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Abstract

Background: Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We
previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with
proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However,
the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to
develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such
cells in PGIA.

Methods: Murine bone marrow (BM) cells were cultured for 3 days in the presence of granulocyte macrophage colony-
stimulating factor (GM-CSF), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). The phenotype of
cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-
MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells
were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of
arthritis and PG-specific immune responses were determined.

Results: BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed
greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and
polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA
ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.

Conclusions: Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM
myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse
model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the therapeutic efficacy of BM
transplantation in RA.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflamma-

tory disease that leads to painful joint destruction and disability

[1,2]. Despite novel treatment strategies, not all patients respond

to therapy. Although cell-based therapy such as transplantation of

autologous bone marrow (BM) or hematopoietic stem cells is a

promising option in both refractory RA [3] and therapy-resistant

juvenile idiopathic arthritis [4], clinical remission in transplant

recipients is still incomplete. Exploration of novel therapeutic

options is needed in order to control immune responses that drive

inflammation in these cases.

Research in recent years has uncovered a heterogeneous

population of immature myeloid cells, called myeloid-derived

suppressor cells (MDSCs). MDSCs with immunosuppressive

capacity were initially described in tumor-bearing mice [5].

Although the vast majority of data comes from cancer research

(reviewed in [6,7]), accumulating evidence supports the role of

MDSCs in chronic inflammatory and autoimmune disorders. A
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common feature of these pathological conditions is the release of a

broad array of inflammatory mediators (growth factors and

cytokines) that not only exert their effects on the affected organs,

but also disturb myelopoiesis in the BM. While some of these

mediators promote the expansion of MDSCs through stimulation

of myelopoiesis, others inhibit full differentiation of myeloid

precursors, thus contributing to the accumulation of MDSCs

around malignant tumors or at sites of inflammation (reviewed in

[8]). As the microenvironment under different pathological

conditions varies, the phenotypic and the functional properties

of MDSCs can be diverse [9,10]. MDSCs do not constitute a

homogenous cell population, rather, they are a mixture of

‘‘immature’’ forms of monocytes and granulocytes. What classifies

them as an integrated system is their shared ability to suppress

adaptive immune responses [8,10].

MDSCs in mice express the common myeloid markers CD11b

(a chain of aMb2 integrin, an adhesion molecule present on

monocytes and granulocytes) [11] and Gr-1 [8,12]. The epitope of

the widely used anti-Gr-1 monoclonal antibody (mAb, clone RB6-

8C5) is present on two molecules, Ly6G and Ly6C, which are

encoded by separate genes and expressed in granulocytic and

monocytic cells, respectively. Based on cell surface staining with

mAbs against CD11b, Gr-1, Ly6G, and Ly6C, the following

subtypes of murine MDSCs have been identified: CD11b+Gr-

1+Ly6GhiLy6Clo granulocytic, and CD11b+Gr-1+Ly6G2Ly6Chi

monocytic MDSCs [12,13]. These two subsets also display distinct

cellular morphology and may employ different strategies to

suppress immune responses in malignant, infectious, and autoim-

mune disease models [13–15]. The ultimate in vitro tools for

identifying MDSCs are functional assays testing the ability of

‘‘MDSC-like’’ cells to suppress T-cell responses [8].

Although MDSCs in cancer patients inhibit anti-tumor

immunity and thus promote tumor progression [6,16], the

immunosuppressive ability of MDSCs could be exploited to limit

further tissue damage in disorders like RA, where the pathological

mechanism revolves around the excessive activation of the

adaptive immune system [9]. This statement is corroborated by

several recently published studies involving successful adoptive cell

transfer of MDSCs in animal models of inflammatory bowel

disease [17], autoimmune uveoretinitis [18], type I diabetes [19],

multiple sclerosis (MS) [14] and collagen-induced arthritis (CIA)

[20]. All these studies depended on one key factor: a good source

of MDSCs.

In a previous study [21] we reported that synovial fluid (SF) in

the joints of mice with proteoglycan (PG)-induced arthritis (PGIA)

[22,23], an autoimmune animal model of RA, contained a cell

population with a granulocytic phenotype and a biological activity

resembling MDSCs. Upon co-culture of SF cells with T cells in the

presence of antigen (Ag)-loaded dendritic cells (DCs), T-cell

proliferation was profoundly inhibited, thereby confirming the

suppressor activity of SF-MDSCs. Experiments employing inhib-

itors of MDSC products revealed that these cells exerted their

suppressive effect via nitric oxide (NO) and reactive oxygen species

(ROS) production [21]. SF-MDSCs also significantly inhibited the

maturation of DCs through down-regulation of the major

histocompatibility class II (MHC II) molecule and the co-

stimulatory molecule CD86, resulting in impaired Ag presentation

by the affected DCs. Phenotypic characterization revealed that the

SF cell population was dominated by CD11b+Gr-1+ Ly6GhiLy6-

Cint/lo (granulocyte-like) MDSCs, but cells with CD11b+Gr-

1+Ly6G2Ly6Chi (monocytic) phenotype were also detectable

[21]. Interestingly, unlike in a recently published study [20] where

CD11b+Gr-1+ cells isolated from the spleens of mice with CIA had

suppressor activity toward T cells, splenic CD11b+Gr-1+ cells from

mice with PGIA did not suppress T-cell proliferation in vitro, only

SF cells did [21]. This led us to the conclusion that the

inflammatory microenvironment (e.g., locally produced cytokines

and growth factors) within the affected joints has the utmost

importance in not only promoting the recruitment of granulocytic

precursors, but also keeping these cells in an immature state and

endowing them with immune modulatory properties.

Our data suggested that SF-MDSCs could be exploited for

therapeutic purposes to prevent the expansion of pathogenic T

cells in vivo. However, the amount of SF that could be harvested

from the small mouse joints was a serious limiting factor for cell

transfer-based therapeutic studies, which prompted us to explore

alternative sources of MDSCs. We found that murine BM was an

excellent source of MDSCs and their precursors that could be

expanded in culture in an appropriate cytokine milieu. We chose

in vitro enrichment instead of antibody (Ab)-based positive

selection of BM-MDSCs because Ab binding to either CD11b

or Gr-1 on the cell surface has been shown by us and others to

impair the trafficking, survival, and suppressive function of

myeloid cells [11,24,25]. In the present study, we report on the

development of a method for generating large amounts of MDSCs

from BM (BM-MDSCs) whose characteristics are partially similar

to those found in the SF of mice with PGIA, but are more

powerful than SF-MDSCs in suppressing the Ag-independent,

polyclonal proliferation of T cells. We have also found that BM-

MDSCs are able to inhibit the progression of adoptively

transferred PGIA following injection of these cells into mice with

early arthritis symptoms.

