the microbial communities inhabiting these systems. Our methodolo-
gies provide a very detailed overview of metabolic processes occurring in a laboratory-
maintained A. texana fungus garden, and we expect the approach can be leveraged to
unravel similar processes in natural environments to compare between natural and lab-
maintained ecosystems.

MATERIALS ANDMETHODS
General overview of workflows applied in this study. To analyze chemical transformations occur-

ring in leaf-cutting ant fungus gardens, we deconstructed a laboratory-maintained Atta texana fungus
garden (Fig. 1). We applied spectral alignment using molecular networking (30, 31), analyzed the spatial
distribution of molecular features using molecular cartography (33), and annotated MS/MS spectra via
Global Natural Products Social Molecular Networking (GNPS) workflows, including MolNetEnhancer (31,
32, 36), to identify molecular signatures from the fungus garden samples. The false-discovery rate (FDR)
for the compound annotations was estimated using the Passatutto decoy-based method (55). We fur-
ther applied the chemical proportionality (proportionality) approach (47) using a modification of the
recently introduced meta-mass shift analysis (34), by also considering the abundances of the detected
molecules to quickly highlight the features (metabolites) potentially involved in chemical transforma-
tions. Samples were prepared for untargeted profiling via reverse-phase liquid chromatography-tandem
mass spectrometry (LC-MS/MS). Data were collected using data-dependent acquisition and by fragment-
ing the five most abundant precursor ions. Feature detection was performed using the open source soft-
ware MZmine 2 (56, 57). Spectral alignments of the acquired MS/MS spectra and 3D visualization were
performed using the Global Natural Products Social Molecular Networking (GNPS) platform (30, 31, 33).
By combining these approaches, we obtained molecular signatures from the fungus garden that
enabled us to reveal chemical transformations occurring in specific locations of this system.

Atta texana fungus garden. A queenright A. texana colony with brood was maintained in the labo-
ratory of Jonathan Klassen in the department of Molecular and Cell Biology, University of Connecticut,
for 2 years before the deconstruction conducted for this study according to standard methods for main-
taining living colonies in the laboratory (58). Colony JKH000189 was collected from Clear Creek Wildlife
Management Area, LA (31.04990, 293.40245), under Louisiana Department of Wildlife and Fisheries per-
mit WL-Research-2016-10. Colony JKH000189 was maintained in plastic chambers where ants accessed
flash-frozen maple leaves (primarily Acer platanoides, but also Acer rubrum and Acer saccharum) provided
every 3 days. An empty plastic chamber was also provided that ants used to contain their waste (Fig. 1).

Atta texana fungus garden deconstruction. A 10- by 10- by 10-cm piece of fungus garden was
removed from the chamber and scanned for creation of a virtual 3D image using a Structure Sensor Mark II
and the Structure app (Occipital, Inc., Boulder, CO). The virtual 3D model was created using Meshmixer soft-
ware (Autodesk Inc., San Rafael, CA), and the coordinates for 9ili visualization were obtained using MeshLab
software (http://www.meshlab.net). The piece of fungus garden was then sliced into four layers, and each
layer was further divided into nine pieces of approximately 3 by 3 by 3 cm (or 27cm3) and homogenized by

FIG 5 Summary of detected molecules and chemical modifications detected in an Atta texana fungus garden. Schematic representation of a laboratory-
maintained Atta texana fungus garden. From left to right, leaves carried by ants to the fungus garden (middle) and trash accumulated by ants (right). The
chemical gradient of plant metabolites showing high abundance at the top layer of the fungus garden is consistent with chemical modifications occurring
across the fungus garden. High abundance of fungal metabolites associated with the trash indicates that these are chemical labels of the discarded
material removed by the ants. Some examples of detected molecules and chemical modifications are shown. Chemical structures of trash-associated
metabolites remain to be elucidated. Color codes of the compounds are as indicated at the top of the figure. This image was partially created using
BioRender.
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vortexing. Approximately 100mg of each sample was extracted three times with 2:1 dichloromethane
(DCM)-methanol (MeOH), sonicated for 10 min, dried under a stream of gaseous nitrogen, and shipped to
the Dorrestein Laboratory at UC San Diego for LC-MS/MS acquisition. A short video showing the spatial dis-
tribution of the detected molecules from the deconstructed Atta texana fungus garden can be accessed at
https://youtu.be/_ikhKelfrY8. Briefly, using the table of feature abundances containing the LC-MS/MS data
(see “Feature-based molecular networking” described below) and the virtual 3D model, we show the distribu-
tion of each molecular signature detected in the fungus garden using 9ili for visualization (https://ili.embl.de/).

