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As one of the most serious complications of radiotherapy, osteoradionecrosis (ORN) seriously affects the quality of life of patients
and even leads to death. Vascular injury and immune disorders are the main causes of bone lesions. -e traditional conservative
treatment of ORN has a low cure rate and high recurrent. Exosomes are a type of extracellular bilayer lipid vesicles secreted by
almost all cell types. It contains cytokines, proteins, mRNA, miRNA, and other bioactive cargos, which contribute to several
distinct processes. -e favorable biological functions of mesenchymal stem cells-derived exosomes (MSC exosomes) include
angiogenesis, immunomodulation, bone regeneration, and ferroptosis regulation. Exploring the characteristic of ORN and MSC
exosomes can promote bone regeneration therapies. In this review, we summarized the current knowledge of ORN and MSC
exosomes and highlighted the potential application of MSC exosomes in ORN treatment.

1. Introduction

Osteoradionecrosis (ORN) is regarded as the most destructive
complication of radiotherapy [1, 2], which mainly manifests as
chronic spontaneous pain, dysphagia, facial deformation, and
other symptoms [3]. It seriously affects the quality of life of
patients and even leads to death [4].-e first clinical evidence of
ORN radiotherapy was reported in 1922 [5]. Using modern
treatment techniques, such as intensity-modulated proton
therapy, the estimated incidence of ORN has dropped to 2–5%
[6–10]. However, ORN has the highest incidence in oral cancer
radiotherapy, as high as 78% [11]. -e incidence of the
mandibular is significantly higher than that of the maxilla,
mainly due to the higher blood supply of the upper jaw bone
[12]. ORN is irreversible and can last for decades. However,
there is still no gold standard treatment or consensus guidelines.

Exosomes belong to a category of extracellular vesicles,
with a diameter of 40–160 nm (an average of 100 nm) [13]
and a density of 1.13–1.19 g/ml [14]. -ey are membrane-
bounded phospholipid vesicles with a cup-shaped structure

derived by all eukaryotic cells [15, 16] (Figure 1). -ese cells
secrete exosomes through regulatory processes such as
endocytosis, fusion, and efflux [17].

-ere are surface markers on the exosome membrane,
such as CD63 [18–21], CD9, CD81 [22], and other trans-
membrane proteins. Exosomes contain many bioactive
cargos, including cytokines, lipids, mRNAs, and more than
170 miRNAs and 304 proteins [13]. -e contents of exo-
somes change dynamically and are related to the cell type
and state. Recipient cells can take up the exosomes through
diverse markers on the membrane to perform different
functions [13]. Due to the rich sources, simplicity, safe, low
immunogenicity, and other advantages, exosomes have
become a hot spot in current research studies [23–27].

Among the potential providers of exosomes, such as
epithelial cells [28], mast cells [29], dendritic cells
[30], lymphocytes [31–33], and neuronal cells [34], mes-
enchymal stem cells (MSCs) have been widely concerned as
seed cells in the field of tissue engineering and regenerative
medicine. MSC exosomes are the primary product of MSCs
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[35]. Retaining similar biological characteristics and func-
tions as MSCs, MSC exosomes are more stable and easier to
preserve [36]. According to a report, MSC exosomes have
enormous potency in repairing tissue lesions. -ey can
promote the repair of damaged endometrium in intrauterine
adhesion through the TGF-β1/Smad pathway [25]. -ey can
change the immune environment to promote myocardial
repair [37]. -ey can also promote skin regeneration and
wound healing by accelerating angiogenesis, fibroblast
proliferation, and collagen deposition [38–40]. In diabetic
rats, exosomes derived from MSCs pretreated with ator-
vastatin can accelerate wound repair by promoting angio-
genesis via the AKT/eNOS pathway [41].

MSC exosomes have the ability of angiogenesis,
immunomodulation, bone regeneration, and ferroptosis
regulation, which provides novel insight for the treatment of
ORN (Figure 2). -erefore, this review will discuss the latest
pathogenesis of ORN and the therapeutic mechanism of
MSC exosomes. We also discuss the advantages and chal-
lenges of exosomes’ clinical application.