Materials and Methods

Mice, immunization, and assessment of arthritis
Adult female BALB/c mice were obtained from the National

Cancer Institute (Frederick, MD). Enhanced green fluorescent

protein-lysozyme M transgenic (EGFP-LysM-Tg) mice [26] were

back-crossed to the BALB/c background for 10 generations

[21,27]. Spleens of naı̈ve PG-specific T cell receptor transgenic

(PG-TCR-Tg) BALB/c mice (recognizing a dominant epitope

within the G1 domain of human PG [28]) were used as a source of

PG/G1-specific T cells. BALB/c mice with the severe combined

immunodeficiency (scid) mutation (SCID mice) [27,29] were

purchased from the National Cancer Institute.

To induce arthritis, adult female wild type (wt) BALB/c mice

were injected intraperitoneally (i.p.) with 100 mg of human PG

protein [22] emulsified in dimethyl-dioctadecyl-ammonium bro-

mide (Sigma-Aldrich, St Louis, MO) adjuvant in sterile phosphate

buffered saline (PBS) 3 times 3 weeks apart [23,30]. PG was

extracted from human cartilage as described previously [21–23].

Cartilage was donated by patients undergoing joint replacement

surgery. Written informed consent was obtained from each

patient. Collection of surgical specimens was approved by the

Institutional Review Board of Rush University Medical Center

(Chicago, IL). After the second injection of human PG, the limbs

of immunized mice were examined for signs of arthritis. A

standard visual scoring system (based on swelling and redness,

ranging from 0 to 4 for each paw, 0–16 per mouse) was used for

the assessment of disease severity. All experiments involving

animals were conducted in accordance with the recommendations

of the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. The animal studies were approved

by the Institutional Animal Care and Use Committee of Rush

University Medical Center (Permit Number: 11–046).
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Collection of serum and cells/organs from mice, and
histology

Blood for cell analysis and measurement of anti-PG Ab titers

was drawn from mice under deep anesthesia induced by

intramuscular injection of a Ketamine-Xylazine cocktail. Mice

were then euthanized by carbon dioxide inhalation, and spleen,

BM, joint-draining lymph nodes (LNs) were collected. SF was

harvested in heparin containing tubes from arthritic ankles, knees,

and forepaws at the peak of the disease (inflammation score: 8–16

per mouse) after puncturing and gently pressing of the joints. Red

blood cells were eliminated by hypotonic lysis and single cell

suspensions were prepared from the harvested tissues and fluids.

For histology, hind limbs were dissected, fixed with formalin,

decalcified, and embedded in paraffin. Sagittal sections, cut from

the paraffin-embedded tissue, were stained with hematoxylin and

eosin and examined under a Nikon Microphot light microscope

(Nikon, Melville, NY). Microphotographs of the ankle (tibio-talar)

joints were prepared using a digital color CCD camera (Coolsnap;

RS Photometrics, Tucson, AR) and MetaMorph software

(Molecular Devices, Sunnyvale, CA).

Generation of MDSCs and DCs from BM
MDSCs were generated from BM of naı̈ve wt or EGFP-LysM-

Tg BALB/c mice. Femurs and tibias were collected under aseptic

condition, and BM was flushed out with sterile PBS. After red

blood cell lysis, BM cells were counted (the number of cells was

usually 3–46107 per mouse), and seeded in Petri dishes at a

density of 56105 cells per ml of Dulbecco’s Modified Eagle

Medium (DMEM; Sigma-Aldrich) containing 10% fetal bovine

serum (FBS) (Hyclone, Logan, UT). In preliminary dose-finding

experiments the BM cells were cultured for 3 to 7 days in the

presence of varying doses of recombinant murine granulocyte

macrophage colony stimulating factor (rmGM-CSF; Peprotech,

Rocky Hill, NJ) and recombinant murine interleukin-6 (rmIL-6;

Peprotech), or with a combination of rmGM-CSF, rmIL-6, and

recombinant murine granulocyte colony stimulating factor (rmG-

CSF; Peprotech). On the basis of phenotypic and functional

characteristics, the optimal protocol for BM-MDSC generation

was found to be a 3-day culture of BM cells in the presence of

rmGM-CSF, rmIL-6, and rmG-CSF (10 ng/ml each).

DCs, as Ag-presenting cells (APCs), were also generated from

BM of naı̈ve wt BALB/c mice by culturing BM cells for 9 days in

the presence of 40 ng/ml rmGM-CSF, as described previously

[21,31].

Phenotypic analysis of cells by flow cytometry
To assess the effect of BM-MDSCs on DC maturation, DCs

were cultured alone or in the presence of BM-MDSCs for 2–3

days prior to flow cytometric measurement of the levels of MHC II

and CD86 expression. Similarly, T cells were co-cultured with Ag-

loaded DCs in the absence or presence of BM-MDSCs (as

described below for T-cell proliferation assays), and the effect of

BM-MDSCs on regulatory T cell (Treg) differentiation and

cytokine production was determined by flow cytometry after

intracellular staining (see below).

After harvesting the cells of interest, cells were suspended in flow

staining/washing buffer (PBS containing 0.05% bovine serum

albumin and 0.05% sodium azide). Prior to surface staining with

fluorochrome-tagged mAbs, Fc receptors were blocked with

purified anti-CD16/CD32 mAb (Fc block; rat mAb, clone

2.4G2; BD Biosciences, San Diego, CA) for 10 minutes at 4uC.

Immunostaining was performed using fluorochrome-conjugated

mAbs (obtained from BD Biosciences, eBioscience, or BioLegend,

San Diego, CA) against the following cell surface markers: CD11b

(rat mAb, clone M1/70), Gr-1 (rat mAb, clone RB6-8C5), Ly6C

(rat mAb, clone HK1.4), Ly6G (rat mAb, clone 1A8), F4/80 (rat

mAb, clone RM8), CD115 (rat mAb, clone AFS98), CD80

(hamster mAb, clone 16-10A1), CD11c (hamster mAb, clone

N418), MHC II (I-Ad/I-Ed) (rat mAb, clone M5/114.15.2), CD86

(rat mAb, clone GL-1), CD3 (hamster mAb, clone 145-2C11),

CD4 (rat mAb, clone GK1.5), and CD25 (rat mAb, clone PC61).

Separate cell aliquots were stained with fluorochrome-labeled

isotype-matched rat or hamster control IgGs. For detection of

Tregs, cells were first stained for CD4 and CD25, permeabilized,

and stained for intracellular FoxP3 using a mouse FoxP3 staining

kit (Cat. No. 8-8111-40; eBioscience). A staining protocol and a

fixation/permeabilization kit (Cytofix/Cytoperm kit with Golgi-

Stop from BD Biosciences) were employed to detect intracellular

cytokines. In brief, the cells (26106/ml culture medium) were first

incubated with 10 ng/ml phorbol-13-myristate acetate (PMA,

Sigma), 1 mg/ml Ionomycin (Invitrogen, Grand Island, NY), and

1 ml/ml GolgiStop (2 mM Monensin) for 4 hours. After surface

staining for CD4 (rat mAb, clone GK1.5) the cells were fixed,

permeabilized, and stained with fluorochrome-conjugated mAb to

murine interferon gamma (IFNc) (rat mAb, clone XMG1.2;

BioLegend) or IL-10 (rat mAb, clone JES5-16E3; eBioscience).