Annotation of detected features. The automatic annotation of detected molecules via GNPS work-
flows (31, 32, 36) was manually confirmed for selected features. Representative compounds from the
main chemical classes discussed in the main text were confirmed by using reference standards. This con-
firmation corresponds to level 1 annotation, while annotation by spectral match and at the molecular
family correspond to levels 2 and 3 according to the 2007 metabolomics initiative (59). The following
standards were used to confirm annotations at level 1 using spectral matches, accurate masses, and
retention times: ergosterol peroxide (compound 1) (Carbosynth LLC), (10E)-9-oxo-11-(3-pentyl-2-oxir-
anyl)-10-undecenoic acid (compound 3) (Cayman Chemicals Company, Inc.), phytosphingosine (com-
pound 4) (Sigma-Aldrich), kaempferol (see Fig. S4 in the supplemental material) (VWR International, LLC)
and, quercetin (compound 9) (Fig. S5) (VWR International, LLC). See Table 1.

LC-MS/MS conditions. Samples were resuspended in 100%methanol containing 2mM sulfamethazine
as an internal standard, and LC-MS/MS analysis was performed in an UltiMate 3000 ultraperformance liquid
chromatography (UPLC) system (Thermo Scientific) using a Kinetex 1.7-mm C18 reversed-phase ultrahigh-
performance liquid chromatography (UHPLC) column (50 by 2.1mm) and Maxis Q-time of flight (TOF) mass
spectrometer (Bruker Daltonics) equipped with an electrospray ionization (ESI) source. The column was
equilibrated with 5% of solvent B (LC-MS-grade acetonitrile, 0.1% formic acid) for 1min, followed by a linear
gradient from 5% to 100% of solvent B over 8min, and then held at 100% solvent B for 2min. Then, the gra-
dient was reduced from 100% to 5% of solvent B over 0.5min and then maintained at 5% solvent B for
2.5min, using a flow rate of 0.5ml/min throughout the run. MS spectra were acquired in positive ion
mode in the range of 100 to 2,000 m/z. A mixture of 10mg/ml each of sulfamethazine, sulfamethizole,
sulfachloropyridazine, sulfadimethoxine, amitriptyline, and coumarin was run after every 96 injections
for quality control. An external calibration with ESI-low concentration tuning mix (m/z 118.086255,
322.048121, 622.028960, 922.009798, 1221.990637, 1521.971475, and 1821.952313) (Agilent technolo-
gies) was performed prior to data collection. An internal calibrant hexakis(1H,1H,2H-perfluoroethoxy)
phosphazene (CAS 186817-57-2) was used throughout the runs. A capillary voltage of 4,500 V, nebu-
lizer gas pressure (nitrogen) of 2 bar, ion source temperature of 200°C, dry gas flow of 9 liters/min
source temperature, spectral rate of 3 Hz for MS1 and 10Hz for MS2 was used during each run. For
acquiring MS/MS fragmentation, the 5 most intense ions per MS1 were selected, the MS/MS active
exclusion parameter was enabled, set to 2 and to release after 30 s, and the precursor ion was recon-
sidered for MS/MS if the current intensity/previous intensity ratio was .2. An advanced stepping func-
tion was used to fragment ions according to the settings in Tables 2 and 3.

Feature-based molecular networking. Feature finding was performed with the open source MZmine
software (56) version 2.38 using the settings shown in Table 4. These preprocessing steps (Table 4) gener-
ated the .mgf and quantification tables used in the GNPS feature-based molecular network workflow.

False-discovery rate: Passatutto. The Passatutto decoy-based method 43 was used to estimate an
FDR for the annotations with the library match settings used for spectral identification. An FDR pf,0.072 was
obtained for the annotations using a minimum matching fragment ions of 6 (GNPS job link [Passatutto],
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c7a1733750bd415fa32176e125fac42e). An FDR of ,0.16
was obtained for the obtained annotations using a minimum matching fragment ions of 5 (GNPS job link
[Passatutto] https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=206023ccdbd747ee885aab2b16dfcf31).

