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Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this

includes the development of computer programs that can beat a grandmaster at GO or

outperform human radiologists at cancer detection. A great deal of these technological

developments are directly related to progress in artificial neural networks—initially inspired

by our knowledge about how the brain carries out computation. In parallel, neuroscience

has also experienced significant advances in understanding the brain. For example, in the

field of spatial navigation, knowledge about the mechanisms and brain regions involved

in neural computations of cognitive maps—an internal representation of space—recently

received the Nobel Prize in medicine. Much of the recent progress in neuroscience

has partly been due to the development of technology used to record from very large

populations of neurons in multiple regions of the brain with exquisite temporal and spatial

resolution in behaving animals. With the advent of the vast quantities of data that these

techniques allow us to collect there has been an increased interest in the intersection

between AI and neuroscience, many of these intersections involve using AI as a novel

tool to explore and analyze these large data sets. However, given the common initial

motivation point—to understand the brain—these disciplines could be more strongly

linked. Currently much of this potential synergy is not being realized. We propose that

spatial navigation is an excellent area in which these two disciplines can converge to help

advance what we know about the brain. In this review, we first summarize progress in the

neuroscience of spatial navigation and reinforcement learning. We then turn our attention

to discuss how spatial navigation has been modeled using descriptive, mechanistic, and

normative approaches and the use of AI in such models. Next, we discuss how AI can

advance neuroscience, how neuroscience can advance AI, and the limitations of these

approaches. We finally conclude by highlighting promising lines of research in which

spatial navigation can be the point of intersection between neuroscience and AI and

how this can contribute to the advancement of the understanding of intelligent behavior.
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INTRODUCTION

Artificial General Intelligence (AGI), understood as the capability
to produce intelligent behavior at the level of humans, has
been a matter of debate. Even at the operational level, a
definition that we can use to classify the behavior of any agent
as intelligent or not, lacks consensus. Some define intelligence
as the whole coordination of brain, body, and environment
(Pfeifer and Scheier, 1999). Others also require the existence of
a task to define intelligence (Almássy et al., 1998). From this
perspective, in the absence of the elements of this definition of
intelligence, adaptive intelligent behavior does not exist (Chiel
and Beer, 1997). Another perspective is that intelligence can
exist without actuators and even without an environment. The
common denominator across perspectives and fields is that
intelligence requires a brain. If we accept that premise, in
order to understand intelligence, natural, or artificial, we must
study the brain. The goal of neuroscience is precisely that—to
understand how the brain works. If we assume that intelligent
behavior can be understood by studying how it emerges, it
is reasonable to attempt to learn from a working example:
biological brains.

Historically, Artificial Intelligence (AI) researchers followed
this approach. In fact, many of the initial ideas of numerous
state-of-the-art algorithms in AI were derived from psychology
and neuroscience (Hassabis et al., 2017). For example, Artificial
Neural Networks (ANNs) were initially proposed in the 1940’s,
inspired by the organization and learning mechanisms observed
in the brain (McCulloch and Pitts, 1943; Hebb, 1949). Up
until a few years ago, ANNs were mainly used by academics.
However, the recent success of Deep Learning (DL) in real-world
problems has led to growing interest in industry that has fueled
an unprecedented growth of artificial neural networks research
(Sinz et al., 2019). In particular, DL and Reinforcement Learning
(RL) have received a great deal of attention, not only from the
scientific community but also from the general public due to the
diverse sectors on which they are being applied such as health
care, finance, and technology. DL is an area of machine learning
in which ANNs with multiple layers are used to extract high-
level features from their inputs (i.e., “deep”). RL on the other
hand, is a methodology inspired by conditioning experiments
in psychology in which agents learn to maximize rewards and
minimize punishment by interacting in their environments
(Sutton and Barto, 2018).

Despite the undeniable success of machine learning
applications to diverse problems and progress in this field
with regard to improving the algorithms and technology to train
ANNs—which sometimes has lead to misleading remarks in the
media about the real state of the field – there are criticisms about
the real advancement in the AI field. One of the main criticisms
is the lack of generalization and the amount of training examples
that DL algorithms require for learning to solve even simple
and structured tasks. In contrast, biological systems can learn
complex tasks quickly and extract semantic knowledge from a
relatively small number of instances. From this point of view,
AI can greatly benefit from applying general principles that real
brains employ to solve complex tasks.

In parallel to the advances in AI, the field of neuroscience
has experienced tremendous progress in recent years due to
the technological advances that allow high density recordings
of brain activity with unprecedented spatiotemporal resolution
from multiple parts of the brain simultaneously (Steinmetz
et al., 2018). Some of these recent advances in the neuroscience
of spatial navigation led to the Nobel Prize in Medicine
being awarded to John O’Keefe and Edvard and May-
Brit Moser (Colgin, 2019). Despite this notable progress in
neuroscience, there is a concern that with big data, the
field needs to improve the analytical tools to help us make
sense of the complex and vast quantities of data that we
are now capable of recording (Jonas and Kording, 2017;
Vogt, 2018; Vu et al., 2018). Besides analytical tools to
make sense of the data, there is a need for tools that help
generate new hypotheses based on these richer and larger
datasets.

With progress in both Neuroscience and AI, there is a recent
renewed interest to conduct research bridging these two fields
so that they may benefit from each other (Hassabis et al., 2017;
Jonas and Kording, 2017; Richards et al., 2019). One obvious
and already successful interaction between AI and Neuroscience
is to use machine learning (ML), an area of AI that applies
computer science and statistical techniques in data analysis,
to study complex and large datasets in Neuroscience (Vogt,
2018; Vu et al., 2018). For example, ML methods are used to
analyze motion characteristics of behaving animals to predict
cognitive function (Ryait et al., 2019), and have been used in
studies of sensory processing to determine optimal stimuli for
representations in primary visual cortex (Walker et al., 2019).
Besides using ML as an analytical tool, there are attempts to
go further and use artificial neural networks as a model to
understand brain function (Musall et al., 2019; Richards et al.,
2019).