Flow cytometry was performed using a BD FACS Canto II

instrument, and data were analyzed with FACS Diva software (BD

Flow Cytometry Systems, San Jose, CA).

Immunofluorescence imaging and cytospin preparations
Occasionally, BM-MDSCs, generated from EGFP-LysM-Tg

mice (which express EGFP only in cells of myeloid origin) [31]

were used for fluorescence imaging. In brief, after BM-MDSCs

were immunostained with fluorochrome-labeled mAbs to Ly6G

and Ly6C (specified above), a small aliquot of cell suspension was

placed in a 0.5 mm-deep imaging chamber (Invitrogen). The cells

were visualized using a Prairie Ultima two-photon microscope

system (Prairie Technologies, Middleton, WI), and images were

created with Imaris software (Bitplane, South Windsor, CT) as

described previously [27].

For analysis of cell morphology, BM-MDSCs or SF cells were

spun onto glass slides, air dried, and stained with Wright-Giemsa

solution (Sigma-Aldrich). Cytospin preparations were viewed and

photographed as described for joint histology.

Measurement of GM-CSF, IL-6, and G-CSF levels in mouse
serum and SF

Concentrations of GM-CSF, IL-6, and G-CSF in serum and

cell-free SF samples of arthritic mice were measured using

sandwich enzyme-linked immunosorbent assay (ELISA) kits from

Peprotech (Cat. No. 900-M55, 900-M50, and 900-K103, respec-

tively). Serially diluted (1:50–1:400) serum and SF samples and the

appropriate standards were incubated in plates coated with anti-

GM-CSF, anti-IL-6, or anti-G-CSF Abs, and plate-bound

material was detected according to the manufacturer’s instruc-

tions. Absorbance at 450 nm was read by a Synergy 2 ELISA

reader (BioTek Instruments, Winooski, VT).

Purification of T cells and depletion of Ly6Chi monocytic
MDSCs

T cells were purified from the spleens of naive PG-TCR-Tg

BALB/c mice by negative selection using an EasySep Mouse T

Cell Enrichment Kit (Cat. No. 19751; StemCell Technologies,

Vancouver, BC, Canada). The purity of T cells, verified by flow

cytometry, was greater than 95% in all cases.

Suppression of Murine Arthritis by Bone Marrow MDSCs
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Depletion of Ly6Chi (monocytic) cells from the total BM-MDSC

population was carried out using an EasySep Biotin Selection Kit

(StemCell Technologies). Unwanted cells were targeted with a

biotinylated mAb against Ly6C (rat mAb, clone HK1.4), followed

by immunomagnetic depletion of the mAb-tagged cells. This

resulted in the removal of essentially all Ly6Chi (but not Ly6Cint/

loLy6Ghi) BM-MDSCs, as confirmed by flow cytometry.

Assays for determining MDSC-mediated suppression of
T-cell proliferation

For assessment of suppression of Ag-dependent T-cell prolifer-

ation, first the DCs were cultured overnight with the recombinant

G1 domain of human PG (rhG1; 7.5 mg/ml) [32] as Ag in the

absence or presence of BM-MDSCs, Ly6Chi cell-depleted BM-

MDSCs, or SF cells (as suppressors) in quadruplicate wells of 96-

well plates. T cells purified from the spleens of naive PG-TCR-Tg

mice were added and co-cultured for 5 days at a T cell:DC:sup-

pressor cell ratio of 1:0.3:1. Background controls included the

following: T cells and DCs co-cultured without Ag (rhG1) and

each suppressor population cultured alone for the same length of

time (5 days). The cells were pulsed with [3H]thymidine (Perkin

Elmer, Waltham, MA) at 1 mCi/well for the last 18 hours of

culture, and isotope incorporation (counts per minute: cpm) was

measured in a MicroBeta scincillation counter (Perkin Elmer).

To assess Ag-independent suppression of T-cell proliferation,

96-well plates were first coated with purified mAbs against CD3

(hamster mAb, clone 145-2C11) and CD28 (hamster mAb, clone

37.51) (1 mg of each per well in 100 ml sterile sodium carbonate

buffer, pH 9.6). T cells were added to the coated wells alone, or

with an equal number of BM-MDSCs, Ly6Chi cell-depleted BM-

MDSCs, or SF cells as suppressors. Background controls were T

cells cultured in uncoated wells and suppressors cultured in anti-

CD3/CD28-coated wells. T-cell proliferation was measured on

day 4 of culture as described above.

In all cases, the results of proliferation assays were expressed as

percent suppression [15] (after correction for backround prolifer-

ation) using the following equation:

% suppression = 100– [(cpm with suppressors/cpm without

suppressors) 6100].

To inhibit MDSC-mediated suppression, the following inhibi-

tors of MDSC products [21] were added to the co-cultures of T

cells, Ag-loaded DCs, and BM-MDSCs (or anti-CD3/CD28-

stimulated T cells and BM-MDSCs): Nv-hydroxy-nor-arginine

(nor-NOHA; 0.5 mM), an inhibitor of arginase 1; NG-mono-

methyl-L-arginine acetate (L-NMMA; 0.5 mM) and 1400W

(0.1mM), inhibitors of inducible nitric oxide synthase (iNOS); Z-

VAD-FMK (0.1 mM), an inhibitor of caspases and caspase-

mediated apoptosis (all inhibitors were purchased from Calbio-

chem, Gibbstown, NJ); or the ROS scavenger catalase (1,000 U/

ml, Sigma-Aldrich). Cell proliferation results were expressed as %

suppression in the presence and absence of each inhibitor.

Reverse transcription-polymerase chain reaction (RT-PCR)
As described in our previous study [21], the transcript for

murine iNOS (Nos2) was expressed at much lower levels in spleen

cells than SF cells obtained from arthritic mice. Therefore, we

used spleen cells as a reference control to determine if the Nos2
gene was also upregulated in BM-MDSCs. Total RNA was

isolated from BM-MDSCs and control spleen cells using TRI

reagent (Sigma-Aldrich) according to the manufacturer’s instruc-

tions. cDNA was synthesized employing a SuperScript First Strand

kit (Invitrogen), and PCR was performed using HotStart Taq Plus

enzyme (Qiagen, Carlsbad, CA) in 35 cycles (95uC for 20 sec,

57uC for 30 sec, and 72uC for 45 sec) with a final extension at

72uC for 10 min in a C1000 Thermal Cycler (Bio-Rad, Hercules,

CA). A murine Nos2-specific primer pair (Nos2 forward 59-

CCCTTCCGAAGTTTCTGGCAGCAGC-39, and Nos2 reverse

59-GGCTGTCAGAGCCTCGTGGCTTTGG-39) was used to

detect the Nos2 transcript, and an Actb gene-specific primer pair

(Actb forward 59-TGGCTCCTAGCACCATGAAGATCA-39

and Actb reverse 59-ATCGTACTCCTGCTTGCTGATCCA-

39) served for detection of the housekeeping gene encoding b-actin.