2. Pathophysiology of ORN

ORN refers to the bones that cannot heal for more than three
months and have no persistent tumors after being irradiated
[42, 43]. Clinical signs and symptoms vary with the stage of
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Figure 1: Characteristics of exosomes. (a) Exosomes derived from almost all types of cells. (b) Exosomes originating from an endocytic
compartment and secreted from intracellular endosomes into extracellular space. (c) Exosomes are vesicles with a phospholipid bilayer
membrane.-e exosomes contain some biomarkers, such as CD9, CD63, CD81, and integrins, MHC, cholesterol, and other proteins on the
surface.-e exosomes also contain miRNAs, mRNAs, cytokines, and some proteins in the lumen. MHC, major histocompatibility complex.
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Figure 2: -erapeutic effects of MSC exosomes on ORN. Exosomes isolated fromMSC and transferred to body. MSC exosomes exert their
therapeutic effects on ORN through their angiogenesis, immune regulation, bone regeneration, and iron death regulation abilities.
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ORN, including mucosa ulceration and necrosis [44], tris-
mus [45], and suppuration [46]. Pain, anesthesia, halitosis,
and dysgeusia are neurological symptoms when ORN occurs
in the oral [42]. With the development of ORN, it becomes
difficult to speak, masticate, and even open mouth [47–49].
Radiography, computed tomography (CT) scans, and
orthopantomogram (OPT) are recommended to detect ORN
according to the degree of bone lesions (one of its most
typical pathological changes) [5]. However, the character-
istics of the image are uncorrelated with the severity of
ORN [50].

To clarify the pathogenesis of ORN, different scholars
have proposed different hypotheses [51–56]. -e first is the
radiotherapy-trauma-infection theory [51], in which bac-
teria invade the jaw bone through the wound, cause chronic
infection disease, and lead to ORN [48]. It was the basis of
the popular antibiotic therapy for ORN. However, this
theory had been questioned because no microorganisms had
been found in deep lesions [52]. With the advancement of
microbial detection technology, the presence of the deep
microorganisms in radionecrotic mandibles was detected by
DNA hybridization, suggesting that the theory may still be
reasonable, and the role of anaerobic infection in ORN may
be essential [57].

-e second is the three-hypo theory based on vascular
injury and immune dysfunction. After radiation, the hyp-
oxic, hypocellular, and hypovascular state in the bone leads
to vascular injury and immune dysfunction, causing chronic
nonhealing wounds andORN [52].-is hypothesis was once
considered to be the most likely to explain the ORN
mechanism [58]. For decades, hyperbaric oxygen (HBO)
therapy based on it has been the standard and conservative
choice for the treatment of ORN [59]. However, the de-
velopment of HBO therapy based on this three-hypo hy-
pothesis is still controversial [60–62]. Annane et al.
demonstrated that patients with overt mandibular ORN did
not benefit from HBO therapy in a randomized, double-
blind, and placebo-controlled trial [61]. Forner et al. found
that only minor stem cells were mobilized in head and neck
irradiated patients treated with HBO [62]. Since there are
few studies on postoperative radiotherapy for head and neck
cancer, the effect of HBO on ORN and its specific mecha-
nisms need to be further explored.

-e third is the reactive oxygen species (ROS) theory, in
which ROS caused endothelial cell damage in ORN [53, 63].
-e occurrence of ORN was related to the ischemia caused
by vascular embolism [54, 55] and the imbalance of bone
regeneration caused by hypovascularity [64]. In addition,
some studies have suggested that the radiation injury of
osteoclasts occurs earlier than vascular changes, which may
be the initial event in the development of ORN [48, 65–67].