A potential convergent point in which neuroscience and
AI could be combined to learn more about the brain, and
advance both fields, is spatial navigation. From a neuroscience
perspective, being able to actively explore the world might have
been one of the key factors that provided organisms evolutionary
advantages that triggered the development of cognitive process
such as prediction, attention, learning and memory (Swanson,
2003). For example, it has been hypothesized that the memory
processing mechanisms involving the entorhinal cortex and the
hippocampus evolved from the mechanisms that compute the
relationships of spatial landmarks and the tracking of movements
of the body in the world (Buzsáki and Moser, 2013). Even
more, these computations enabling neural representations of the
animal location carried out in the parietal and entorhinal cortices
have been proposed as a general mechanism implemented
across the neocortex to represent spatial relationships between
objects and as a general mechanism for many conceptual
“spaces” (Constantinescu et al., 2016; Behrens et al., 2018;
Hawkins et al., 2019). Therefore, by understanding how spatial
navigation is carried out in biological systems, we can learn
about the underlying cognitive processes that are also important
components of intelligent behavior which may further advance
AI (Bellmund et al., 2018).
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In this paper we propose spatial navigation as a common
ground for neuroscience and AI to converge and exchange
ideas and expand our knowledge of the brain and, ultimately,
complex intelligent behavior. In the following sections we first
go into detail about why spatial navigation could be used
to learn about the brain and advance AI. Then we review
the neurobiology of the rodent spatial navigation system,
highlighting the structures that form the main concepts of
what we know about space representations in the brain: head-
direction, place, grid, and border cells. After, we review the
models used to study these structures and the processes involved
in spatial navigation. Finally, we highlight the limitations of
the proposed approach and conclude by providing future
directions in which a closer interaction between the fields could
improve our understanding of the brain and ultimately of
intelligent behavior.

THE NEUROSCIENCE OF SPATIAL
NAVIGATION

In order to describe how neuroscience and AI are well-
suited to benefit from one another, we begin by summarizing
what is known about the neuroscience of spatial navigation.
Here we briefly describe some of the key findings about the
neural correlates of spatial navigation and the computational
bases of these neural substrates. In addition, we also
provide a summary of the neuroscience of reinforcement
learning which is a key ingredient in the development of
newer AI approaches to understand how spatial navigation
tasks might be solved by biological systems. This section
aims to denote the limits of what is known about the
neurobiology of spatial navigation but also provides
important directions and constrains that models should take
into consideration.

First, it is important to note that accurate navigation involves
several different strategies to reach a goal location: one can
follow a sensory cue that marks a goal location, one can follow
a determined sequence of actions (a route), or one can determine
which way to proceed by following an internal representation
of space (map). Depending on the strategy, multiple cognitive
processes (or combinations) are required and therefore involve
coordination across several brain regions (see Figure 1). In
addition, spatial navigation involves several cognitive processes
that are crucial for a broad range of intelligent behavior. For
example, spatial navigation is strongly linked to memory and
learning, planning, attention, and decisionmaking, among others
(O’Keefe and Nadel, 1978; Gallistel, 1990; McNaughton et al.,
1991; Skaggs and McNaughton, 1996).

Second, spatial navigation has been proposed to follow
two different complementary learning strategies that reflect
the processes that are computed in the hippocampus and the
striatum (Chersi and Burgess, 2015). Briefly, when the striatum
is involved, local and incremental reinforcement learning rules
facilitate subsequent learning of spatial navigation tasks based on
egocentric information (Figure 1A). In this type of navigation,
loops between the cortex and the basal ganglia are proposed to

support stimulus-response associations and procedural memory,
which are linked to route or cue-based navigation. In contrast,
when the hippocampus is involved, faster one-shot associative
learning rules are applied to solve spatial navigation. Recent
studies in humans link these mechanisms for decision making,
in which model-free choice guides route-based navigation and
model-based choice directs map-based navigation (Anggraini
et al., 2018).

Spatial Navigation and the Neural Basis of
the Cognitive Map
The theory of the “cognitive map” proposes that the brain
creates a representation (or model) of the environmental space
that is used to navigate (Tolman, 1948; O’Keefe and Nadel,
1978; Gallistel, 1990). Experimental support for this theory is
derived from studies that require rodents (and humans) to solve
navigational tasks where the goal location is not visible from
an animals current location (Knierim and Hamilton, 2011).
Navigation to precise “hidden” locations, or place navigation, can
be performed by referencing distant landmarks (or allocentric
frame of reference), or by referencing one’s body orientation
in relation to cues and executing a sequence of actions to
the goal (an egocentric frame of reference). Some theoretical
work suggests that allocentric and egocentric frames of reference
can operate sequentially such that information is decoded to
determine a subject’s egocentric orientation in the environment
and vice versa (McNaughton et al., 1995; Byrne and Becker, 2007;
Burgess, 2008; Clark et al., 2018). For example, an allocentric
to egocentric transformation may allow a subject to select an
action (turn left) at a specific intersection (a particular allocentric
location and orientation) in a city. In addition, animals can
localize their position and produce trajectories to goal locations
by using self-motion cues, e.g., vestibular, proprioceptive, optic
flow often referred to as path integration or dead reckoning
(Gallistel, 1990; McNaughton et al., 1991; Whishaw et al., 2001).

The neurobiological basis of map-like spatial representations
is thought to involve a network of spatially selective neurons in
the mammalian nervous system. These include populations of
cells that code for spatial location such as place cells (O’Keefe
and Nadel, 1978), grid cells (Hafting et al., 2005; Bonnevie
et al., 2013), border cells (Solstad et al., 2008), landmark
or object vector cells (Deshmukh and Knierim, 2013; Wilber
et al., 2014; Høydal et al., 2019), cells that code for head
direction (Taube et al., 1990), cells that code for an animals
egocentric orientation with respect to environmental features
(Wilber et al., 2014; Hinman et al., 2019; LaChance et al.,
2019; Alexander et al., 2020), position along a route (Nitz,
2006), and angular and linear locomotor speed (McNaughton
et al., 1994; Sharp et al., 2001; Wilber et al., 2014, 2017;
Kropff et al., 2015; Munn et al., 2020). These spatial cell
types have been identified in a neural circuit that includes the
hippocampal formation and several limbic-thalamic and limbic-
cortical regions (see Figures 1A,B). While hippocampal circuitry
has been linked with allocentric spatial processing, subcortical
regions such as a basal ganglia-cortical circuit are thought to
contribute to some forms of egocentric action-based navigation.
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FIGURE 1 | The neuroscience of spatial navigation. (A) Key brain structures involved in rodent spatial navigation. Diagram adapted from the Allen Brain Atlas Explorer.

(B) Schematic illustrating the general pattern of anatomical connectivity and the functional shift in frames of reference encoded by the brain regions that comprise the

neural circuitry of spatial navigation. Hippocampus (HPC) and parahippocampal regions (entorhinal cortex, postsubiculum, and parasubiculum) encode an animal’s

position in space predominantly in allocentric or map-like coordinates. The blue and red boxes represent a spectrum denoting the relative density of egocentric

(viewer-dependent, self-centered, or action centered frame of reference) vs. allocentric (map-like) encoding for each region. Retrosplenial cortex (RSC). Parietal cortex

(PC) and anterior thalamic nucleus (ATN) are anatomically and functionally well-positioned to interface between egocentric and allocentric frames of reference within a

larger navigational network. Purple boxes represent brain structures involved in value-based signals for conditional learning and spatial navigation (The basal ganglia

circuit sub-diagram was inspired from Chersi and Burgess, 2015, used with permission).