After amplification, samples were loaded onto 1.5% agarose gels.

Western blot
BM-MDSCs and control spleen cells were lysed in cold RIPA

buffer containing a Halt protease inhibitor mixture (Pierce/

Thermo Fisher, Rockford, IL), and the protein content was

determined using the bichinconic acid assay (Pierce). Proteins from

cell lysates (20 mg protein each) were loaded onto and resolved in

7.5% SDS-PAGE gels (Bio-Rad) under reducing conditions. The

proteins were then transferred to nitrocellulose membranes. The

membranes were blotted with an anti-mouse iNOS mAb (mouse

mAb, Cat. No. sc-7271; Santa Cruz Biotechnology, Dallas, TX) at

a 1:500 dilution. Horseradish peroxidase (HRP)-conjugated rabbit

anti-mouse IgG1 (Invitrogen) was used as a secondary Ab at a

1:10,000 dilution. The protein bands were visualized using the

enhanced chemiluminescence method (Amersham/GE Health-

care Life Sciences, Piscataway, NJ). The membranes were stripped

and re-probed with a HRP-conjugated mAb to b-actin (mouse

mAb, clone mAbcam 8226; Abcam, Cambridge, MA) at a 1:5,000

dilution to ensure equal sample loading.

Measurement of iNOS activity
To measure iNOS enzymatic activity (NO production) in the

supernatants of 2-day co-cultures of murine BM-MDSCs, DCs

and T cells, a nitrite/nitrate colorimetric assay was performed

according to the manufacturer’s protocol (Cayman Chemical, Ann

Arbor, MI). Supernatants of spleen cell cultures, containing the

same number of cells as the co-cultures, were used as a reference.

Samples were run on a BioTek microplate reader and absorbance

was measured at 540 nm. A standard curve was generated using

nitrate standards serially diluted between 5 mM and 35 mM.

Results were expressed as total nitrate concentration (mM).

Induction of adoptively transferred PGIA in SCID mice
and BM-MDSC transfer

Adoptive cell transfer from wt BALB/c to SCID BALB/c mice

is an ideal tool for investigating the in vivo distribution and effects

of donor cells, as the syngeneic SCID mice exhibit complete

tolerance to the wt donor cells, allowing these cells (e.g.,

lymphocytes) to expand rapidly in vivo [33]. SCID BALB/c mice

also develop PGIA after spleen cell transfer from arthritic donors

in a more uniform and synchronous manner than wt BALB/c

mice following PG immunization [27,33]. To induce adoptively

transferred PGIA in SCID BALB/c mice, spleen cells from

arthritic wt BALB/c donors were injected intravenously into

SCID recipients (,107 cells/mouse). At the time of spleen cell

transfer, SCID mice also received 100 mg of human PG (without

adjuvant) i.p. to re-activate the donor cells in vivo [27,33]. When

arthritis started to develop (day 15 after the first splenocyte

transfer), mice were divided into two groups (n = 10 mice/group)

with mean disease scores of 2.0 and 2.05, respectively. One group

received a second transfer of 107 splenocytes with 100 mg of

human PG i.p., and the other group was co-injected i.p. with

spleen cells and BM-MDSCs (,107 of each cell type/mouse)

together with the same dose of PG. Control mice (injected with
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only splenocytes and PG twice) and BM-MDSC-treated mice (also

receiving BM-MDSCs with the second injection of spleen cells and

PG) were examined twice a week for disease severity and scored as

described for the primary form of PGIA. Mice were sacrificed on

day 34 after the first cell transfer for determination of joint

histopathology and PG-specific immune responses. Arthritis

severity data were collected from 2 independent experiments,

each having 5 mice per group (10 mice total per group).

We also carried out a separate experiment on a limited number

of SCID mice (n = 3) to assess the distribution of transferred BM-

MDSCs in various tissues. In order to distinguish the transferred

cells from the recipients’ own MDSCs, BM-MDSCs were

generated from EGFP-LysM-Tg BALB/c mice that express EGFP

in myeloid cells [27,31]. As described above, SCID mice injected

with PG and 107 spleen cells from arthritic wt BALB/c mice on

days 0 and 15 also received 56106 EGFP+BM-MDSCs i.p. on day

15. This amount of BM-MDSCs (half of the therapeutic dose) only

weakly inhibited arthritis progression, which enabled us to detect

donor cells in the SF of recipient mice. On day 34, blood, SF, BM,

spleen, and joint-draining LNs were harvested from the recipient

mice. The cells were immunostained for CD11b, Ly6C, and

Ly6G, and the subset composition of EGFP+CD11b+ donor cells

was determined by flow cytometry.

Measurement of PG-specific T-cell responses and serum
Abs in SCID mice

Spleens of SCID mice were harvested and splenocytes were

seeded in 96-well culture plates at a density of 26105 cells per well

in DMEM containing 10% FBS in the presence or absence of

purified human PG (25 mg/ml) as Ag in triplicate wells. Cells were

cultured for 5 days, and proliferation was measured on the basis of

[3H]thymidine incorporation. Results were expressed as stimula-

tion index (SI), which is a ratio of isotope incorporation (cpm) by

PG-stimulated and non-stimulated cultures.

Concentrations of PG-specific Abs in the sera of SCID mice

were determined by ELISA as described elsewhere [27,30,32].

Briefly, MaxiSorp ELISA plates (Nunc, Denmark) were coated

with human PG (0.75 mg/well) overnight. Unbound material was

washed out, and the wells were blocked with 1.5% fat-free milk in

PBS. Serially diluted (1:100–1:200,000) serum samples from

individual mice, and internal standard samples (pooled serum

from arthritic BALB/c mice, containing known amounts of PG-

specific IgG1 and IgG2a) were incubated with the immobilized

PG. PG-specific IgG1 and IgG2a were detected using HRP-

conjugated secondary Abs (Invitrogen), followed by HRP substrate

and o-phenylene-diamine (Sigma) as chromogen. Optical densities

were measured at 490 nm in an ELISA reader. Data were

expressed in mg/ml serum (PG-specific IgG1) or mg/ml serum

(PG-specific IgG2a).

Statistical analysis
Results are expressed as the means 6 SEM unless noted

otherwise. Statistical analysis was performed using GraphPad

Prism 6 program (GraphPad Software, La Jolla, CA). For

comparison of two groups of data, the parametric Student’s t test

or the non-parametric Mann-Whitney U test was employed.

Multiple comparisons were performed using the Kruskal-Wallis

test followed by Dunn’s multiple comparisons test. Data resulting

from repeat measurements over time were analyzed using two-way

repeated measures analysis of variance. P values of less than 0.05

were accepted as statistically significant.

