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ABSTRACT Pulmonary exacerbations are the leading cause of death in cystic fibro-
sis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid
response (CFRR) strategy was developed. The CFRR relies on viromics, metagenom-
ics, metatranscriptomics, and metabolomics data to rapidly monitor active members
of the viral and microbial community during acute CF exacerbations. To highlight
CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung
function characterized a fatal exacerbation. The microbial community in the patient’s
lungs was closely monitored through the multi-omics strategy, which led to the
identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga
toxin. This case study illustrates the potential for the CFRR to deconstruct compli-
cated disease dynamics and provide clinicians with alternative treatments to im-
prove the outcomes of pulmonary exacerbations and expand the life spans of indi-
viduals with CF.

IMPORTANCE Proper management of polymicrobial infections in patients with cystic
fibrosis (CF) has extended their life span. Information about the composition and dy-
namics of each patient’s microbial community aids in the selection of appropriate
treatment of pulmonary exacerbations. We propose the cystic fibrosis rapid response
(CFRR) as a fast approach to determine viral and microbial community composition
and activity during CF pulmonary exacerbations. The CFRR potential is illustrated
with a case study in which a cystic fibrosis fatal exacerbation was characterized by
the presence of shigatoxigenic Escherichia coli. The incorporation of the CFRR within
the CF clinic could increase the life span and quality of life of CF patients.

KEYWORDS Shiga toxins, clinical metagenomics, cystic fibrosis, metabolomics,
metatranscriptome

Cystic fibrosis (CF) is a recessive genetic disease in which defects or deficits in the
cystic fibrosis transmembrane conductance regulator (CFTR) protein result in dis-

ease phenotypes of the pancreas, sweat glands, and reproductive, respiratory, and
digestive systems (1). In the lungs of individuals with CF, mucociliary clearance is
impaired, which promotes chronic polymicrobial infections (2). Antibiotic treatments
and proper disease management have extended the average life span of CF patients;
nevertheless, these polymicrobial lung infections are still the primary cause of morbid-
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ity and mortality (3). Common bacteria that colonize CF lungs over the long-term
include Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Burk-
holderia cepacia complex, Rothia mucilaginosa, and Streptococcus spp. (4–7), but every
CF individual presents a unique microbial community that changes over time
(8–10). This highlights the need to characterize the microbial communities in each
CF individual.

Microbial community dynamics in CF lungs follow the climax attack model (CAM)
(11, 12), in which a climax community is acclimated to the host and dominates during
stable periods and a transient attack community is associated with exacerbations.
Attack communities are virulent and either colonize the CF lungs from an external
source or are already present in the CF lungs and become active during exacerbations.
In the CAM, attack communities lead to cystic fibrosis pulmonary exacerbations (CFPEs),
declines in lung function, and eventually death. Preventing CFPE relies on quickly
identifying attack viral and microbial communities and the genes that they carry and
express, such as those encoding specific toxins (13), to efficiently tailor antimicrobial
therapies.

Here we propose the cystic fibrosis rapid response (CFRR), a strategy for determining
microbial dynamics during CFPE. This strategy is a personalized multi-omics approach
that uses viromes (14), metagenomes, metatranscriptomes (15), and metabolomes (7,
16) from longitudinal samples to monitor the whole microbial community, particularly
its active members and their metabolic products. Using the CFRR to obtain personal-
ized taxonomic and functional profiles of the lung microbial communities would
provide clinicians with comprehensive information about each patient’s viral and
microbial ecosystem. This information allows clinicians to generate testable hypothe-
ses, test those hypotheses using standard clinical tests, and propose specific clinical
interventions (e.g., precisely targeted antibiotic therapy) to improve CFPE outcomes.

The ability to generate multi-omic data sets and analyze large amounts of data in a
clinically relevant time frame (i.e., �48 h) makes the CFRR approach applicable in CF
clinical practice, especially in clinics closely related to research institutions. It requires
access to a sequencing instrument, a mass spectrometer, computational resources, and
specialized personnel in each one of these areas. In an optimal situation, the time
between sample collection and data interpretation is 30 h for metabolomes (17), 38 h
for metagenomes and metatranscriptomes, and 48 h for viromes. These times are
expected to shorten as technologies improve. The rapid decrease in sequencing costs
(18) and incorporation of sequencing cores within hospitals (19) will increase CF
patients’ accessibility to the CFRR in the foreseeable future.

A case study is presented to demonstrate the potential of the CFRR strategy. A
37-year-old male CF patient (CF01) was monitored over a 2-year period with meta-
genomes, metatranscriptomes, and metabolomes. Integrating the information from
these sources led to the identification of an attack community in which a strain of
Escherichia coli that likely produced Shiga toxin was detected during a fatal exacerba-
tion.