The latter circuit has also been associated with stimulus-response
learning, procedural memory and reward prediction. We briefly
describe these spatial cell types in greater detail below to
provide relevant biological restrictions that can be used in the
development of models to study spatial navigation that can
inform neuroscience.

Place Cells and Grid Cells
The hippocampus contains neurons that discharge in specific
environmental locations (Figure 2A; O’Keefe and Dostrovsky,
1971) such that populations of these cells encode the present
position much like a GPS (O’Keefe and Nadel, 1978). Grid
cells have been identified in parahippocampal cortex (medial
entorhinal cortex, presubiculum, parasubiculum) and differ from
place cells in that they fire in multiple locations forming
a hexagonal grid pattern (Figure 2B; Hafting et al., 2005).
The location by which place/grid cells form their firing fields
are modulated by self-motion stimuli or path integration
(McNaughton et al., 2006), and are also modulated by landmarks
such as local or distant environmental cues or its overall shape
(O’Keefe and Burgess, 1996; Yoder et al., 2011; Krupic et al.,
2015).

Border, Landmark or Object Vector Cells
While place and grid cells can be modulated by the shape of the
environment, recent work has shown that the parahippocampal
cortex (medial entorhinal cortex, presubiculum, parasubiculum)
also contains neurons that respond specifically to boundary
stimuli (Figure 2C; Solstad et al., 2008; Boccara et al., 2010).
In the subiculum, these “border” cells can also discharge at
specific distances relative to a boundary (Lever et al., 2009). In
addition, cells have been identified in both the hippocampus and
medial entorhinal cortex that discharge at a specific direction and

distance in relation to a cue (Figure 2D). These place responses
have been described as landmark or object vector cell activity
(McNaughton et al., 1995; Deshmukh and Knierim, 2013; Wilber
et al., 2014; Høydal et al., 2019).

Head Direction Cells
Several interconnected limbic and parahippocampal regions
contain populations of neurons termed head direction (HD) cells
(Cullen and Taube, 2017; Peyrache et al., 2019; Angelaki and
Laurens, 2020; Munn and Giocomo, 2020). HD cells are neurons
that fire maximally when an animal points its head in a specific
direction (Figure 2E) and a small population of HD cells can
accurately track the animals HD (Peyrache et al., 2015; Xu Z.
et al., 2019). Research has identified this signal in the anterior
thalamic nuclei, retrosplenial, parietal, and parahippocampal
(entorhinal, postsubiculum, and parasubiculum) cortices (Taube,
2007). Similar to location specific firing in the hippocampus and
parahippocampal cortex (place, grid, border, and object vector
cells), the preferred direction of HD cells can be controlled by
self-motion cues (angular path integration) and environmental
cues (reviewed in Taube, 2007).

Egocentric, Action, and Route Modulated Cells
Recent work has established that a circuit including the parietal
and retrosplenial cortex and neighboring hippocampal and
subcortical regions play a central role in processing an egocentric
coordinate system (Clark et al., 2018; Wang et al., 2018, 2020;
Hinman et al., 2019; LaChance et al., 2019). For instance,
neural populations in the parietal and retrosplenial cortex
fire in response to an animal’s egocentric actions or posture
(McNaughton et al., 1994; Whitlock et al., 2012; Wilber et al.,
2017; Mimica et al., 2018), egocentric orientation relative to
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FIGURE 2 | Neural substrates of spatial navigation. Five examples of single units that exemplify the encoding present in several regions that encompass the brain

network critical for spatial navigation. (A) Example place cell recorded in hippocampus, top row is a spike/path plot, red dots represent the locations of action

potentials and black lines the path of the animal. (B,C) Example grid cell and border cell recorded in parahippocampal cortex. Colormaps are standard evenly spaced

colormaps and the peak firing rate is indicated. (D) Colormap for a cell in hippocampus that encodes the direction and distance of an environmental landmark. Data

are from Wilber et al. (2014). (E) Polar plot showing firing rate by HD for an HD cell. Firing rate (Hz) is represented in upper right corner for each example cell. Data in

(A–C,E) are from Harvey et al. (2019).

a landmark or environmental boundary (Wilber et al., 2014;
Alexander et al., 2020), and location along a complex route
(Nitz, 2006). The parietal cortex has also been linked to
allocentric information processing with some parietal neurons
exhibiting allocentric HD correlates, and others modulated
by the conjunction of egocentric and HD correlates (Chen
et al., 1994; Wilber et al., 2014). Importantly, these conjunctive
cell populations and other cells encoding primarily in action
centered coordinates anticipate upcoming actions, for example,
anticipating a left or right turn (Whitlock et al., 2012; Wilber
et al., 2014). In addition, recent work has shown that retrosplenial
neurons exhibit HD, position, and spike in the relation to the
animals distance between path segments, as well as a conjunctive
combination of these firing characteristics (Alexander and
Nitz, 2015; Mao et al., 2017, 2018). Thus, the parietal and
retrosplenial cortex may be part of a circuit that interfaces
between allocentric and egocentric frames of reference (Pennartz
et al., 2011; Stoianov et al., 2018). Therefore, these computations
performed in the parietal and retrosplenial cortex might be
crucial for understanding how transformations between self-
centered experiences is related to map-like representations
of space.

In summary, the mammalian nervous system encodes a
map-like representation of space. This map-like representation
is built from cells that code for: spatial location such as
place, head direction, the position in the environment with
repeating geometric firing patterns—grid cells, borders, the
direction and distance of landmarks or objects, an animals

egocentric orientation with respect to environmental features,
position along a route, and specific combinations of angular
and linear locomotor speed. The cells that encode space in
allocentric or map-like coordinates are generally found in the
hippocampal formation and several limbic-thalamic and limbic-
cortical regions. While the cells that encode egocentric or body-
centered coordinates are generally found in subcortical regions
such as a basal ganglia and posterior cortical regions such as
the parietal cortex. The computations carried out by the cells
and circuits involved in spatial navigation presented here are
thought to be similar to the substrates for cognitive processes
such as memory, semantic knowledge extraction, prediction,
and decision making which in turn are building blocks of
intelligent behavior.