-e fourth is the mainstream radiation-induced
fibroatrophic theory, in which the pathogenesis of ORN is
divided into three stages. -e first stage is the initial pre-
fibrotic stage. Radiation-induced ROS and chemokines at-
tract leukocytes to the injury sites, triggering an acute
inflammatory response through ROS produced from mac-
rophage and leading to endothelial cell damage [5, 63, 68].
-e next stage is the constitutive organized stage. Due to the

loss of the vascular endothelial barrier, cytokines such as
FGF-β, TGF-β1, tumor necrosis factor-α (TNF-α), and in-
terleukins (IL) result in the accumulation of fibroblasts and
transdifferentiation of fibroblasts into myofibroblasts (MFB)
[69–71]; -e last stage is the late fibroatrophic stage.
Hypoxic, hypocellular, and hypovascular environments can
lead to bone fragility, and changes in the local metabolic
environment can lead to ORN [53]. -e key factor of this
theory is the generation of MFB [72]. MFB proliferates
rapidly and produces a large amount of extracellular matrix
protein and collagen, which disrupts the balance of synthesis
and degradation in the radiated tissue. As a result, fibrous
tissue replaces the bone matrix, leading to the occurrence of
ORN. In the meantime, the combination of pentoxifylline
(PTX) and vitamin E for antioxidation and antifibrosis
therapy has shown efficacy in clinical trials [73–76], which
points out the direction for exploring new therapies.

Recently, ferroptosis has been discovered as an iron-
dependent form of nonapoptotic cell death, providing a new
possible theory for ORN [56, 77, 78]. Triggered by excessive
lipid peroxidation, ferroptosis has morphological, bio-
chemical, and genetic characteristics different from apo-
ptosis [79, 80]. One of its representative characteristics is
smaller mitochondria with condensed mitochondrial
membrane densities [81]. During radiotherapy, ionizing
radiation generates ROS and induces the expression of long-
chain acyl-CoA synthetases 4 (a lipid metabolism enzyme),
which leads to lipid peroxidation and ferroptosis [82]. In
cancer cases, some small molecules promote ferroptosis and
inhibit tumor cells by synergizing with radiation and
inhibiting glutathione peroxidase 4 [83]. However, excessive
ferroptosis also occur in normal cells, ischemia-reperfusion
injury, kidney failure, neurodegeneration, and other diseases
[56]. If ferroptosis occurs in the osteoblasts, osteoporosis
and osteonecrosis will appear [84]. Exosomes derived from
mouse vascular endothelial cells can reverse osteoporosis by
inhibiting osteoblast ferroptosis [84]. However, there are
insufficient clinical trials and basic experiments to prove the
relationship between ferroptosis and ORN.

3. Traditional Treatments of ORNs

Based on the degree of bone and soft tissue damage, ORN
consists of four stages (stage 0, stage I, stage II, and stage III)
[60]. Different stages of ORN require distinct treatment
protocols [85].

Surgical treatment has been widely used in ORN. Sur-
gery includes removal of small sequestrum, ostectomy,
radical resection, and flap reconstruction [85]. According to
a review, the most common option for mandible recon-
struction was a fibula-free flap with plenty of vessels to
provide sufficient blood supply [86]. However, its relatively
large wound and slow recovery are serious shortcomings.

In addition to surgery, there are six types of conservative
therapies for ORN. -ey are debridement, HBO therapy,
PTX and tocopherol (vitamin E), chlorhexidine, ultrasound
therapy, growth factor, and MSC therapy. However, each of
them has its shortcomings and can only be combined with
other treatments.
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Eliminating all bones that are no longer vascularized can
prevent long-term infection and inflammation, thereby fa-
cilitating subsequent therapies [87]. According to recent
evidence, HBO therapy was not recommended for ORN at
any stage [61, 62, 88, 89]. PTX and vitamin E can prevent
radiation-induced fibrosis (RIF) in patients with ORN
through a synergistic effect [90–92]. A phase II trial showed
that PTX, tocopherol, and clodronate (together referred to as
PENTOCLO) helped 89% of patients to recover within 14
months [93]. Although PENTOCLO has a positive impact
on the treatment of early ORN, stage II and III cases require
surgery for assistance [94]. Chlorhexidine is a commonly
used drug for the treatment of ORN since it can prevent
infection and promote wound healing [95]. Chlorhexidine
can be used as a bactericide against Gram-positive and
Gram-negative microorganisms and some yeasts [96]. A
study showed that with curettage and 0.12% chlorhexidine
flushing as the main treatment, exposed bone closure oc-
curred in 50% of cases, confirming the clinical effectiveness
of chlorhexidine [97]. Ultrasound therapy can promote
angiogenesis for revascularization of ORN [98–100].
However, due to the lack of further research, therapeutic
ultrasound can only be used as an experimental option in
clinical trials [85]. Due to its ability to regulate cytokines,
growth factors and MSC therapy are other potential choices
[85].-e plasma with growth factors-Endoret is beneficial to
the vascularization and epithelialization of ORN [101]. -e
combination of rat MSCs and bone morphogenetic protein-
2 (BMP2) is effective in the ORN treatment [102]. -is
feature of MSCs provides evidence for the potential thera-
peutic capability of the exosomes derived from MSCs.