RESULTS
Patient CF01 fatal exacerbation expedited monitoring: metatranscriptomes

and metabolomes. An overall decline in lung function was observed in patient CF01
during his last year of life, and four CFPEs were reported. In the last month of life, 10%
of the predicted median forced expiratory volume in 1 s (FEV1) was lost (Fig. 1A). During
the last exacerbation, the patient was hospitalized at the intensive care unit (ICU) for 7
days and then died. The fatal exacerbation was characterized by severe lung tissue
damage (Fig. 1D; see also Table S1A in the supplemental material), an increase in white
blood cell counts (Fig. 1B and Table S1B), and a general decline in health. During the
fatal exacerbation, clinical microbiology laboratory cultures from sputum samples
tested positive for P. aeruginosa, Stenotrophomonas maltophilia, Aspergillus terreus, and
yeast (Fig. 1C and Table S1C). Treatment alternated between the antibiotics aztreonam

Cobián Güemes et al. ®

March/April 2019 Volume 10 Issue 2 e00431-19 mbio.asm.org 2

https://mbio.asm.org


and azithromycin, in addition to a sulfonamide and a quinolone; at the ICU, colistin and
meropenem were administered (Table S1D), but no improvement was observed.

The CFRR strategy was launched to rapidly identify the cause of the CFPE. Sputum
samples were collected 7 and 8 days before death (samples D-7 and D-8). In samples
D-7 and D-8, active members of the microbial community were determined using
metatranscriptomics. In sample D-8, small-molecule profiles (using metabolomics) were
characterized, and a total DNA metagenome was sequenced.

Metatranscriptomics data from sample D-8 showed that the most abundant micro-
bial rRNAs belonged to the genera Bacillus (29.9%), Escherichia-Shigella (23.9%), Strep-
tococcus (11.6%), Salmonella (6.9%), and Lactococcus (4.4%), among other genera
(23.3%) (Fig. S1A). The microbial mRNA composition was dominated by the genus
Pseudomonas (97.1%), followed by Stenotrophomonas (1.9%) and Escherichia (0.07%)

FIG 1 Clinical data for the last 24 months of patient CF01’s life. (A) Percentage of predicted FEV1 of patient CF01 over the last
24 months of life. Solid dots are FEV1 measurements. The line is included to highlight lung function dynamics and does not
represent measurements. Seven exacerbation periods were reported and are shown in gray. (B) White blood cell (WBC) counts
for the last month of life. (C) Clinical microbiology positive cultures from patient CF01’s sputum samples over the last
24 months of life. Dots represent days where cultures were positive for each microbe tested in the clinical microbiology panel.
Omics sampling points for metagenomes, metatranscriptomes, and metabolomes are indicated by dots in the Omic panel.
Performed X rays and WBC measurement days are indicated with dots in the clinical care panel. (D) Patient CF01 chest X rays
in a frontal view with quantitative disease severity evaluation using Brasfield scores (74). D-193, mild exacerbation; D-8, acute
exacerbation, the time point where CFRR data were obtained; D-1, 1 day before death. A lower Brasfield score represents a
higher disease severity. The Brasfield score scale is from 25 to 0, where 25 is lower disease severity and 0 is higher disease
severity. Parameters used for Brasfield scores calculations are air trapping, linear markings, nodular cystic lesion, large lesions,
and general severity, and individual scores are shown in Table S1A in the supplemental material.
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(Fig. S1B). At species-level resolution, the most abundant bacterial genomes (based on
total RNA) (Fig. 2) were Bacillus sp., shigatoxigenic E. coli (STEC), Salmonella enterica
serovar Infantis, P. aeruginosa, and S. maltophilia. Enterobacterial phage SP6, Pseudomo-
nas phages, and Stenotrophomonas phage S1 were also detected. Two members of the
phylum Ascomycota were identified: Candida albicans and Aspergillus fumigatus. Met-
agenomics data of sample D-8 identified Pseudomonas (98.5%) as the dominant bac-
terial genus (Fig. S5A).

The presence of Escherichia-Shigella in the lungs of a CF patient is unusual, and thus,
a detailed analysis was performed to further resolve the taxonomy at the strain level.
Strain-level analysis identified that E. coli present in patient CF01’s lungs was most
closely related to the genome of E. coli (STEC) B2F1. This strain typically carries the Shiga
toxin 1 and Shiga toxin 2 genes, both of which were identified in the metatranscrip-
tomes (Fig. 3B and C). Furthermore, the Shiga toxin receptor globotriaosylceramide
(Gb3) was detected in the metabolome from sample D-8 (Fig. 3A). This suggests that
Shiga toxin and its Gb3 target were being produced in the lungs of patient CF01. Gb3
is produced in human cells by Gb3 synthase, which adds a sugar to a lactosylceramide
molecule. Ceramide is produced by sphingomyelinase (SMase) in the host cell or by the
action of bacterially encoded SMase (see Fig. 5B). The gene that encodes a P. aeruginosa
secreted SMase, the hemolytic phospholipase C (PlcH) (20), was detected in the sample
D-8 metatranscriptome (Fig. S2B).