Spatial Navigation and Reinforcement
Learning
Another important cognitive process strongly linked to spatial
navigation and important in intelligent behavior is learning.
The brain structures that are involved in spatial navigation
and memory formation are also involved in learning (Bellmund
et al., 2018). During spatial navigation, learning can occur first
as a trial-and-error process that links memory and reward or
punishment signals. However, later with experience, a cognitive
map is formed and can be used to infer useful spatial information
(Buzsáki and Moser, 2013). This adaptive process exploits
previous experience to improve the outcome of future choices
using different strategies that are implemented in different
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areas of the brain, including the hippocampus (Johnson and
Venditto, 2015). Covering all aspects of learning underlying
spatial navigation is beyond the scope of this review where we
will focus an aspects that is amenable to AI approaches, RL. We
briefly summarize the area of reinforcement learning and the
brain structures that are involved in the process of sequential
decision making that are crucial to navigate.

In RL there are two main approaches to implement learning,
model-free and model-based (and also hybrid approaches). In
model-free learning, there is no representation of the world.
Instead, learning happens based on more immediate sensory-
actions associations. In contrast, in model-based learning there
is an internal representation of the environment (Lee et al.,
2012). These two approaches nicely overlap with the egocentric
and allocentric frames of reference for spatial navigation and
have been proposed to work together (Khamassi and Humphries,
2012). Model-free learning is proposed to be implemented by
cortical-basal ganglia loops that participate in sensory-actions
associations used to update the value function (Figure 1B).
In spatial navigation, analogous computations are thought to
be egocentric (or route-based) in which no cognitive map
is used to reach a goal location. Instead, in model-based
learning the animal (agent) uses an internal representation of the
environment to update the value function. This representation
corresponds to the cognitive map in spatial navigation in which
the position of the animal in the environment is updated. In
this case, these processes are thought to be implemented by the
interaction between the hippocampus and the ventral striatum
(Pennartz et al., 2011). In AI and neuroscience, research in
RL and rodent spatial navigation has already proved to be
a successful approach to understand how these two concepts
are closely related and the interaction between these fields
can help to inform one another. For example (Stoianov et al.,
2018), demonstrated how a RL model can replicate results in
rodent experiments in which contextual cues are manipulated
to explore the behavioral and brain constrains in goal directed
navigation tasks.

Although more research is needed to clarify the details about
the neuroscience of the interaction between the navigation
and learning systems, there is increasing progress in this
area. For example, it is known that the basis of route-based
navigation involves brain structures which encode sensory-action
associations such as the striatum. In particular, the sensory
information reaches the dorsal striatum from the corresponding
cortical areas. The dorsal striatum sends projections to the
substantia nigra reticulata, which in turn receives inputs from
the substantia niagra compacta and the ventral tegmental area
(VTA) (Figure 1B). The reward signals are thought to originate
in the VTA. Therefore, it has been hypothesized that, since the
ventral striatum receives direct input from the SNc/VTA and the
hippocampus, the associations between place and reward signals
are performed in the latter structure (Chersi and Burgess, 2015).

In summary, different structures interact in spatial navigation
and learning depending on the strategy used. Although more
research in this area is needed, this section provides a brief
review of the neuroscience underlying this ability within the
context of RL. This knowledge can inform and guide some of

the parameters used in artificial agents solving spatial navigation
tasks. This informed development of AI systems will in turn
provide opportunities to validate the result against rodent
experiments and therefore, to generate hypothesis that can
inform neuroscience.

MODELS FOR SPATIAL NAVIGATION AND
THEIR CONTRIBUTION TO THE
UNDERSTANDING OF THE BRAIN

Major advances in our understanding of how the brain is
involved in spatial navigation has been achieved in part,
due to modeling work. Depending on what the goal of the
model is, it can be classified as descriptive, mechanistic, or
normative (Dayan and Abbott, 2001). Descriptive models of
spatial navigation have the goal of characterizing what the system
does, usually reproducing experimental data (Sutherland and
Hamilton, 2004). Mechanistic models of the spatial navigation
system provide an explanation of how spatial navigation is solved
using processes and mechanisms. In this modeling approach,
explicit implementations and assumptions are derived from
observations and hypotheses from experimental work. Here we
will use the term “hypothesis driven models” to encapsulate both
descriptive andmechanistic models. Finally, in normativemodels
(or end-to-end models in AI) of spatial navigation the goal is
to understand why the brain might solve spatial navigation in
a particular way, so the assumptions are less explicit. In this
section, we describe the modeling work that encompasses all
these approaches that have been developed to understand how
animals navigate in space. In addition, we describe modeling
work on reinforcement learning which has been important for
the development of end-to-end AI approaches that tackle spatial
navigation tasks.

Hypothesis-Driven Models of
Head-Direction, Place and Grid Cells for
Spatial Navigation
When navigating using path integration, it is necessary for the
brain to encode the spatial location and update this information
with the direction and the speed of motion. Hippocampal
place cells are thought to provide this critical information. The
modeling complexity of the activity of place cells largely varies
depending on the goal of the study. For example, place cells
have been modeled as an arrangement of radial basis functions
(e.g., Gaussian) each centered at its corresponding place field
and collectively the set of place fields cover the environment
(Bonnevie et al., 2013; Cazin et al., 2020). In these cases, the
position of the agent has been modeled as the actual position in
the environment (Arleo and Gerstner, 2000). In other models for
which the goal is to study the spatial representations, the current
position and distance from the centers of the place field is derived
from sensory and idiothetic information (Banino et al., 2018;
Cueva and Wei, 2018).

In turn, HD cells have been modeled as a recurrent network
that maintains a representation of the current orientation and
is modulated by self-motion signals (Figures 2E, 3A). The
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FIGURE 3 | Models of spatial navigation and their relationship with reinforcement learning. (A) Path integration requires keeping track of the turns and distances

traveled as the animal explores the environment (top). Ring attractor network model of head-direction (bottom). The idiothetic and environmental information update

and rectify the spatial representations in the model. Inspired by Schultheiss and Redish (2015), used with permission. (B) Grid cells in the medial entorhinal cortex

(MEC) at different scales (top) and place cells in the hippocampus (HPC) with different scales (bottom). Having access to different scales allows the system to

represent space at different resolutions. Adapted from Solstad et al. (2006), used with permission. (C) Relationship between episodic and semantic memories and

path integration and model-based navigation. Inspired from Buzsáki and Moser (2013). (D) Schematic representation of the deep RL approach for spatial navigation.

A deep NN is used to estimate the best action to execute to maximize future rewards. (E) Example trajectories of two agents trained using place and head direction

cells in Banino et al. (2018). Some of the agents developed grid-cell like representations (red) and others only place and head direction cells-like representations (blue).