Although conservative therapies can treat some early
ORN, the cure rate is only 28.6%, combined surgery is re-
quired to obtain better effects, and the recurrence is possible
[103]. -erefore, it is necessary to study a new treatment.

4. Therapeutic Effects of MSC
Exosomes on ORN

4.1. Angiogenesis. Angiogenesis and vascularization play
important roles in bone regeneration after radiation. Pro-
moted by a variety of endogenous proangiogenic factors,

including vascular endothelial growth factor (VEGF), he-
patocyte growth factor (HGF), stromal-derived factor-1
(SDF-1), platelet-derived growth factor (PDGF), fibroblast
growth factor (FGF), and epidermal growth factor (EGF)
[104, 105], endothelial cells successively form buds, capil-
laries, and vessel networks [36]. Exosomes loaded with
miRNA-7b, -9, -21, -26a, -27a, -210, -378, -195–497 cluster,
-675–126 [106], -132 [107], -135b-5p, and -499a-3p show
positive effects on angiogenesis [106–110]. Further studies
have shown that the noncoding RNA cargos play essential
roles in regulating angiogenesis by accommodating
proangiogenic factors.

Recent studies have revealed that MSC exosomes with
different contents can promote angiogenesis through vari-
ous signaling pathways (Table 1). Exosomes secreted by
MSC enhance angiogenesis through the Jagged 1 and Notch
signaling pathway under the stimulation of hypoxia-in-
ducible factor-1α (HIF-1α) [111]. Exosomes secreted by
human bone marrow MSCs promote angiogenesis through
the Akt/mTOR signaling pathway under the stimulation of
dimethyloxalylglycine (DMOG) [112]. Exosomes secreted by
human-induced pluripotent stem cells (hiPSC-MSC) en-
hance angiogenesis through the PI3K/Akt signaling pathway
in endothelial cells [113, 114]. CD63+ exosomes secreted by
bone marrow MSCs transported Wnt3 protein exteriorly to
enhance angiogenesis [115]. Exosomes secreted by human
placenta-derived MSCs (hP-MSCs) can enhance the an-
giogenic effects of HUVECs through increasing VEGF and
miR-126 under the stimulation of nitric oxide (NO) [116].

-e vascular injury through different mechanisms can
also be prevented or even reversed by MSC exosomes.
Exosomes play a key role in repairing DNA double-strand
breaks and alleviating oxidative damage [117]. After exposure
to MSC exosomes, the apoptosis caused by radiation-induced
DNA damage in vascular endothelial cells is reduced [118].

4.2. Immunomodulation. According to the radiation-in-
duced fibroatrophic theory, radiation-induced endothelial
injury leads to necrosis and tissue ischemia in the prefibrotic
stage and constitutive organized stage [53]. -e released free
radicals and chemokines attract white blood cells to the
injury site and cause inflammation [68].

Table 1: MSC exosomes promote angiogenesis through various signaling pathways.