In a longitudinal metabolomics data set, Gb3 was highly abundant (P � 0.0001) in
sample D-8 but was in low abundance in the prior samples (Fig. 3A). The Gb3 precursor
lactosylceramide (18:1/16:0) (21) and its ceramide donor sphingomyelin (18:1/16:0) (22)
were abundant in all samples throughout the longitudinal data set (Fig. 3A and
Table S2A). These data demonstrate that Gb3 precursors were present for at least a year
before the fatal exacerbation, but Gb3 was produced in significantly high quantities 8
days before death (sample D-8).

Gb3 levels positively correlate with Shiga toxin levels (23), although the mechanism
behind this positive correlation is not clear. Gb3 is the only known functional receptor
for Shiga toxins (24), and Shiga toxins induce reorganization of lipids in the epithelial
cell’s membrane. Shiga toxin B can bind up to 15 Gb3 molecules (25), and this binding
results in the aggregation of Gb3 in lipid rafts. The aggregation of Gb3 in lipid rafts
promotes a negative membrane curvature and internalization of Shiga toxin (26).
The spatial distribution of Gb3 in the cell membrane has a regulatory role in its

FIG 2 The most abundant bacterial genera of fatal exacerbation sample D-8. The relative abundances of each genus as determined by rRNA,
mRNA, and total RNA are shown. A reference genome from each genus was selected based on the number of reads recruited in the rRNA
(Escherichia, Bacillus, and Salmonella) or mRNA (Pseudomonas and Stenotrophomonas) category. Fragment recruitment was visualized using Anvi’o,
showing a logarithmic scale for mRNA and rRNA from 1 to 1,000. Anvi’o plots show reads mapped along the genome coordinates. Nonribosomal
microbial reads were recruited against each reference genome using SMALT with an identity cutoff of 80% and are shown in brown along the
external ring. rRNA reads were classified into each genus by BLASTn, were recruited against the corresponding reference genome using SMALT
with an identity cutoff of 60%, and are shown in gray along the internal ring.
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presentation (27); thus, higher recruitment of Gb3 in lipid rafts may induce the
production of more Gb3.

Antibiotic resistance genes were detected in the metatranscriptomes of samples D-8
and D-7. Transcripts encoding all the protein components were identified for two
RND-type multidrug exporters, MexGHI-OpmD (28) and MexA-MexB-OprM (29), previ-
ously described in Pseudomonas, as well as the tetracycline efflux pump Tet(C), previ-
ously described in Achromobacter. Transcripts encoding several beta-lactamases were
identified, such as TEM-116, PDC-3, OXA-50, and BEL-3 (30), which are typically found
in Pseudomonas, and CTX-M-21 (31), which is usually found in Enterobacteriaceae.
Transcripts encoding enzymes that are involved in resistance to macrolide, aminogly-
coside, lincosamide, diaminopyrimidine, and glycopeptide antibiotics were detected;
these enzymes were previously described in Pseudomonas, Achromobacter, Escherichia,
Streptomyces, Paenibacillus, Clostridium, and Morganella (Table S3A).

A partial P. aeruginosa genome sequence was recovered by assembling reads from
the fatal exacerbation metatranscriptomes (samples D-8 and D-7) into contigs and then
mapping those contigs to the P. aeruginosa PAO1 reference genome (Fig. S2A). In the
resulting P. aeruginosa CF01 contigs, 38 genes related to resistance to antibiotics and
toxic compounds were identified (Table S3B). Two prophages were also identified in the
assembled P. aeruginosa CF01 contigs (samples D-8 and D-7); one was complete, and
the second one was a partial prophage (Fig. S2C and D).

Bacterial small-molecule profiles before and during fatal exacerbation. Longi-
tudinal metabolomic data from patient CF01’s historical samples and fatal exacerbation
sample D-8 were compared to metabolic profiles from six pathogenic bacterial isolates
previously detected in CF sputum (P. aeruginosa VVP172, Enterococcus sp. strain
VVP100, E. coli VVP427, Streptococcus sp. strain VVP047, Stenotrophomonas sp. strain
VVP327, and S. aureus VVP270). The goal was to identify metabolites produced by
pathogenic bacteria and track how changes in their abundances might have preceded
the fatal exacerbation. Metabolites from these pathogens were consistently detected
throughout the longitudinal samples. In sample D-8, there was an increase (P � 0.001)
in the number of metabolites that matched P. aeruginosa VVP172, E. coli VVP427,
Streptococcus sp. VVP047, and S. aureus VVP270 (Fig. S3 and Table S2B).