During learning both agents were able to reach the goal (top). During testing, when obstacles where removed, only the agents using grid-like representations used

shorter routes (bottom). Diagram adapted from Banino et al. (2018), used with permission.
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architecture of this network has been proposed as a ring
attractor network (Skaggs et al., 1994; McNaughton et al., 2006;
Clark and Taube, 2012; Knierim and Zhang, 2012). Briefly,
these models involve HD cells conceptually arranged in an
anatomically connected ring with each HD cell occupying a
position corresponding to their preferred firing direction. Thus,
adjacent HD cells on the “ring” share similar, but slightly offset,
preferred firing directions (though not necessarily physically
adjacent positions in the brain). The anatomical ring is organized
such that functionally adjacent HD cells share strong excitatory
connections while cells that occupy different directions (e.g.,
are 180 degrees apart) share weaker excitatory connectivity (or
are inhibited). A consequence of this framework is a sustained
hill of excitation centered on the animal’s current HD. In most
models, external inputs from environmental cues and angular
head velocity derived from idiothetic self-motion cues (angular
path integration) move the activity hill around the ring (Taube,
2007). Thus, the activity hill is organized to move corresponding
to the animal’s current HD.

Besides these models of head orientation, there is an extensive
body of modeling work to understand how place is represented
in the brain. Modeling work has followed two approaches to
study the organization of grid cells (Figure 3B). One in which
a recurrent network is optimized with hand-chosen parameters
to reproduce the hexagonal pattern of activation observed
in electrophysiological recordings (McNaughton et al., 2006;
Giocomo et al., 2011; Knierim and Zhang, 2012; Navratilova
et al., 2012). This approach has been shown to work in
simulated conditions (Samu et al., 2009). In these simulations
allocentric information derived from a model of grid cells
during path integration can correct the accumulated error
generated by a noisy representation of speed and direction. In
a more recent model (Bush et al., 2015) modeled grid cells
to support vector navigation and provide provide a framework
for testing experimental predictions. As the neuroscience of
spatial navigation uncovers more about how space is represented
and manipulated in the brain, models reflect this progress
as well. For example, with more studies about grid cells,
models that aim to understand how place cells and grid
cells interact have been very important to understand the
restrictions in the circuitry between the enthorinal cortex and the
hippocampus (Solstad et al., 2006).

Hypothesis Driven Models of Spatial
Reference Frame Coordination for
Navigation
Spatial navigation systems, in mammals at least, are highly robust
and adaptable to different levels of sensory information and
environmental conditions. For example, mammals are capable
of navigating in darkness using internal representations of space
or using sensory cues and are capable of rapidly updating
these representations when distant cues and landmarks are
available (Rosenzweig et al., 2003). These complex navigational
strategies rely on the ability to change the frames of reference
to use spatial information (Figure 3C). In this section we
review the modeling work developed to understand how the

brain transforms spatial information between different frames of
reference. This is important not only to understand the brain
but also because these transformations can be important to
extract knowledge by deriving semantic knowledge form episodic
memories (Figure 3D; Buzsáki and Moser, 2013; Wang et al.,
2020).

Allocentric-Egocentric Reference Frame

Transformation
Computational descriptive models propose that cell populations
within the anterior thalamic nuclei, parietal cortex, and
retrosplenial cortex operate as a network that transforms
spatial information from an egocentric (e.g., body centered)
to allocentric (i.e., map-like) frame of reference and vice
versa (reviewed in Clark et al., 2018). For example, the view
of a landmark, which is body-centered in nature, can be
transformed into an allocentric, map-like, frame of reference.
The details of these reference frame transformations vary slightly
between models but are similar regarding the neurobiological
subcomponents. For example, in one variant of this framework,
McNaughton et al. (1995) model an egocentric-to-allocentric
transformation using a linear mapping across a three-layered
neural circuit. The initial computations involve a layer composed
of two neural populations: an allocentric HD cell signal, which
is generated within a subcortical circuit including anterior
thalamic-to-cortical projections, and an egocentric cell signal by
parietal cortex neurons which are modulated by the animals’
egocentric heading relative to a landmark. These two cell
types converge post-synaptically on a second layer of parietal
cortex cells that encode the conjunction of HD and egocentric
signals. The biological validity of these conjunctive cells is
supported by recent work (Wilber et al., 2014). Conjunctive
cells are then associated with a third layer encoding the bearing
of a landmark (allocentric direction), which when combined
with information regarding the relative distance from the
landmark, produces a signal reflecting a vector relative to
the landmark. In sum, this model demonstrates how sensory
information can be used to support spatial localization by
transforming egocentric information into a location in the
environment. In other words, transform body centered encoding
of a landmark into map-like landmark representations (e.g.,
a cell that fires in a specific map-like location relative to a
landmark independent of which direction the animal is facing;
Figure 2D). Recent studies have identified neural correlates
resembling exactly this model output, or landmark vector
cell responses, within the hippocampus and entorhinal cortex
(Deshmukh and Knierim, 2013; Wilber et al., 2014; Høydal
et al., 2019). In addition, the opposite transformation in
which allocentric location is decoded to determine egocentric
orientation could be performed using a similar 3-layer network.
For instance, if a subject is required to select the appropriate
action (turn left) for a specific intersection in a city (a specific
place and direction) given the current goal (e.g., to go to the
bank vs. coffee).

There are mechanistic modeling studies in which spatial
representations found in the mammalian navigation system
are used to study how different frames of reference can
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be used to navigate when different sensory information is
available. For example (Byrne and Becker, 2007), implemented
a model that shows how egocentric and allocentric frames of
references can be built and how transformation from one to
another can be carried out. Moreover, in a related study, it
is shown how these transformations relate to short and long-
term memory (Krichmar and Edelman, 2005). More recently
(Oess et al., 2017), showed how the hippocampus, the parietal
cortex and retrosplenial cortices could interact to solve spatial
navigation tasks using an egocentric, an allocentric or route-
centric frames of references. These simulations can help to
understand how the transformation of egocentric and allocentric
frames of reference can be employed by the brain when
using different navigation strategies. Another example in which
modeling aspects of the rodent spatial navigation system has
helped to understand the integration of self-motion and visual
information to represent the localization in space is by using
an attractor-based network model (Campbell et al., 2018). In
this work they use this model to understand how optic-flow,
locomotion and landmark cues produce activity patterns in the
medial entorhinal cortex to represent spatial position during
navigational tasks.

An ANN Model Approach to Solve Spatial
Navigation
In a traditional approach to modeling brain function, such as
spatial navigation, the model parameters are specified by the
experimenter and optimized to reproduce experimental data.
More recently, with the advancement in ANNs, there aremore AI
end-to-end (normative) approaches to model spatial navigation
in which the parameters that determine the representations
and how they are exploited are not specified explicitly. Instead,
ANNs are trained to solve spatial navigation tasks and the
representations and parameters employed by the network are
restricted to match biological constraints. In this section we
recapitulate modeling work that has the goal of advancing the
understanding of the rodent spatial navigation system using both
AI and neuroscience approaches.