Exosomes Pathway/key
molecule Function Experiment

type Reference

MSC exosomes derived from
overexpressing HIF-1α Jagged 1/Notch Enhanced angiogenesis and capillary-like tube

formation In vitro [111]

Exosomes derived from DMOG-
stimulated human bone marrow MSCs Akt/mTOR Promoted angiogenesis in the critical-sized

calvarial defect rat model In vivo [112]

iPS-MSC-Exos PI3K/Akt Enhanced the proliferation, migration, and tube-
forming capacities of endothelial cells In vitro [113]

Exosomes from hiPSC-MSC — Enhanced angiogenesis and osteogenesis under
osteoporotic conditions In vivo [114]

CD63+ exosomes derived from bone
marrow MSCs Wnt3 protein Enhanced endothelial angiogenesis In vitro [115]

Exosomes released from hP-MSCs by NO
stimulation

VEGF and
miR-126 Enhanced the angiogenic effects of HUVECs In vitro [116]
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Since the immune disorder is one of the pathogeneses
of ORN, MSC exosomes may become a potential treatment
for ORN due to their immunomodulation capability in
bone and cartilage tissue [36]. MSC exosomes exert kinds
of anti-inflammatory function through immunomodula-
tion [119–122]. First, MSC exosomes induce macrophages
to shift from the M1-like to the M2-like phenotype [123].
-e former is a classic proinflammatory cell type, and the
latter is known for its anti-inflammatory responses
[124, 125]. Exosomal miRNA-146 [123], miRNA-34 [126],
and miRNA-181a [127, 128] can reduce the M1-related
cytokines, such as IL-6, IL-12, and TNF-α, and enhance the
M2-related cytokines, such as IL-10 and TGF-β, by pro-
moting M2 polarization of macrophages [129, 130]. MSC
exosomes also play the immunoregulatory role on osteo-
genesis by decreasing M1 phenotype markers of macro-
phage [131]. MSC exosomes loading with Wnt could
activate Wnt/β-catenin signaling on target cells and alle-
viate radiation-induced bone loss [132]. Wnt/β-catenin
signaling has been implicated in M2 macrophage polari-
zation [133]. Second, MSC exosomes transport metal-
lothionein-2, which causes inflammation reduction in a
macrophage-dependent mechanism [129], participates in
NO-mediated osteogenic pathways in osteoblasts [134].
-ird, MSC exosomes mediate the acquisition of an im-
mune tolerogenic phenotype in mature dendritic cells
(DCs) [135]. -en, the tolerogenic DCs promote naı̈ve
CD4+ T cells to differentiate into Treg cells by secreting a
variety of anti-inflammatory factors [135]. Fourth, MSC
exosomes decrease lymphocyte proliferation [135] and
serve as conveyors of the immunosuppressive effect on
B lymphocytes [136]. In addition, the number of CD8+
T cells and the ratio of CD8+ T cells to CD4+ T cells in the
peripheral blood were both restricted in certain conditions
[137].

Some studies have proved the anti-inflammatory effects
of MSC exosomes in bone and cartilage tissues [138–140].
Exosomes derived from adipose-derived MSCs can reduce
the production of inflammatory mediators, such as TNF-α,
IL-6, PGE2, and NO, to alleviate joint osteoarthritis (OA)
[138]. Exosomes derived from human bone marrow MSCs
can promote cartilage regeneration by inhibiting TNF-
α-related collagenase activity [139]. -ey can also inhibit
macrophage activation and chondrocytes apoptosis to treat
joint damage [140].

To our knowledge, TGF-β1 and ROS are thought to play
a more important role in radiation-induced fibrosis
[141–144]. ROS can upregulate the expression of several
fibrogenic genes by activating HIF-1α and releasing TGF-β1
[145]. It seems that we could come to reasonable speculation.
MSC exosomes may slow down the fibrosis process in ORN
development through immunoregulation. However, these
conjectures require further study to confirm.

4.3. Bone Regeneration. Osteoblasts (OBs), derived from
MSCs, account for 4–6% of osteocytes. -e main function of
OBs is to deposit calcium salts and form the bone. MSC
exosomes can regulate the osteogenic differentiation of

MSCs and the proliferation of OBs by using miRNAs to
affect the expression of OBs-related mRNAs [146] (Table 2).