Results

Murine BM cells cultured in the presence of G-CSF, GM-
CSF, and IL-6 give rise to a cell population resembling SF-
MDSCs

The primary goal of this study was to establish a culture method

by which BM cells can be enriched in myeloid cells resembling SF-

MDSCs in both their phenotype and function. We chose BM

because it is the body’s largest reservoir of myeloid precursors from

which large numbers of MDSCs can be generated under

appropriate conditions. GM-CSF is essential for the survival and

suppressor activity of MDSCs [34], and one study reported

successful generation of MDSCs from human blood in 7 days with

a combination of GM-CSF and IL-6 [35], factors that are also

present in the SF of RA patients [36]. In preliminary experiments,

we sought to determine whether BM cells cultured for 3 to 7 days

in the presence GM-CSF and IL-6 acquire an SF-MDSC-like

phenotype. Although the BM culture became enriched in CD11b+

cells under this condition as determined by flow cytometry, unlike

SF-MDSCs, only a small proportion of these myeloid cells

expressed Ly6G, a marker of granulocytic MDSCs (data not

shown). We added G-CSF as a booster of the granulocytic lineage

to the BM culture, which resulted in the rise of cell populations

expressing Ly6G alone, or co-expressing Ly6G (at high levels) with

low-to-intermediate levels of the monocytic MDSC marker Ly6C

(Fig. 1A, and Fig. 1C [left panel]). This overall phenotype was

achieved in 3 days of culture in the presence of GM-CSF, IL-6,

and G-CSF (10 ng/ml each); longer culture or higher doses of G-

CSF did not result in increases in Ly6G+ or double Ly6C+Ly6G+

cells (data not shown). In comparison with CD11b+ SF cells

(Fig. 1B and D), BM-MDSCs contained fewer double Ly6-

C+Ly6G+ cells and higher proportions of subsets expressing only

one of these markers (Fig. 1A and C). However, cells co-expressing

Ly6C and Ly6G clearly represented a dominant population in

both the BM-MDSC cultures and freshly harvested SF (Fig. 1A–

D). Our choice of the combination of growth factors to generate

SF-MDSC-like cells from BM was supported by the finding that

SF from mice with PGIA contained high amounts of GM-CSF

and G-CSF, and detectable amounts of IL-6. In each case, the SF

concentrations of these factors exceeded the serum levels (Table

S1).

Immunofluorescence staining of BM-MDSC-like cells generated

from EGFP-LysM mice (cultured for 3 days as described above),

followed by imaging with TPM demonstrated that the majority of

myeloid (EGFP+) cells expressed either Ly6G or Ly6C, or both

markers (Fig. 1C, middle panel). Both polymorphonuclear gran-

ulocyte (neutrophil)-like cells (Fig. 1C, right panel: arrows) and

large precursor-like cells (Fig. 1C, right panel: arrowheads) were

seen in the cytospin preparations of such cells.

Overall, the flow cytometry profile and morphology of BM-

MDSC-like cells (Fig. 1C) demonstrated greater heterogeneity

than those of fresh SF cells (Fig. 1D), suggesting that in addition to

the dominant population of double-positive Ly6GhiLy6Cint/lo cells

(also present in SF), BM-MDSC cultures contained a variety of

immature myeloid cells with intermediate phenotypes.

Ly6G is highly expressed by both mature neutrophils and

granulocytic MDSCs in mice [21,37], and no additional surface

markers are available to distinguish between these two types of

cells. On the other hand, among monocytic cells, classical (or

‘‘inflammatory’’) monocytes are characterized by high expression

of Ly6C, whereas non-classical (also termed ‘‘patrolling’’ or ‘‘anti-

inflammatory’’ monocytes/macrophages) express Ly6C at low

levels [15]. We used additional mAbs against monocyte/macro-

phage markers, including F4/80, CD115, and CD80 to identify
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distinct subsets within the two monocytic cell categories. However,

we found that only a few percent of cultured BM-MDSCs or

freshly harvested SF cells expressed F4/80 and CD80, and less

than 1% of them was CD115+ (Fig. S1). The highest proportions

of F4/80+ and CD80+ cells were detected within the Ly6Clo/2

population among BM-MDSCs (4–5%) (Fig. S1A) and in the

Ly6Chi/int population among SF cells (0.5–2%) (Fig. S1B).

CD115+ cells represented 0.2% of both Ly6Chi/int and Ly6Clo/2

BM-MDSCs (Fig. S1A), and 0.7% of Ly6Clo/2 SF cells (Fig. S1B).

As CD11blo/2Ly6ChiCD115+ osteoclast precursors have been

identified in the BM of mice with inflammatory arthritis [38], we

also screened the CD11blo/2 populations of cultured BM-MDSCs

and freshly harvested SF for the presence of such osteoclast

precursor-like cells. However, we could not detect CD115+ cells in

Figure 1. Phenotype and morphology of myeloid-derived suppressor cell (MDSC)-like cells generated in vitro from murine bone
marrow (BM) in comparison with synovial fluid (SF) cells. (A) Phenotype of MDSCs arising from growth factor-cytokine treated BM cell
cultures as determined by flow cytometry. BM cells were cultured in the presence of GM-CSF, IL-6, and G-CSF (10 ng/ml each). On day 3, cells were
immunostained for CD11b, Ly6C, and Ly6G. Approximately 80% of the cells expressed the common myeloid marker CD11b (gray bar). Gating on
CD11b+ cells revealed that the majority of them co-expressed Ly6C (marker of the ‘‘monocytic’’ subset) and Ly6G (marker of the ‘‘granulocytic’’
subset), but cells expressing only one marker were also present (black bars). The results are the means 6 SEM of 7 independent BM cultures. (B) In SF,
the vast majority of the CD11b+ myeloid population (gray bar) was found to be cells co-expressing Ly6G and Ly6C, and lower proportions of cells
expressed Ly6C or Ly6G only (black bars) than in the BM-MDSC cell cultures. The results are the means 6 SEM of 7 separate pools of SF cells freshly
harvested from arthritic mouse joints. (C) Flow cytometry profile of BM-MDSCs (left panels) is shown as an example of subset identification after
gating on CD11b+ cells. Fluorescence image of EGFP+ BM-MDSCs (middle panel) after surface staining with a blue fluorescent antibody to Ly6C and a
red fluorescent antibody to Ly6G shows cells expressing one or both markers. BM for culture was obtained from an EGFP-LysM-Tg mouse expressing
EGFP (green fluorescence) in myeloid cells. Imaging was performed using two-photon microscopy (TPM). Morphology of BM-MDSCs (right panel) was
visualized by Wright-Giemsa staining of a cytospin preparation, which shows both polymorphonuclear granulocyte (neutrophil)-like cells (arrows) and
large precursor-like cells (arrowheads). (D) Flow cytometry profile (left) and morphology (right) of SF cells harvested from the arthritic joints of mice
with PGIA. While the CD11b+ myeloid population is large in both the BM-MDSC culture and arthritic SF, and is dominated by Ly6C/Ly6G double
positive cells in both samples (analyzed simultaneously), BM-MDSCs show greater heterogeneity in morphology than SF cells.
doi:10.1371/journal.pone.0111815.g001
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either the Ly6Chi/int or the Ly6Clo/2 fraction of CD11blo/2 BM-

MDSCs (Fig. S2A) or SF cells (Fig. S2B).