FIG 3 Shiga toxin and its human receptor globotriaosylceramide (Gb3). (A) The masses of globotriaosylceramide and its precursors
lactosylceramide and sphingomyelin from exacerbation sample D-8 and 14 historical nonexacerbation samples were determined by
parent mass searching and validated by MS/MS matching. The fatal exacerbation sample is shown in gray. (B) STEC BRF1 was used as a
reference genome for fragment recruitment to the Shiga-like toxin 2 subunit A protein sequence. The amino acid sequence position is
shown on the x axis, and percent identity is shown on the y axis. The nucleotide sequences from patient CF01 metatranscriptome
exacerbation sample D-8 were mapped to proteins using BLASTx with an E value cutoff of 0.001 and filtered by an identity of �60%. (C)
Metatranscriptome recruitment as explained above for panel B, except that in this case, reads were recruited to the Shiga-like toxin 2
subunit B amino acid sequence.
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Active members of the microbial community during a stable period and the
fatal exacerbation. Analysis of metatranscriptomes from a stable period 10 and
9 months before the fatal exacerbation event (samples D-303 and D-279) identified
several differences between this stable period and the fatal exacerbation. First, the
phylum Firmicutes was the most active phylum during the stable period, whereas the
phylum Proteobacteria was the most active during exacerbation (Fig. 4A). Second,
samples from the stable period showed an active microbial community that was more
even and diverse than the community in exacerbation samples (Fig. 4D). Third, tran-
scripts from Pseudomonas were detected at very low levels in stable samples (average
relative abundance, 3%) but at high levels in exacerbation samples (average relative
abundance, 37%) (Fig. S2A). Fourth, the percentages of unclassified sequences were
higher in stable samples D-303 and D-279 (40.9% and 39.0%) than in exacerbation
samples D-8 and D-7 (27.6% and 17.0%). Fifth, a higher fractional abundance of
bacteriophages was detected in the fatal exacerbation samples than in the stable ones.
Enterobacterial phage SP6, several Pseudomonas phages (Fig. 4B), and sarcoma viruses
(Fig. 4C) were the dominant viruses in samples D-8 and D-7.

Microbial community dynamics during a nonfatal exacerbation. Two years
before the fatal exacerbation, patient CF01’s lung function declined faster than in
previous years (Fig. S4A). The rate of lung function change in the last 2 years of life was
�9.75 FEV1%/year (Fig. S4C). The overall rate of lung function change during patient
CF01’s last 14 years of life was �1.39 FEV1%/year. During a 2-year period of 4 and
3 years before death, the rate of lung function change was 1.30 FEV1%/year (Fig. S4B).

During the 2-year period leading up to the fatal exacerbation, seven exacerbation
events were reported, and sputum samples were periodically screened for fungi and
bacteria at the clinical microbiology laboratory (Table S1C). P. aeruginosa was detected
in all samples. Six months before the fatal exacerbation, S. maltophilia was detected,
and during the last 2 months of life, Enterobacter cloacae was detected. A. terreus was
detected in two samples in the last 6 months of life. Yeast was detected in all screened
samples, except for the final exacerbation samples. Based on this information, several
antibiotics were prescribed to manage the exacerbations (Table S1D); these included
monobactams, macrolides, quinolones, beta-lactams, sulfonamides, and a cationic
polypeptide.

Two years before patient CF01’s death, metagenomics was used to monitor the
microbial composition of the respiratory tract during an exacerbation event, the
subsequent antibiotic treatment (samples D-724 to D-718), and a stable period that
followed (samples D-409 and D-286) (Fig. S5A). The bacterial genera that best differ-
entiated between samples collected during periods of antibiotic treatment (D-722 to
D-718) and no antibiotic treatment (D-724 and D-723) were Rothia, Campylobacter,
Veillonella, and Prevotella (Fig. S6). The antibiotics prescribed during this exacerbation
were a fluoroquinolone (ciprofloxacin) and a tetracycline (doxycycline). Clinical micro-
biology laboratory tests performed on sample D-719 were positive for P. aeruginosa,
Pseudomonas fluorescens, A. fumigatus, and yeast (Table S1C). Exacerbation and stable
samples had Streptococcus phages, Staphylococcus phages, and Pseudomonas phages,
whereas only exacerbation samples had a Shiga toxin-converting phage (Fig. S5B), and
stable samples had higher abundances of herpesviruses (Fig. S5D).