MSC exosomes containing miR-29a and miR-29c in-
duce the osteogenic differentiation of MSCs by increasing
the expression of OBs-related miRNAs, such as miR-206,
miR-196a, and miR-27a [147]. At different time points of
the osteogenic differentiation of MSCs, the expression of
miR-199b, miR-218, miR-148a, and miR-135b increased,
and the expression of miR-221, miR-155, miR-885-5p,
miR-181a, and miR320 decreased in MSC exosomes [149].
-e differential expression of let-7, miR-218, miR-196a,
and miR-118a in MSC exosomes can also stimulate MSCs
to differentiate into osteoblasts [148]. Studies have found
that miR-885-5p regulates BMP2-induced osteogenic dif-
ferentiation [149, 159]. MSC exosomes also promote the
proliferation of OBs through miR-122-5p and the MAPK
signaling pathway [160, 161]. Some contents of MSC
exosomes, such as miR-92a-3p and miR-140-5p, can al-
leviate OA by promoting chondrogenesis, enhancing
chondrocytes migration, and suppressing cartilage degra-
dation [157, 158].

In addition, MSC exosomes can promote the prolifer-
ation of bone marrow stem cells and reduce radiation
damage by reducing cell apoptosis and DNA damage [162].
Transplantation of human MSCs can enhance mouse bone
marrow production and megakaryocyte production [163].
Injection of MSC exosomes can protect cd92/2 mice from
delayed fracture healing [164]. -e miR-148a-3p in MSC
exosomes can prevent the osteonecrosis of the femoral head
by inhibiting the expression of Smad ubiquitination regu-
latory factor 1 (SMURF1) [151].

4.4. FerroptosisRegulation. Ferroptosis is an iron-dependent
form of nonapoptotic cell death and is a newly discovered
potential mechanism for tumors treatment [56, 77, 78]. If
there is pathological ferroptosis in OBs, osteoporosis and
osteonecrosis will occur [84]. -e release of iron from
exosomes mediates ferroptosis resistance [165]. Prominin-2
is a lipid dynamics regulation protein. It promotes the
formation of multivesicular bodies (MVBs) and exosomes
containing ferritin, thereby transporting iron out of cells and
preventing ferroptosis [166, 167]. Given that exosomes are
involved in the ferroptosis resistance in tumor cells [168],
they may alleviate ORN by affecting the ferroptosis resis-
tance in osteogenesis-related cells. MSC exosomes have high
biocompatibility and efficiency [169, 170].-is characteristic
may provide a novel idea for improving ORN by regulating
ferroptosis.

4.5. Exosomes and Tumor Radiotherapy. Many studies have
shown that exosomes are closely related to tumor radio-
therapy. Exosomes derived from MSCs increase the inhib-
itory effect of radiotherapy on tumor metastasis [171]. In
prostatic cancer, exosomes mediate radiation-induced
nontargeting effects [172]. Radiation-activated p53 can be
transmitted away through exosomes [173, 174]. Breast
cancer exosomes promote DNA damage repair responses
after radiation by regulating the phosphorylation of
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checkpoint kinase 1 (Chk1) [175]. Since exosomes can in-
crease radioresistance through the miRNA inside [176, 177],
we speculate that MSC exosomes may alleviate ORN by
increasing the radioresistance of healthy bone cells.

5. Discussion

-e treatment plan of ORN is comprehensive according to
patients’ age, compliance, and hospital conditions. -e basic
principles should be formulated based on classification and
stage [85].

Due to the subsequent high infection rate, HBO treat-
ment is not the best option [178]. At present, the traditional
method for the latter stage of ORN is surgery combined with
conservative treatments [85]. Adjuvant drugs such as
chlorhexidine [179], antibiotics [85], and analgesics [180]
can only be in combination with other surgical treatments,
such as removal of small sequestrum, marginal man-
dibulectomy, segmental mandibulectomy, radical resection,
and flap reconstruction [85]. However, a simple and
atraumatic method is needed to treat ORN. MSC exosomes
are promising candidates for ORN therapy, mainly due to
their unique biological properties and various physiological
effects.