BM-MDSCs have the ability to suppress both Ag/DC-
dependent and -independent proliferation of T cells
in vitro

To study the effect of BM-MDSC-like cells on Ag-specific T-cell

proliferation, we cultured Ag (rhG1)-loaded DCs with T cells

isolated from the spleens of naive PG-TCR-Tg mice in the

presence or absence of BM-MDSCs as suppressors. Additional

‘‘suppressors’’ (as comparators) were SF cells, and BM-MDSCs

depleted in Ly6Chi cells. Ag-dependent T-cell proliferation was

dramatically reduced in the presence of BM-MDSCs, i.e., BM-

MDSC-mediated suppression reached nearly 100% (Fig. 2A, red

bar). Compared with SF cells (Fig. 2A, gray bar) BM-MDSCs

were equally potent in suppressing T-cell proliferation. As also

reported for SF cells [21], depletion of the Ly6Chi monocytic

subset from the BM-MDSCs (Fig. 2A, black bar) did not reduce

their suppressive capacity. BM-MDSC-mediated suppression of

Ag-specific T-cell proliferation was accompanied by significant

decreases in the percentage of CD4+ T helper (Th) cells containing

intracellular cytokines (IFNc in Th1 and IL-10 in Th2 cells) as well

as in the percentage of Tregs (CD4+CD25+ cells containing

FoxP3) (Fig. 2B).

Since we found previously that SF-MDSCs from arthritic mice

suppressed the maturation and Ag presenting capacity of DCs

[21], we investigated the effect of BM-MDSCs on the expression

levels of DC maturation markers MHC II and CD86. However,

we could not detect significant changes in the expression level of

either marker in DCs upon co-culture with BM-MDSCs (Fig. S3).

Since BM-MDSCs failed to decrease the surface expression of

these molecules by the DCs, this experiment also suggested that

the observed suppression of the proliferation and cytokine/FoxP3

content of T cells was not due to release of cytotoxic substances

from the BM-MDSCs.

To determine whether the suppressive effect of BM-MDSCs on

T-cell proliferation was Ag-dependent (for which the presence of

DCs was required) or Ag-independent, we stimulated the PG-

TCR-Tg T cells with anti-CD3 and anti-CD28 mAbs in the

presence or absence of BM-MDSCs. In this Ag/DC-independent

system, BM-MDSCs also exhibited potent suppressor activity in

(Fig. 2C, red bar), whereas suppression by SF cells was very weak

(Fig. 2C, gray bar), consistent with our previous report [21]. As

expected, depletion of Ly6Chi cells did not reduce the capacity of

BM-MDSCs to suppress the anti-CD3/CD28-induced prolifera-

tion of T cells (Fig. 2C, black bar).

The suppressive effects of BM-MDSCs on T cells can be
reversed by iNOS inhibitors in vitro

To reveal the possible mechanism of the suppressive activity of

the BM-MDSCs, we repeated the Ag-dependent and Ag-

independent T-cell proliferation assays with and without various

inhibitors of MDSC-related effector molecules such as arginase 1

(nor-NOHA), iNOS (L-NMMA and the more selective 1400W),

and ROS (catalase). A caspase (apoptosis) inhibitor (Z-VAD-FMK)

was used as a MDSC-unrelated control. Both Ag (rhG1)- and anti-

CD3/CD28-induced T-cell proliferation remained suppressed in

the presence of the arginase 1 inhibitor, the ROS scavenger, or the

caspase inhibitor (Fig. 3A and B). However, BM-MDSCs lost

much of their ability to suppress T-cell proliferation in both

induction systems in the presence of the iNOS inhibitors (Fig. 3),

suggesting that the main MDSC product mediating T-cell

suppression was NO.

BM-MDSCs exhibit upregulated iNOS expression and
elevated NO production

To corroborate the results of T-cell proliferation assays

indicating a role for NO in the suppressor activity of BM-MDSCs,

we performed RT-PCR to assess expression of iNOS (Nos2)

mRNA in BM-MDSCs in comparison with spleen cells harvested

from arthritic mice [21]. BM-MDSCs demonstrated significant

up-regulation of Nos2 mRNA as compared with spleen cells

(Fig. 4A), while the housekeeping gene (Actb, encoding b-actin)

was expressed at equal levels. The results of Western blot were

consistent with the results of RT-PCR, showing a large amount of

iNOS protein (,130 kDa) in BM-MDSCs, but not in spleen cells

(Fig. 4B).

The enzymatic activity of iNOS was assessed by measuring

nitrite/nitrate concentrations (as indicators of NO production) in

supernatants of BM-MDSCs (cultured in the presence of DCs and

rhG1 with or without T cells) and spleen cell cultures. Consistent

with the iNOS expression data, much higher levels of NO were

detected in the supernatants of BM-MDSCs-containing cultures

(Fig. 4C, orange bar) than in those of spleen cell cultures (Fig. 4C,

green bar).

Injection of BM-MDSCs into SCID mice reduces Ag-
specific immune responses and ameliorates adoptively
transferred arthritis

To test whether BM-MDSCs could affect the development of

arthritis, an adoptive transfer model of PGIA was employed. On

day 0, spleen cells from arthritic wt BALB/c donor mice were

injected with Ag (human PG) into SCID recipients. When the

clinical signs of arthritis started to develop (15 days after the first

injection), the SCID mice were divided into 2 groups with similar

mean disease scores, and a second injection was administered. The

first (control) group received only arthritic spleen cells and PG,

while the second group received the same plus BM-MDSCs.

Arthritis severity scores in the control group increased further

(Fig. 5A, black line), while, in sharp contrast, the scores of SCID

mice transferred with BM-MDSCs remained low until the end

(day 34) of the monitoring period (Fig. 5A, red line). Histopathol-

ogy revealed massive leukocyte infiltration and synovial hyperpla-

sia as well as cartilage erosion in the ankle (tibio-talar) joints of

control SCID mice transferred with spleen cells from arthritic

donors (Fig. 5B, left panel). In contrast, only mild synovial

hyperplasia was observed without evidence of gross inflammation

or cartilage damage in the ankle joints of SCID mice co-

transferred with spleen cells and BM-MDSCs (Fig. 5B, right

panel).

To determine whether the BM-MDSC-mediated protection

from arthritis progression was associated with reduced Ag-specific

T-cell responses and Ab production, we compared the PG-specific

T-cell responses and serum IgG1and IgG2a Ab levels in control

and BM-MDSC-injected SCID mice. PG-specific T-cell prolifer-

ation was significantly lower in the BM-MDSC-injected group

(Fig. 5C). Serum levels of IgG1 isotype (but not of IgG2a isotype)

anti-PG Abs were also significantly reduced in the BM-MDSC

recipient group (Fig. 5D).