DISCUSSION

The unusually fast decline of patient CF01 led to the implementation of the CFRR.
During patient CF01’s fatal exacerbation, E. coli mRNA, rRNA, and metabolites were
detected, which demonstrated not only the presence but also the activity of shigatoxi-
genic E. coli. The identification of a shigatoxigenic E. coli strain is supported by rRNA
(36,590 unique rRNA sequences in metatranscriptome D-8), mRNA (1,412 E. coli mRNA
reads in metatranscriptome D-8 and 11 partial mRNA reads with 60% identity to STEC
BRF1), and metabolites (10 metabolome spectra matched to E. coli in sample D-8). The
presence of STEC in the lungs of a CF patient was alarming, as this strain causes severe
damage to the lung epithelium (32, 33). Moreover, interactions between Shiga toxin
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and the host epithelium were inferred from metabolomes. The molecule Gb3, the
receptor for Shiga toxin, showed an increase of 3 orders of magnitude during the fatal
exacerbation (sample D-8), compared to previous samples.

Altogether, these multi-omics data support the following model of microbial

FIG 4 Actively transcribing members of the viral and bacterial communities in sputum samples of patient CF01. Metatranscriptomes from two exacerbations
and two stable samples were obtained. (A) Bacterial taxonomical assignments were made using KAIJU at the genus level and are color-coded by phylum. (B)
Fractional abundances of bacteriophages based on viral RefSeq mapping and FRAP normalization. (C) Fractional abundances of eukaryotic viruses based on
viral RefSeq mapping and FRAP normalization. (D) Bacterial rank abundance plot, generated using relative abundances at the genus level. Evenness was
calculated as H/In(S), where H is the Shannon diversity index and S is the total number of species.
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dynamics that caused patient CF01’s death. At the beginning of the fatal exacerbation,
STEC produced Shiga toxin that remained inside the bacterial cells. Later in the
exacerbation, STEC’s cell membranes were disrupted, and the Shiga toxin was released
(Fig. 5B). This release may have been triggered by the action of the cationic polypeptide
colistin (34). Next, the toxin was taken up by lung epithelial cells through the host
membrane receptor globotriaosylceramide (35) (Fig. 5C). Inside the lung epithelial cells
(32), Shiga toxin inhibited host translation by blocking the ribosomes, thereby inducing
cell death, necrosis, and an acute inflammatory response (32, 36, 37). The immune
response and lung tissue damage were evident in the chest X rays and the increase in
white blood cells (samples D-8 and D-1) (Fig. 1D).

During the fatal exacerbation, STEC led the attack community that ultimately
destabilized the climax community, a phenomenon previously reported in CF exacer-
bations (11); this resulted in declines of evenness (diversity index that quantifies how
equal the community is [38]) and diversity (the number of different species in a
community [39]), a switch from a community dominated by Firmicutes to one domi-
nated by Proteobacteria, and transcription of enterobacterial and Pseudomonas bacte-
riophages and sarcoma viruses. This event was followed by a Pseudomonas and
Stenotrophomonas bloom, characterized by active transcription, as both rRNA and
mRNA were detected, as was an increase in their metabolites. Pseudomonas was the
most active member of the microbial community, with an mRNA abundance of 97%,
followed by 1.92% for Stenotrophomonas mRNA. Bacillus was either lysed or dormant,
as only rRNA was detected. A feature that may have contributed to the success of
Pseudomonas was its resistance to multiple antibiotics, as detected by the transcription
of over 38 antibiotic resistance genes. This scenario is congruent with the one described
by the clinical laboratory, as cultures positive for Pseudomonas and Stenotrophomonas
were reported during the fatal exacerbation.

Additional dynamics such as bacteriophage induction may have happened during
the fatal exacerbation, as active transcription was detected from enterobacterial phage
SP6 and Pseudomonas bacteriophages. Bacteriophage induction is known to play a role
in the control of bacterial populations in CF lungs (40).

CFRR for polymicrobial infection management, the importance of historical
samples, and a fast sample-to-result strategy. The CFRR emerged from the need to
investigate the cause of acute exacerbations. The power of the CFRR is shown in the
information obtained for the patient CF01 case study. The CFRR is ideal for medical

FIG 5 Proposed model of lung dynamics resulting in patient CF01’s death. (A) A nonfatal exacerbation (days �724
to �718) was followed by a recovery of lung function, and attack and climax communities were diverse. (B) The
fatal exacerbation was triggered by colonization by STEC, which is supported by the presence of its rRNA in the
metatranscriptomes. This bacterium encodes Shiga toxin, which was likely taken into host cells by the human
receptor globotriaosylceramide. (C) Later during the fatal exacerbation, Shiga toxin was internalized and then
induced apoptosis, necrosis, and inflammation. P. aeruginosa was reestablished and came to dominate the
community, as suggested by its abundant mRNA.
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centers closely associated with research facilities where the equipment is available.
However, as technologies improve and become more accessible, the CFRR could be
implemented within the clinic.