The spatial representations that ANNs use to solve spatial
navigation resemble different properties reported in rodent
experiments. For example Kanitscheider and Fiete (2017),
trained a RNN to perform a series of spatial navigation tasks
that require self-localization and mapping, a very well-studied
and useful property in robotic navigation. In this work, the
authors show that the representations that are exploited by
the trained network resemble characteristics of the biological
spatial navigation system such as place cells that remap between
environments (thought to represent the neural substrate of
unique cognitive maps for different locations). Similarly Cueva
and Wei (2018), showed how an agent using a recurrent neural
network (RNN) can solve a spatial navigation task to study the
spatial representations used by such network. In the trained
RNN, they found a grid-cell like representation of space in which
a hexagonal periodic pattern of activity was used to keep track
of the location of the agent in the environment. The spatial
representation exploited by this network did not combine the

sensory raw input and motion signals as in other models (Samu
et al., 2009). Instead, this representation emerged because of
the integration of the speed and direction signals given to the
network and the metabolic restriction implemented in the cost
function used to train the network. One limitation of these RNN
approaches is that the learningmechanism used to train the agent
to solve the task were not biologically plausible.

Recently, there are studies in which applying biologically
relevant restrictions to the ANNs led to understanding how these
processes occur in the brain. For example Whittington et al.
(2018), propose a model inspired by the hippocampal-entorhinal
cortex system in which grid and place cell like representations
emerge when an ANNs is trained to solve navigation in a
2D environment. These representations constructed by the
ANN using the end-to-end approach, generalizes from sensory
exposures from different environments. Moreover Sorscher
et al. (2019), analyzed the conditions in which grid cell-
like representations emerge from models optimized for spatial
navigation. In this work, the authors were able to ascertain
which constraints favor the hexagonal activation pattern
of grid cell like representation emerged in three different
network architectures.

In summary, this end-to-end approach in which ANNs are
used to model brains in embodied agents that learn to navigate in
space using relevant biological restrictions provides a promising
tool to study the representations of space that might resemble
those used in nature and further our understanding of how such
spatial representations may “emerge.”

Reinforcement Learning and Spatial
Navigation
An important related element in the mammalian spatial
navigation system is learning. One way to model how embodied
agents learn to navigate is using RL. In this section we
summarize how RL modeling has been successfully integrated in
AI approaches to understand spatial navigation.

Recently, DNNs have been combined with RL (termed as
Deep RL) in spatial navigation tasks. In this framework, spatial
representations are learned by interacting with the environment
instead of provided by the experimenter. In this version of RL,
deep NN are used to approximate value and transition functions
using environmental (sensory) information (instead of a look
up table or another function approximation method) (Botvinick
et al., 2019). Due to considering multiple layers (i.e., deep), deep
RL leverages this organization to learn spatial representations
that generalize well and can be transferred to different tasks
(Mirowski et al., 2017; Banino et al., 2018; Botvinick et al.,
2019). For instance Banino et al. (2018), used deep learning
in simulated agents to study how space representations can
be used to facilitate flexible navigation strategies that closely
resemble experimental data from rodents. In this work, the
authors trained the deep network to perform path integration
using trajectories from real rodents. One of the intermediate
representations that the simulated agents used to keep track
its location when doing path integration was grid cell-like
activity patterns. Moreover, the authors investigated whether
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this representation could be exploited to perform goal directed
navigation. This time, the authors included a RL module
which learned to associate values to specific locations in the
environment. Actions that brought the agent closer to the goal
were associated with higher value. Using this strategy, these
agents solved the goal directed navigation tasks using shortcuts
when possible, compared to agents only using place and head
direction cells to navigate (Figure 3E). This type of work in
which similar representations to the ones found in real brains are
used to solve navigation tasks is important because they provide
opportunities to learn more about how similar processes might
happen in the brain.

Besides using ANNs and RL to solve spatial navigation tasks,
important concepts, and mechanisms found in neuroscience
experiments have been used to improve algorithms in AI. For
example, an important mechanism that links what we know
about learning and memory and spatial navigation are the
theories about how memories are consolidated in the brain.
In one theory about memory, hippocampal replay plays a
crucial role in forming an index or memory trace that binds
together experience components in the neocortex for long-term
storage and knowledge extraction during sleep (Frankland and
Bontempi, 2005). There are numerous examples of experimental
evidence that replays occurs inmultiple areas of the brain (Skaggs
and McNaughton, 1996; Kudrimoti et al., 1999; Euston et al.,
2007; Bermudez Contreras et al., 2013; Wilber et al., 2017). This
replay mechanism has been proposed to reduce the number of
“iterations” required to explore an environment in RL (Cazé et al.,
2018; Momennejad et al., 2018; Cazin et al., 2019).

Finally, despite the contribution of more abstract models of
spatial navigation, there are models in which AI takes a more
ethological and embodied approach to study spatial navigation.
From this perspective, cognition is not only a product of
isolated computations occurring in the brain but instead emerge
from the interaction between the body and the environment
(Noe and O’Regan, 2001; Thelen and Smith, 2007; Bonner and
Epstein, 2017). Therefore, from this perspective, instead of solely
looking for the responsible brain structures involved in spatial
navigation and their neural codes, the study of the restrictions
imposed by the environment and anatomy of the organism,
might help to better understand how the internal representations
are constructed and how they are manipulated to navigate in
space (Krichmar and Edelman, 2005; Evans et al., 2016; Brette,
2019; Santoro et al., 2019).

We have summarized modeling work that has the goal of
improving our understanding of the mechanisms involved in
spatial navigation and how they are implemented by the brain.
The range of such work varies from descriptive and mechanistic
models in which the goal is to reproduce experimental data using
explicit hypotheses about brain organization, to more recent
approaches that rely less on explicit experimenter definitions
and use ANNs as a model of the brain. In addition, we have
summarized the neurobiology of RL and how RL has been
implemented to solve spatial navigation tasks. Regardless of
the level of abstraction and the questions they aim to answer,
this work expands our knowledge of the brain by providing
predictions, generating new hypotheses and demonstrating how

the cognitive processes necessary for complex behaviormight rise
from spatial navigation.

DISCUSSION

Here we reviewed the neuroscience and modeling work of spatial
navigation. We proposed that by understanding how spatial
navigation is solved by the brain, we could provide useful insights
to alleviate some current problems for AI. Conversely, a way
to expand our current understanding of the neuroscience of
spatial navigation is to use AI and machine learning techniques
to aid in analyzing some large data sets. This has historically
been demonstrated by testing theories of how the brain performs
spatial navigation using descriptive and mechanistic models of
the hippocampal formation. More recently, the development
of end-to-end or normative approaches using ANNs to solve
spatial navigation problems while following relevant biological
restrictions can further our understanding of how and why
representations might emerge and be manipulated by the brain.
In this section we outline how considering spatial navigation as
the intersection point between neuroscience and AI research can
provide a valuable opportunity to advance both fields and we
review the limitations of the approaches presented in this paper.