Feature-based molecular network for deconstruction of A. texana fungus garden. A molecular
network was created with the feature based molecular networking workflow (https://ccms-ucsd.github
.io/GNPSDocumentation/featurebasedmolecularnetworking/) on the GNPS website (http://gnps.ucsd
.edu). The data were filtered by removing all MS/MS fragment ions within 617Da of the precursor m/z.
MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the 650-Da window
throughout the spectrum. The precursor ion mass tolerance was set to 0.02Da and a MS/MS fragment
ion tolerance of 0.02Da. A network was then created where edges were filtered to have a cosine score

TABLE 1 Reference standards used to confirm annotated members of molecular families detected from Atta texana fungus garden

Reference compound

m/z [M+H]+

Error
(ppm)

Molecular
formula

Accurate
mass
(Da) CAS no.

Retention
time (min)Detected Calculated

Ergosterol peroxide (compound 1) 429.3355 429.3363 1.9 C28H44O3 428.3285 2061-64-5 8.13
EKODE (E)-9-oxo-11-(3-pentyloxiran-2-yl)undec-10-enoic
acid (compound 3)

311.2212 311.2217 1.6 C18H30O4 310.2139 478931-82-7 5.83

Phytosphingosine (compound 4) 318.2995 318.3003 2.4 C18H39NO3 317.2924 554-62-1 5.52
Kaempferola 287.0545 287.0550 1.8 C15H10O6 286.0472 520-18-3 3.55
Quercetinb (compound 9) 303.0498 303.0499 0.4 C15H10O7 302.0421 117-39-5 3.35
aSee Fig. S4 in the supplemental material.
bSee Fig. S5.
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of .0.7 and more than 6 matched fragment ions. Furthermore, edges between two nodes were kept in
the network if and only if each of the nodes appeared in each other’s respective top 10 most similar
nodes. Finally, the maximum size of a molecular family was set to 100, and the lowest scoring edges
were removed from molecular families until the molecular family size was below this threshold. The
spectra in the network were then searched against GNPS’ spectral libraries. The library spectra were fil-
tered in the same manner as the input data. All matches kept between network spectra and library spec-
tra were required to have a score of .0.7 and at least 6 matched fragment ions. Molecular networks
were visualized using Cytoscape (60), version 3.7.2. (GNPS FBMN job link, https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=5df1dc83e075478ba69d1bb41bf9499a).

In silico annotation of detected features from A. texana fungus garden using GNPS workflows.
Network annotation propagation (NAP) (36) was performed via the GNPS platform. The parameters used
the 10 first candidates for consensus score, 15 ppm accuracy for exact mass candidate search, positive
acquisition mode, and 0.5 cosine value to subselect inside a cluster. Fusion results were used to deter-
mine a consensus, searching only for [M1H]1 adduct type. A maximum of 10 candidate structures were
used in the graph. The following databases were searched: Dictionary of Natural Products (DNP), Super
Natural II (61), GNPS, and Chemical Entities of Biological Interest (ChEBI) (62) (GNPS NAP job link, https://
proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=05f63922be7244bdb9aa42784be0a6eb). Automatic
workflows for peptide analogues was performed using VarQuest (63) in GNPS and can be accessed at
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=cba438bedbb04f73afd4bd7a85ef665d.

A complementary analysis for substructures present in the data set was performed using the mass-
to-motif MS2LDA (37) workflow in the GNPS and can be accessed at https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=b3bb2654ac9542b7a8a8fcf86001e215.

MolNetEnhancer for molecular network of deconstructed A. texana fungus garden. Molecular
network annotations were enhanced via the MolNetEnhancer workflow (32) merged in the GNPS plat-
form. The workflow merged in silico annotations from the network annotation propagation (NAP) (36),
VarQuest (63), and MS2LDA (37) to provide structures annotations at the class level (MolNetEnhancer
job link, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=50dfaf589c8140bd85a8ca199db59de3).

Proportionality score. The proportionality score was calculated between two directly connected
nodes across the entire molecular network using the following equation:

proportionality ¼ log
Ns1=Ms1

Ns2=Ms2
;

where Ns1 and Ms1 correspond to the peak area of the detected features N and M in sample S1, while Ns2

and Ms2 correspond to the peak area of the detected features N and M in sample S2. A constant (k=1.0
e210) is added to each value to avoid including any zero values during the calculation. Chemical proportion-
ality scores are available within the GNPS environment and can be accessed through the following links:
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=059d652858134586a5320dc94e2d732e (chemical
proportionality table calculated between each sample type: L:A, A:B, B:C, C:D, D:TT, TT:TM, and TM:TB) and
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=da94680c01594122b7ef88a1070155ff (chemical

TABLE 2 Instrument settings for data-dependent acquisition of Atta texana fungus garden
samples

Timea (%) Collision RFb (Vpp) Transfer time (ms) Collision value
0 450.0 70.0 125
25 550.0 75.0 100
50 800.0 90.0 100
75 1100.0 95.0 75
aCollision stepping switch time.
bRF, radio frequency; Vpp, volts peak to peak.