In a separate experiment, we assessed the distribution and

subset composition of transferred EGFP+ BM-MDSCs in various

fluids and tissues (blood, SF, BM, spleens, and LNs) of SCID mice

with adoptively transferred PGIA (induced as described above) 19

days after BM-MDSC injection. The donor EGFP+ BM-MDSCs

(injected at half of the optimal therapeutic dose) were found in

considerable amounts in the blood (Fig. 6A), SF (Fig. 6B), and BM

(Fig. 6C) of the recipient mice. The spleen (Fig. 6D) contained a
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much lower percentage of these cells, and the LNs (Fig. 6E) were

virtually free of BM-MDSCs. In each tissue or fluid, the

granulocytic subset (Ly6GhiLy6Cint) dominated, although small

populations of monocytoid (Ly6ChiLy6G2) MDSCs were also

present (Fig. 6).

Discussion

MDSCs have been described as innate immune cells with a

remarkable capacity to control adaptive immune responses [8].

Although first described in tumor-bearing animals and cancer

patients [5,39], MDSCs have been recently identified in a variety

of autoimmune conditions [14,18–20] that are characterized by

excessive activation of the adaptive immune system.

We have reported previously that the SF of mice with PGIA, an

animal model of RA, contains a population of cells that meets the

criteria of MDSCs [21]. Our data suggested that the inflamed joint

in PGIA is a supportive microenvironment in which myeloid cells

survive and acquire a mainly granulocytic MDSC-like phenotype

and potent suppressor activity toward DCs and Ag-specific T cells.

By limiting the expansion of pathogenic T cells and the maturation

of DCs locally or in lymphoid organs, MDSCs present in the SF

could suppress local inflammation or prevent the spreading of

arthritis to other joints. This hypothesis would be best tested by

transferring SF-MDSCs to mice at the early phase of PGIA.

However, the number of cells that can be collected from murine

SF is limited, and SF-MDSCs do not expand in culture [21]. Thus,

we sought an alternative source of cells to generate large quantities

Figure 2. Suppression of antigen (Ag)-specific and non-specific T-cell responses by BM-MDSCs. (A) T cells, purified from the spleens of
mice expressing a PG-specific T cell receptor transgene (PG-TCR-Tg) were cultured for 5 days with dendritic cells (DCs) loaded with recombinant G1
domain of human PG (rhG1) in the absence or presence of the following ‘‘suppressors’’: BM-MDSCs (red bar), arthritic SF cells (gray bar), or Ly6Chi

(monocytic) cell-depleted BM-MDSCs (black bar). The ability of suppressors to inhibit Ag (rhG1)-specific T-cell proliferation (which is also dependent
on Ag presentation by DCs) was assessed on the basis of inhibition of [3H]thymidine incorporation by the T cells. Percent suppression was calculated
as described in the Methods. All suppressors exhibited robust inhibition of T-cell proliferation. The results shown are from 5 independent
experiments. (B) T cells from PG-TCR-Tg mice were cultured for 2 days with rhG1-loaded DCs and BM-MDSCs as described for panel A. The percent of
CD4+ T cells containing IFNc, IL-10, or FoxP3 (CD4+CD25+FoxP3+ T regulatory cells, Tregs) was determined by flow cytometry. The results shown are
the individual values (n = 5–6) and the means. On average, the percentages of IFNc+ cells, IL-10+ cells, and Tregs were lower in the presence of BM-
MDSCs (*p,0.001, 0.001, and 0.05, respectively; Mann-Whitney U test) than in their absence (None). (C) T cells from PG-TCR-Tg mice were cultured in
anti-CD3/CD28-coated plates for 4 days in the absence or presence of the listed suppressors. Percent suppression was calculated and results
expressed as described for panel A. Non-depleted BM-MDSCs and BM-MDSCs depleted in Ly6Chi cells were equally potent in suppressing anti-CD3/
CD28-induced T-cell proliferation, while arthritic SF cells exhibited much weaker inhibition (*p,0.01, n = 5; Kruskal-Wallis test followed by Dunn’s
multiple comparisons test) in this induction system.
doi:10.1371/journal.pone.0111815.g002
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of MDSCs for potential therapeutic intervention (via cell transfer)

in PGIA. Studies by others reported accumulation of MDSCs in

the spleens of mice with cancer [13] or autoimmune diseases

[14,20]. However, previously we found that in mice with PGIA,

the splenic myeloid population was modest in size and lacked

suppressor activity [21]. Because the BM contains considerable

amounts of myeloid precursors, it appeared to be a plausible

source of cells with a potential to become SF-MDSC-like cells

under appropriate culture conditions.

Enrichment of murine BM in immature myeloid cells in vitro in

the presence of GM-CSF was described before, but these cells

showed a tendency to become myeloid DCs if no other factor was

added [40]. On the other hand, Lechner et al. [35] reported

generation of cells with monocytic MDSC phenotype and

immunosuppressive capacity by culturing normal human PBMCs

in the presence of GM-CSF and IL-6. As we have shown in this

study, murine BM cells treated with a combination of GM-CSF,

IL-6, and G-CSF for 3 days give rise to a dominant population of

Ly6GhiLy6Cint/lo granulocytic SF-MDSC-like cells, although such

cultures also contain smaller populations of cells with intermediate

phenotypes. Further phenotypic analysis of the monocytic subset

using mAbs to monocyte/macrophage markers F4/80, CD115,

and CD80 failed to detect a distinct population expressing these

markers, although approximately 5% of BM-MDSCs in the

Ly6Clo/2 fraction could be defined as CD11b+F4/80+CD80+

macrophages. We found a small population (0.7%) of cells

expressing CD115, the receptor for macrophage colony stimulat-

ing factor among CD11b+Ly6Clo/2 SF cells. A previous study

reported increased number of Ly6ChiCD115+ osteoclast precursor

cells in the BM of mice with inflammatory arthritis [38]. Such

precursors were identified within the CD11blo/2 population of

BM cells and also had myeloid suppressor activity [38]. In our

case, CD11blo/2Ly6Chi/int fractions of both BM-MDSCs and SF

were devoid of CD115+ cells. Although we cannot rule out the

possibility that the few CD115+ cells found in the CD11b+Ly6Clo/

2 SF population may differentiate into mature osteoclasts, the

findings suggest that neither the BM-MDSC culture condition nor

the SF milieu is conducive to the development of CD11lo/

2Ly6ChiCD115+ osteoclast precursors.

We have suggested previously [21] that MDSC precursors

entering the joints may acquire a maturation-resistant phenotype

in a milieu rich in myelopoietic growth factors and cytokines.

Indeed, we found high levels of GM-CSF and G-CSF, and

detectable levels of IL-6 in the cell-free SF of mice with PGIA.

Similar to the findings reported by Wright et al. [36] in SF and

serum samples from RA patients, we detected much higher levels

of these factors in the SF than in the serum of mice with PGIA.

These observations indicate that GM-CSF, G-CSF, and IL-6

(besides other pro-inflammatory mediators) are produced locally

by joint-resident cells in both RA and PGIA, and likely support the

survival and suppressor activity of MDSCs in the SF.