Neuroscience Contributions to Advance AI
As previously mentioned, there are strong examples of
contributions from neuroscience and psychology to the
advancement of AI, such as the inspiration for connectionism
and of ANNs (Rumelhart et al., 1988), the hierarchical
organization of the mammalian visual processing in the cortex
for the development of deep learning (Schmidhuber, 2014),
the successful application of attentional mechanisms to active
computer vision (Bermudez Contreras et al., 2008) or training
ANNs (Graves, 2013; Sutskever et al., 2014), and the impressive
development of RL systems that can beat world-class players
at highly-complex games (Botvinick et al., 2019). Despite these
contributions that have propelled the recent impressive progress
and applications of DL and RL, there are important limitations
in these areas which can benefit from the knowledge generated in
neuroscience. First, a limitation of the current state of DL is that,
despite being used in impressive applications, these networks
suffer from poor generalization or fail to extract semantic
knowledge from the large training data sets. For example,
successful applications of classic DL are highly optimized non-
linear classifier systems that require many training examples to
fine tune a large number of parameters rather than systems that
extract knowledge by building robust semantic understanding
of the inputs. In contrast, the analogous biological networks
show a great deal of generalization during learning. The way that
the brain performs spatial navigation might provide valuable
insights into how to solve this limitation in current AI methods.
First, memory consolidation is hypothesized to use a mechanism
in which relevant episodes (time and space dependent) are
formed into memories from which semantic knowledge
(context independent) is extracted. These mechanisms, possibly
implemented in the same network, might be similarly employed
for navigation in the formation of cognitive maps from repeated
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exposure to self-centered exploration episodes (Figure 3C; Lever
et al., 2002; Buzsáki and Moser, 2013).

Another related limitation is the number of training examples
that DL requires to learn. This limitation is contrasted with
the biological counterparts in which learning happens very
rapidly in most cases. This might be due to the fact that
brains are not completely randomly connected at birth such
that we have to learn everything from scratch. Instead, there
are developmental processes that determine pre-wired networks
and mechanisms that bootstrap innate behaviors (Zador, 2019).
Thus, neuroscience may be able to inform AI so that models
can combine learning with evolutionary and developmental
approaches in which plasticity and circuit refinement build upon
pre-wired brain networks. A similar limitation in RL arises in
complex environments where agents require a large number
of exposures to the environment in order to improve policies
(which is the way that determines how the agent interact with
its environment). A neuroscience-inspired mechanism to reduce
the number of required exposures for learning that is also
implemented by structures involved in spatial navigation, is
to use previous experiences to select possible actions for new
situations. This approach, known as learning to learn (episodic
meta RL), has already been successfully applied to solve spatial
navigation tasks (Chalmers et al., 2016, 2017; Duan et al.,
2017; Finn et al., 2017; Botvinick et al., 2019). In addition, a
well-studied process in neuroscience is memory consolidation
in which the replay of previous experiences helps to extract
semantic knowledge from episodic instances. There is also
evidence that not only previous experiences but also unexplored
possibilities are used to evaluate possible outcomes in navigation
tasks in rodents (Dragoi and Tonegawa, 2011). A similar
approach has been applied in ANNs to solve spatial navigation in
simulated agents and robots (Cazin et al., 2019, 2020). Another
important interaction between AI and Neuroscience in spatial
navigation has been the idea that the hippocampus is not a spatial
cognitive map but instead, a prediction map (Evans and Burgess,
2019). From this perspective, hippocampal activity encodes the
animal’s future locations which are restricted by the environment
and their value (rewards) (Stachenfeld et al., 2017; Brunec and
Momennejad, 2019).

An additional aspect in which neuroscience could provide
ideas to advance AI and in particular ANNs is by incorporating
what is known about brain architecture. At the moment, most
of the deep learning approaches use a limited repertoire of
what is known about how brain cells compute information.
For example, the richness of neuronal types, network topologies
or the additional dynamics provided by neuromodulators, the
combination of local and long-range synaptic connections
might improve the capabilities or reduce the limitations of
AI approaches (Ullman, 2019). One important aspect of the
representations derived from ANNs is their robustness. The
generalization achieved by these systems can be enhanced
using regularization techniques during training such as dropout
(Srivastava et al., 2014; Hawkins and Ahmad, 2016). Introducing
variability or “noise” in the training data or the computing units
(Destexhe and Contreras, 2006; Guo et al., 2018; Wu et al., 2019)
(arguably modeling their biological counterparts) can shape the

properties of their representations (Faisal et al., 2008). In spatial
navigation for example, this variability is useful for favoring the
emergence of robust representations that resemble the spatial
representations found in the medial temporal lobe (Banino et al.,
2018). The robustness to environment variability, noisy sensors,
and actuators of these emergent spatial representations has been
proposed to be crucial in the efficiency of biological systems to
navigate (Vickerstaff and Cheung, 2010).

From the AI perspective, one of the main criticisms of the
current development of DL and AI in trying to understand the
brain is that, recently, the main focus of such developments has
been to exploit the computational power of deep architectures for
technological advancement. This emphasis produced powerful
classification devices that are poor at generalizing and at
extracting semantic knowledge. However, such processes have
been proposed to advance our understanding of intelligent
behavior (Hassabis et al., 2017; Zador, 2019). Analogously,
artificial autonomous navigation is an active area of AI research
for engineering driverless vehicles (Lipson and Kurman, 2016).
Even though one of the most popular algorithms in autonomous
vehicles has a version based on certain aspects of the neuroscience
of the navigation system in rodents (Milford et al., 2010; Ball et al.,
2013; Xu L. et al., 2019), this particular approach has not been
designed to advance what we know about the brain, suggesting
a potentially unrealized opportunity for synnergy between the
neuroscience of spatial navigation and AI (Dudek and Jenkin,
2002; Zafar and Mohanta, 2018).

AI Contributions in Neuroscience Research
The contribution of AI and machine learning in neuroscience
is 2-fold. At a more straightforward level, machine learning
provides an analysis tool to make sense of brain activity and
behavior in animal models in neuroscience. For example, DNNs
have also been applied to analyze animal behavior to predict
motor impairments in a mouse model of stroke. In this work, the
trained network was able to predict the volume of brain tissue
affected by stroke (Ryait et al., 2019). Similarly, DNNs have been
used for pose estimation of animal videos (Mathis et al., 2018). In
addition, and more related to spatial navigation, DNNs have also
been applied to decode sensory and behavioral information such
as animal position and orientation from hippocampal activity
(Frey et al., 2019; Xu Z. et al., 2019). In a less direct way, AI has
advanced neuroscience by providing a model of the brain. For
example, DNNs have been used to reproduce brain activity in the
visual system to learn about the organization of this network in
primates (Walker et al., 2019) and mice (Cadena et al., 2019).
Analogously and as previously mentioned, AI approaches have
been used as a model of the brain to understand how spatial
representations emerge and under what conditions (Banino et al.,
2018; Cueva and Wei, 2018; Sorscher et al., 2019).