A key component of the CFRR strategy is the comparison between acute exacerba-
tions and stable periods. Because CF microbial communities are heterogeneous, a
baseline needs to be determined for each patient. Longitudinal samples are essential to
identify the changes in the microbial community and metabolites during acute exac-
erbations.

In the presented patient CF01 case study, historical samples were essential to
differentiate the attack community that led to a fatal exacerbation from the attack
community associated with a nonfatal exacerbation. The increase in Gb3 abundance
during patient CF01’s fatal exacerbation (Fig. 3) was detected by comparing its abun-
dances in historical samples. In the case of metabolites, a baseline is necessary for each
CF patient because for many compounds, the basal levels are not known. Accumulation
of ceramides and sphingomyelins is observed in CF lungs (41). In particular, levels of
sphingomyelins, ceramides, and lactosylceramide are significantly higher in CF lungs
than in non-CF ones (42).

A challenging component of the CFRR is the collection and storage of historical
samples. Sputum samples intended for virome, metagenome, and metabolome (43)
analyses are stable if stored at �20°C or �80°C. Metatranscriptomes are prone to RNA
degradation, and sputum collection intended for this purpose requires RNA stabiliza-
tion prior to �20°C or �80°C storage. Given these considerations, each patient can be
provided with a non-thaw-cycle �20°C freezer where individual raw sputum samples
can be stored for viromes, metagenomes, and metabolomes (see Fig. S7A in the
supplemental material). Sputum samples for metatranscriptomes can be collected
during the patient’s visit to the CF clinic, where immediately after collection, the RNA
integrity is preserved by adding TRIzol or RNAlater. RNA should then be extracted as
soon as possible. A sampling scheme in which a higher resolution of samples is desired
close to an acute exacerbation and fewer samples are desired far away from the
exacerbation event is proposed (Fig. S7).

Historical samples collected by the patient at home or during routine visits to the
clinic are a valuable resource in the event of an acute exacerbation. In these cases,
historical samples would be processed along with those from acute exacerbations in
the CFRR pipeline (Fig. 6), and valuable information would be obtained in less than 48
h. This information is then analyzed by a multidisciplinary scientific team along with the
clinician to (i) validate the multi-omics findings with approved clinical tests and (ii)
identify appropriate therapeutic options.

The information presented by the CFRR to the clinician is more detailed than that
provided by classical clinical microbiology. A clear understanding of how this informa-
tion is obtained and the exploratory nature of the findings needs to be considered
when interpreting the results. Discussion among clinicians and experts on the benefits
and limitations of each omics approach is essential to identify the elements causing CF
acute exacerbations and then select the course of action to prevent a fatality. The final
treatment decision is always in the hands of the clinician, who evaluates the different
lines of evidence for each finding and considers the cost-to-benefit ratio of possible
therapeutic interventions. The application of the CFRR in a clinical context gives CF
patients the opportunity for a better outcome based on an informed treatment
decision. Another consideration when implementing the CFRR in the clinic is the
availability of financial resources to perform the multi-omics strategy on exacerbation
and historical samples.

Considerations about implementing the cystic fibrosis rapid response. This was
a retrospective study in which the patient’s treatment was not modified based on the
presented meta-omics results. The course of action of the CFRR strategy is to provide
information to clinicians so that they can evaluate and confirm the findings before
proceeding with pertinent treatment modifications.
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In the case of patient CF01’s fatal exacerbation, the information obtained from the
CFRR strategy could have informed the course of action of the treatment with the
following modifications: (i) use of different antibiotics, since the mechanism of action
of colistin results in liberation of the bacterial cell contents, such as Shiga toxin, and (ii)
administration of neutralizing antibodies against Shiga toxin. Colistin is a cationic
polypeptide that disrupts the cell membrane of Gram-negative bacteria through a
detergent-like mechanism, and it is often used in the treatment of multidrug-resistant
exacerbation in patients with CF (44).

In the presented case study, only metatranscriptomes, metabolomes, and metag-
enomes were used to elucidate the cause of a fatal exacerbation. In future CFRR case
studies, the use of viromes could be incorporated. The combination of metagenomes
and viromes allows the identification of viral induction events, for example, of
prophages carrying toxins. Shigatoxigenic phages are capable of lysogenic conversion
(45, 46), and in the case of patient CF01’s fatal exacerbation, an early detection of Shiga
toxin in the viromes of historical samples could have provided valuable information
about the coding potential of the viral community.