MSC exosomes have higher biocompatibility than MSCs
and can easily avoid immune rejection when transferred to
impaired tissues [181]. MSC exosomes can avoid their in-
ternal specific cytokines or miRNA from being degraded by
enzymes and achieve a stable therapeutic effect [182]. MSC
exosomes can simultaneously activate multiple signaling
pathways, avoid genetic modification of target cells, and
provide repeatable and predictable results with stable

phenotypes [181]. MSC exosomes have many advantages
over traditional bone grafting because they can combine
with a variety of biomaterials to repair bone defects [183].
Based on the above advantages, MSC exosomes show
beneficial prospects in the treatment of ORN.

However, the clinical application of MSC exosomes faces
many challenges. First, due to the conditions for the pro-
duction of exosomes, the contents of exosomes are relatively
unstable [184]. For example, the miRNA profile of exosomes
is significantly affected by ionizing radiation [185]. Second,
there is no uniform standard for the identification, quan-
tification, and purification of exosomes, which lead to di-
verse results in dose-dependent experiments and uncertain
effects in clinical applications [36]. -e International Society
for Extracellular Vesicles (ISEV) recommended several
methods for the separation of exosomes, such as differential
centrifugation, size exclusion chromatography (SEC),
immunoaffinity capture, and combinations of the above
techniques [186]. However, the specific application scopes of
each method still need to be illustrated and unified. -ird,
there is still a lack of methods to obtain high purity exosomes
while ensuring sufficient yield. Studies suggested that cul-
turing MSCs in scalable microcarrier-based three-dimen-
sional cultures with tangential flow filtration can improve
the productivity of MSC exosomes [187]. But more research
studies are needed to translate this experiment discovery
into clinical application. Finally, some roles of MSC exo-
somes remain unknown or inconsistent. -eir various
functions depend not only on the lipids, nucleic acids, and
proteins inside but also on the molecules and particles on the
surface [188]. Since only a small part of the roles has been
explored, it is urgent to improve and innovate the research

Table 2: -e expression of partial miRNA derived from exosomes and the effects on osteogenesis.

mi-RNA Expression level Function
miR-29a Carried in MSC exosomes Induce the osteogenic differentiation of MSCs [147]
miR-29c

miR-206 -e expression of osteoblast-related miRNA was
significantly increased [147] Promote the proliferation and differentiation of OB [147]

miR-27a
miR-196a Stimulate the differentiation of BMSCs into osteoblasts [148]

miR-218 Significantly upregulated in exosomes isolated from
BMSCs culture [149] Stimulate the differentiation of BMSCs into osteoblasts [148]

miR-
199b-5p Promote chondrogenic differentiation [150]

miR-
148a-3p

Prevent the osteonecrosis of the femoral head by inhibiting SMURF1
[151]

miR-135b Enhance chondrocyte proliferation by downregulating SP1 [152]

miR-221 Significantly lower expressed in individual exosomal
samples over time [149]

Inhibit osteogenic differentiation of BMSCs via the IGF-1/ERK
pathway [153]

miR-155 Suppress osteoblastic differentiation by targeting SIRT1 [154]
miR-
181a-3p Inhibit osteogenic differentiation of MCSs by targeting BMP10 [155]

miR-320c Reduce the osteogenic potential of BMSCs through Runx2 [156]
miR-885-
5p

Exert a negative regulatory effect on the osteogenic differentiation of
BMSCs by inhibiting Runx2 [149]

miR-92a-
3p

Reduced in the OA chondrocyte-secreted exosome
[157] Promote chondrogenesis and suppress cartilage degradation [157]

miR-140-
5p

Derived from miR-140-5p-overexpressing synovial
mesenchymal stem cells [158]

Enhance proliferation and migration of chondrocytes through the
Wnt signaling pathway [158]
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methods and to conduct in-depth research on contents and
application methods of MSC exosomes.

6. Conclusions

Taken together, MSC exosomes play important roles in ORN
through their ability to regulate angiogenesis, immuno-
modulation, bone regeneration, and ferroptosis. Although
the clinical application of MSC exosomes faces many
challenges, this promising field will still attract further ex-
plorations and provide a more theoretical basis and clinical
treatment for ORN.
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