There are limitations and criticisms for these contributions
in neuroscience. One common criticism for machine learning
approaches in neuroscience is the employment of DL as a model
of the brain. This criticism comes from two perspectives. One is
the complexity, because by employing such models it is difficult
to analyze them and to fully explain their behavior, particularly
when using end-to-end approaches. However, there is progress in
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the development of approaches to understand the computations
that complex deep ANNs carry out to produce their outputs.
For example Cohen et al. (2020), propose a layer-by-layer
approach in which the features represented at different layers
of a deep network trained to classify images can be understood
as a hierarchical architecture that gradually builds the concepts
exploited by the network. A complementary approach proposed
by Tishby and Zaslavsky (2015) and Alemi et al. (2019) consists
of analyzing what information is passed onto the next layer, a
process called “information bottleneck.” For a review of these
approaches see Montavon et al. (2018). Despite this limitation,
this approach might still provide controlled, reproducible
experimental sand-boxes to improve our current analytical tools
(that can be applied to real brain data) or to generate and test
new hypotheses (Jonas and Kording, 2017). Another concern
is that, in some cases, ANNs employ non-biologically plausible
algorithms (Zador, 2019). For example, in some cases, popular
and successful algorithms such as backpropagation are used to
train such ANNs, which do not emulate the way in which the
brain “learns” (Richards et al., 2019). This criticism raises the
possibility that even if we can train ANNs that perform spatial
navigation, this is not a guarantee that the brain might solve
the task in a similar way (Burak and Fiete, 2009; Kanitscheider
and Fiete, 2017). It is in these cases where a reciprocal
interaction with neuroscience research can provide inspiration
to propose new biologically relevant learning algorithms. For
example, there are attempts to implement biologically plausible
algorithms (including variants of backpropagation) to train deep
ANNs (Roelfsema and Holtmaat, 2018; Sacramento et al., 2018;
Pozzi et al., 2019). Therefore, imposing biologically plausible
restrictions to the artificial environment, body and brain, might
allow one to directly compare the solutions found by AI to their
biological counterparts to determine whether these solutions
might inform us about how the brain performs spatial navigation
(Sinz et al., 2019).

Another criticism of the machine learning approach and in
particular of using DNNs to understand brain function and
ultimately, intelligent behavior, is that this approach disregards
the “refinement phylogenetic” of biological organisms (Cisek,
2019). One proposal to address this is to start with the minimal
cognitive functions that gave rise to navigation in simple
organisms (Yamauchi and Beer, 1996; Beer and Williams, 2015).
The feedback from neuroscience can provide useful insights for
the advancement of such approaches (Webb andWystrach, 2016;
Graham and Philippides, 2017). Although, the neurobiological
basis of spatial navigation and its relationship to learning and
memory in simpler organisms like insects are not as well-
understood as in rodents.

Overall, despite the great advances in the understanding of the
neurobiology of the spatial navigation system in rodents, there
are important open questions in neuroscience that can benefit
from AI approaches. In particular, end-to-end approaches
to solve navigation tasks can help in the advancement of
the neuroscience of spatial navigation because the potential
solutions are not restricted to the current knowledge of the
experimenter. This is a very important point in the generation
of new hypotheses about how the brain might solve a complex

task. For example, the manipulation of spatial representations
is difficult to study with current approaches in neuroscience
(Kanitscheider and Fiete, 2017). This is due to the difficulty
of experimental preparations and lack of tools to analyze
such complex data. AI can help neuroscience research in
both regards. On the one hand, a successfully trained ANN
that solves a navigation task provides the opportunity to
repeat and manipulate environmental conditions (e.g., sensory
inputs) and parameters (e.g., network topology) to gain
insights into possibly interesting avenues to follow in rodent
experiments. On the other hand, it provides an opportunity
to develop analytical tools to understand the complex
mechanisms employed in these models and apply them to
real data.

Finally, we want to clarify that the classification of the models
presented here is not necessarily exhaustive, mutually exclusive
or discrete. There are end-to-end models that have different
levels of assumptions or use a hypothesis driven approach to
different extents. Similarly, in theoretical neuroscience normative
models might not be considered completely equivalent to end-
to-end models in AI. However, the purpose of the classification
presented in this paper was to highlight the differences of end-
to-end AI approaches that can further our understanding of
brain function and provide a common language that can bridge
the communication gap between the neuroscience of spatial
navigation and AI.

CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we propose spatial navigation as a common
ground where research in neuroscience and AI can converge
to expand our understanding of the brain. We suggest that by
understanding how the brain carries out the cognitive processes
to solve a complex task such as spatial navigation, we will be
in a better place to understand how intelligent behavior might
arise. There are several reasons why we propose this. First, spatial
navigation is a complex task that involves areas and cognitive
processes in the brain that are crucial for intelligent complex
behavior. Second, by using spatial navigation as a problem to
be solved by artificial systems that follow biologically relevant
restrictions, we can use this as a “sandbox” to improve our
analytical tools. Our hope is that this paper provides a starting
point for researchers of both fields to further the understanding
of spatial navigation as a path to advance the study of how
biological brains produce intelligent behavior.

To conclude, by building models and agents that solve
spatial navigation tasks following the restrictions imposed by the
interactions of the body and environment found in biological
systems, we argue that we can not only learn more about the
brain but also how the processes involved in complex intelligent
behavior might rise. Moreover, by producing comparable
solutions that can be validated against experimental results in
neuroscience, we might advance the development of ANNs
and overcome current limitations. Promising research avenues
can be drawn from the approaches and studies presented here.
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For example, further investigation of learning of spatial
representation at multiple scales in time and levels of abstraction,
the role of memory in these processes, knowledge extraction,
learning to learn, and understanding how the brain performs
coordinate transformation between body-centered and map-
like representations. These are crucial cognitive components
of intelligence which can have a great impact in neuroscience
and AI.

Despite much room for future growth, the early joint efforts
between AI and neuroscience to understand the neural substrates
for spatial navigation is gaining traction and is becoming
an exciting and promising approach. We propose that this
synergetic interaction will help to understand how cognitive
processes give rise to intelligent behavior but also will contribute
to the development of better tools to do so.
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