Time is crucial during the management of CF exacerbations. The estimated execu-
tion time of the CFRR in an ideal situation with specialized staff working 24/7 is 48 h.
Each step has room for improvement that would shorten the execution times. For
example, real-time direct sequencing, such as Oxford Nanopore, can eventually be used
for CFRR metagenomes, metatranscriptomes, and viromes. These technologies provide
genomic information as it is being sequenced (47, 48), which will be ideal for the CFRR
once sample preparation and data analysis are optimized for human DNA removal (49)
and once large amounts of sputum starting material (400 ng of DNA needed for a
Nanopore run) are no longer necessary for DNA sequencing.

Combining data from multiple omics sources enabled the identification of shiga-
toxigenic E. coli as the likely cause of patient CF01’s fatal exacerbation. Although these
omics data were not used to alter clinical treatment of patient CF01, future applications
of the CFRR are expected to provide information that is essential for improving therapy,

FIG 6 Cystic fibrosis rapid response. Our proposed multi-omics strategy is to analyze sputum samples from cystic fibrosis patients, in
which metabolomes, metagenomes, metatranscriptomes, and viromes are obtained from a single sputum sample. Estimated times and
equipment for each omics step are included, as are recommended transport conditions. Recommended transport condition temperatures
can be achieved by using ice, dry ice, or liquid nitrogen.
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e.g., antibiotic resistance predictions and gene expression in major attack community
pathogens. Although each individual’s CF community is unique, these methods will
allow for the observation of overarching trends within and between patients, for
example, a loss in diversity in acute exacerbations.

MATERIALS AND METHODS
Clinical data. Sample collection procedures and access to clinical data were approved by the

institutional review boards (IRBs) of the University of California San Diego (UCSD) (HRPP 081510), and San
Diego State University (IRB approval number 1711018R). Clinical microbiology, hematology, and X rays
were performed during the normal care of the patient at the UCSD medical center. Spirometry tests were
used to calculate the percentage of predicted FEV1 as previously described (50). Clinical status (exacer-
bation or stable) was determined by the clinician. Lung function dynamics were modeled using splines
and linear model fitting as previously described (51).

Metagenome and metatranscriptome shotgun sequencing. Sputum samples were collected by
expectoration in a sterile cup and processed for metagenomes or metatranscriptomes as previously
described (52). Metagenome libraries were constructed using a Nextera DNA library preparation kit.
Metatranscriptome libraries were constructed using a TruSeq RNA library preparation kit. All libraries
were sequenced on the Illumina GAIIx platform. Metatranscriptomes D-7 and D-8 were prepared using
a modified procedure to obtain rRNA and mRNA in a single sequencing step, where half of the sample
was depleted of rRNA using a Ribo-Zero gold kit (15) and total RNA was extracted from the other half.
Both fractions were pooled in a proportion of 4:1, and a single Illumina library was then constructed and
sequenced.

Sequencing data processing. Quality filtering and dereplication were done using PRINSEQ (53)
(-min_qual_mean 20 -derep 1245 -lc_method entropy -lc_threshold 50 -ns_max_p 1 -out_bad null).
Cloning vector sequences were removed using SMALT (-y 0.8 -x) with 80% identity against the UniVec
database (54); possible sources of cloning vector sequences are reagents used in the library preparation
(55, 56). Human genome sequences were removed using BLASTn (E value of 0.1) against the human
reference genome GRCh38. Metagenome and metatranscriptome data sets presented in this study are
summarized in Table S1E in the supplemental material. Microbial taxonomy assignments at the genus
level were made from BLASTn against the nucleotide (NT) database (E value of 0.001; the hit with the
lowest E value out of 10 hits was kept) for metagenomes and KAIJU (57) for metatranscriptomes. Viral
assignments were made by mapping reads against the viral reference genome database (NCBI RefSeq,
release 87) using SMALT (58) with 80% identity. Fractional abundances were calculated using FRAP as
previously described (59) and expressed per million reads. After quality filtering and removal of reads
that mapped to the human genome, metatranscriptome D-8 reads were compared to the SILVA SSU
database using BLASTn with an E value cutoff of 0.001, and taxonomy was assigned at the genus level
using the best hit from 10,000 subsample replicates. Nonribosomal reads were compared to the NCBI NT
database using BLASTn with an E value cutoff of 0.001. The best hit was selected and used to assign
bacterial taxonomy at the genus level. Species-level assignments were determined by the genome that
recruited the most reads for each genus at either the rRNA (Bacillus, Escherichia, and Salmonella) or mRNA
(Pseudomonas and Stenotrophomonas) level. The bacterial genome with more hits in the BLASTn analysis
was selected as the closest strain and used as the reference genome. rRNA and mRNA reads were
mapped against each one of the reference genomes using SMALT with identity cutoffs of 60% and 80%,
respectively, and the results were visualized using Anvi’o (60).