TABLE 3 CID energies for MS/MS data acquisition used in this studya

Type Mass (Da) Width Collision value Charge state
Base 100.00 4.00 22.00 1
Base 100.00 4.00 18.00 2
Base 300.00 5.00 27.00 1
Base 300.00 5.00 22.00 2
Base 500.00 6.00 35.00 1
Base 500.00 6.00 30.00 2
Base 1,000.00 8.00 45.00 1
Base 1,000.00 8.00 35.00 2
Base 2,000.00 10.00 50.00 1
Base 2,000.00 10.00 50.00 2
aCID, collision-induced dissociation. The mass of internal calibrant was excluded from the MS/MS list using a
mass range ofm/z 621.5 to 623.0.
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proportionality table calculated between leaves and the entire data set: L:A, L:B, L:C, L:D, L:TT, L:TM, and L:TB).
Statistical analyses. Statistical analyses were performed using the MetaboAnalyst platform (64,

65). The peak intensity table obtained after preprocessing with MZmine 2 software was uploaded to
MetaboAnalyst. The uploaded data file contained 160 (samples) by 3,717 features, including eight
groups in the table (leaves, layers of fungus garden [A, B, C, and D] and trash [TT, TM, and TB] mate-
rial) and deleting 83 features with a constant or single value in all samples. No missing values were
found. The interquartile range (IQR) was used to detect filter variables that had nearly constant val-
ues. The data were normalized by using a reference feature, in this case, the internal standard sulfa-
methazine (C12H14N4O2S) corresponding to m/z 279.0910 and with a retention time of 2.55min. A
cube root transformation was performed to facilitate feature comparison (Fig. S2 and S3). Projections
to latent structures discriminant analysis (PLS-DA) outputs (coefficient, loadings, scores, and VIP
scores) used to generate the corresponding plots shown in Fig. S2 and S3 are available within the
MassIVE data set MSV000082636.

Data availability. The data sets used in this work were deposited in the online repository GNPS/
MassIVE. The data set corresponding to the molecular cartography of A. texana fungus garden (MassIVE
MSV000082636) can be accessed at https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=df2eb5792c8446
0b9413fa22af2d0d89&view=advanced_view.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.6 MB.
FIG S2, TIF file, 1.4 MB.

TABLE 4 Preprocessing settings for feature detection using MZmine 2 of LC-MS/MS acquired
data from Atta texana fungus garden samples

Settinga Value
Mass detection
MS1 1.0E4
MS2 1.0E2

Chromatogram building
Min. time span (min) 0.01
Min. ht 3.0E4
Tolerance (ppm) 25

Deconvolution (baseline cutoff algorithm)
Min. peak ht 1.0E4
Peak duration range (min) 0.01–1.0
Baseline level 1.0E2
m/z range for MS2 scan pairing (Da) 0.01
RT range for MS2 scan pairing (min) 0.3

Isotopic peak grouper
m/z tolerance (ppm) 25
RT tolerance (min) 0.2
Max. charge 2

Alignment (join aligner)
m/z tolerance (ppm) 25
wt form/z (%) 75
wt for RT (%) 25
RT tolerance (min) 0.2
RT correction Checked

Gap filling (peak finder)
Intensity tolerance (%) 1
m/z tolerance (ppm) 25
RT tolerance (min) 0.2
RT correction checked

Peak filter
Peak area 1.0E4–1.0E7

Peak row filtering to export .mgf file to GNPS
Min. peaks in a row (no.) 2
RT (min) 1.00–14.00

aMin., minimum; RT, retention time; Max., maximum.
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FIG S3, TIF file, 1.1 MB.
FIG S4, TIF file, 1.8 MB.
FIG S5, TIF file, 1 MB.
FIG S6, TIF file, 1.8 MB.
FIG S7, EPS file, 1 MB.
FIG S8, TIF file, 1 MB.
FIG S9, TIF file, 1 MB.
FIG S10, TIF file, 1.1 MB.
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