Reads from metatranscriptomes D-8 and D-7 were together assembled de novo using SPADES (61),
and all resultant contigs were compared to the NT database using BLASTn with an E value cutoff of 0.001;
taxonomies were assigned using MEGAN6 (62). Contigs identified as Pseudomonas in all metatranscrip-
tomes were separately mapped to the reference genome of P. aeruginosa PAO1 using SMALT with an
identity cutoff of 80%. Pseudomonas contigs (n � 4965; total of 2,686,355 bp) were annotated using
PATRIC (63); genes identified by subsystem classification as encoding resistance to antibiotics and toxic
compounds are summarized in Table S3A in the supplemental material. All contigs were screened for
antibiotic resistance genes using the Resistance Gene Identifier implemented in the CARD database (30).
All perfect and strict hits were retained, as was any hit with an identity of �80%. Metatranscriptome D-8
and D-7 reads were mapped to the proteins Shiga-like toxin subunit A and subunit B using BLASTx with
an E value cutoff of 0.001 and an identity of 60%. Fragment recruitment plots were generated using
custom python scripts.

Sample comparison. Random forest, a nonparametric statistical method, was used to determine the
bacterial genera that best differentiated between (i) antibiotic treatment and no antibiotic treatment in
the metagenomes and (ii) stable and exacerbation states in the metatranscriptomes. The importance of
each variable was assessed using the R implementation of the algorithm random forest (64), using 2,000
trees.

The R package vegan (65) was used with the metatranscriptomes to calculate Pielou’s evenness using
Shannon diversity.

Metabolomics. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics data
were generated from sputum sample D-8 and compared to those of a set of 15 samples routinely
collected from the previous 426 days. Metabolite extraction (ethyl acetate and methanol), LC-MS/MS
methods, and data analysis were performed as described previously (16). Data from these same sputum
samples have been reported previously (16), but the metabolites reported here were not presented in
that study, making these data novel (MassiVE data set MSV000079444).
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Metabolomics data processing. Metabolomics data were analyzed using molecular networking (66)
and Global Natural Products Social Molecular Networking (GNPS) (67). Molecular networking parameters
were altered for this study and are as follows: cosine minimum of 0.7, 6 minimum matched peaks for
spectral clustering, and precursor mass and fragment ion mass tolerance of 0.1 Da. Molecular networks
were visualized using Cytoscape software (68). Molecules were annotated by searching the GNPS
libraries, and specific metabolites of interest were searched for using the MS1 parent mass and then
compared to the Metlin MS/MS spectral libraries (69). Area under the curve abundances of metabolites
in the LC-MS/MS data were calculated using mzMine 2 software (70), using selected masses. The
parameters of the feature finding were as follows: minimum time span of 0.05 min, minimum feature
height of 2, and m/z tolerance of 0.05 m/z or 15.0 ppm. The chromatograms were deconvoluted, isotope
peaks were grouped, and the peaks were aligned with the same ion mass tolerance and a retention time
tolerance of 1 min. The final matrix of features was gap filled. All metabolite annotations based on
spectral alignment are considered level 2 according to proposed minimum reporting standards for
metabolomics (71).

Isolates of CF pathogens P. aeruginosa VVP172, Enterococcus sp. VVP100, Escherichia coli VVP427,
Streptococcus sp. VVP047, Stenotrophomonas maltophilia VVP327, and Staphylococcus aureus VVP270
were obtained from the UCSD Center for Advanced Laboratory Medicine. These isolates were grown in
artificial sputum medium according to a method described previously (12), and their metabolomes were
extracted using sequential extraction with ethyl acetate and methanol (the same method as for the
sputum samples described in reference 16). The LC-MS/MS data were generated with the same protocols
as those for the sputum samples, and the data were uploaded to GNPS. The MS/MS data from these
bacterial isolates were used individually as a reference for searching for matching spectra in patient
CF01’s longitudinal sputum data. Spectral matching parameters were as follows: parent and fragment
mass tolerance of 0.1, minimum matched peaks of 6, cosine of 0.7, and minimum spectral count of 3 in
the data set. Spectral matches between a sputum sample file and a bacterial isolate were summed for
each sample for each bacterium and plotted to identify metabolite matches through the longitudinal
data sets from pathogens known to be present in patient CF01 from clinical culture history (it must be
noted these isolates were obtained from CF patients in the same clinic as patient CF01 but not from
patient CF01). It is unknown if specific bacterial molecules were detected.

Data availability. Sequencing data are available at the SRA under accession number SRP173673 (72).
Metabolomics data are available on GNPS with MassiVE data set MSV000079444 (73). The resulting FASTA
files are available in the NCBI Sequence Read Archive (SRA) with the following accession numbers:
SAMN10605049 to SAMN10605062 (n � 12).
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