The MDSC-like cells that we generated from murine BM under

the conditions described were true MDSCs, as they exerted

profound suppressive effects on both the Ag-specific and non-

specific (polyclonal) proliferation of T cells in vitro. While both

BM-MDSCs and SF cells inhibited the expansion of Ag-stimulated

T cells to a comparable degree, BM-MDSCs were much more

potent than SF cells in suppressing anti-CD3/CD28-induced

polyclonal T-cell proliferation. This suggests that the suppressive

ability of SF cells is selective, while BM-MDSCs are capable of

inhibiting T-cell responses to either Ag-specific or non-specific

stimuli. With regard to BM-MDSCs, our finding is consistent with

a recently published study [41] in which CD11b+Gr-1+ ‘‘imma-

ture’’ myeloid cells, isolated from the BM of normal mice, have

been found to suppress the Ag-independent (anti-CD3/CD28- or

mitogen-induced) proliferation of T cells.

Although it has been suggested that Ly6G2Ly6Chi monocytic

MDSCs suppress T-cell activity more strongly than the granulo-

cytic subset [34], we found that upon depletion of Ly6Chi

subpopulation, the BM-MDSCs retained their suppressive ability

toward T cells. This supports our previous [21] and other authors’

[14,20] conclusions that Ly6G+ granulocytic MDSCs represent a

subset with potent suppressor activity.

Our experiments elucidating the molecular mechanisms of BM-

MDSC-mediated suppression revealed that inhibitors of iNOS

were able to reverse both the Ag-specific and non-specific

suppression of T-cell proliferation. Consistent with this observa-

tion, iNOS was upregulated in BM-MDSCs at both mRNA and at

protein levels, and NO was present in high quantities in the

Figure 3. Reversal of the suppressive effect of BM-MDSCs on T-
cell proliferation by inhibitors of inducible nitric oxide
synthase (iNOS). Various inhibitors of MDSC effector molecules,
including the arginase 1 inhibitor nor-NOHA, iNOS inhibitors L-NMMA
and 1400W, the reactive oxygen species (ROS) scavenger catalase, and
the caspase/apoptosis inhibitor Z-VAD-FMK, were used to inhibit the
BM-MDSC-mediated suppression of (A) Ag (rhG1)-induced/DC-depen-
dent and (B) anti-CD3/CD28-induced proliferation of PG-TCR-Tg T cells.
The results (compiled from 2 independent series of experiments, each
with 2 co-cultures) are expressed as percent suppression of T-cell
proliferation in the presence (black bars) or absence (red bar) of
inhibitors. While suppression of T-cell proliferation in both induction
systems was significantly reversed by the iNOS inhibitors L-NMMA and
1400W (*p,0.0001 in all cases; Kruskal-Wallis test followed by Dunn’s
multiple comparisons test), none of the other inhibitors had a
significant effect on BM-MDSC-mediated suppression of T cells.
doi:10.1371/journal.pone.0111815.g003
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supernatants of BM-MDCS cultures. NO can suppress T-cell

function via multiple mechanisms including chemical alteration of

the TCR and inhibition of kinases and transcription factors

involved in the IL-2 receptor signaling pathway [8,42]. Granulo-

cytic MDSCs have been shown to exert suppression on T cells via

an arginase 1-dependent [20] or ROS-dependent [13] mecha-

nism. However, MDSCs with a granulocytic phenotype that are

present in the SF of arthritic mouse joints [21] or in the BM [41]

as well as those generated from murine BM ex vivo (this study) are

clearly capable of inhibiting T-cell responses in a NO-dependent

manner. In relevance to RA, elevated concentrations of NO were

found in the serum and SF of RA patients with the SF levels

exceeding those in serum, suggesting NO production locally in the

joint [43]. Since cells with a granulocytic phenotype constitute the

major cell population in RA SF [44,45], they could be the primary

source of NO, thus functioning as local granulocytic MDSCs.

Although detailed characterization of the T-cell signaling

pathways altered by BM-MDSCs was beyond the scope of our

investigations, intracellular levels of IFNc and IL-10 in CD4+ Th

cells and the induction of Tregs were assessed. Intracellular

concentration of IFNc, the pro-inflammatory cytokine produced

by the Th1 subset of CD4+ cells, was reduced by BM-MDSCs, but

so was the anti-inflammatory Th2 cell-derived cytokine IL-10.

Although MDSC-mediated induction of Treg cell differentiation

has been reported in vitro and in tumor-bearing mice [46], we

found that the proportion of Treg cells was actually reduced in the

presence of BM-MDSCs. Our observations suggest that the

suppressive effect of BM-MDSCs is not selective and may extend

to several T cell subsets.

Studies have reported successful intervention in various diseases

by in vivo transfer of MDSCs. Highfill et al. [47] generated

MDSCs in vitro from the BM of tumor-free mice in the presence

of GM-CSF, G-CSF, and IL-13. Such cells inhibited responses to

allogeneic cells in vitro and in graft-versus-host disease [47]. In an

animal model of inflammatory bowel disease, transfer of sorted

CD11b+Gr-1+ cells abrogated enterocolitis, indicating a direct

immune regulatory effect via NO production [17]. In another

study, it was found that MDSCs significantly delayed or prevented

type I diabetes onset by suppressing autoreactive T cells and

inducing the differentiation of Tregs [19]. In a mouse model of

MS, transfer of spleen-derived granulocytic MDSCs delayed the

onset and reduced the severity of nervous system disease through

suppression of encephalitogenic Th1 and Th17 cells [14]. More

recently, Fujii et al. [20] reported accumulation of MDSCs

(mainly of the granulocytic phenotype) in the spleens of mice

with CIA at the peak of the disease. This finding is congruent with

our previous observation that MDSCs accumulate in autoimmune

arthritis, although we identified suppressive MDSCs in the SF, not

in the spleens, of mice with PGIA [21]. Granulocytic MDSCs,

isolated from the spleens of mice with CIA suppressed anti-CD3/

CD28-induced T-cell proliferation, but their effects on Ag (type II

collagen)-specific immune responses were not investigated [20]. In

PGIA, SF-MDSCs exerted suppression on T cells in an Ag-specific

manner and were not effective in the Ag-independent system,

whereas CD11b+ myeloid cells isolated from the spleens at the

peak of PGIA were not suppressive in either of these in vitro

settings [21]. As described in the present study, MDSCs generated

from the BM of naı̈ve mice were able to suppress both Ag-specific

and non-specific T-cell responses. These apparent discrepancies

may be explained by the functional heterogeneity of MDSCs [10].

It is likely that distinct and overlapping modes of suppressive

ability exist, depending not only on the experimental model

studied, but also on the specific cytokine milieu supporting and

fine-tuning the MDSCs.

Using the adoptively transferred model of PGIA, we found that

a single injection of BM-MDSCs into SCID mice after the first

signs of arthritis suppressed disease progression and prevented

further joint damage. In order to determine whether BM-MDSCs

exerted immune modulatory effects in vivo, Ag-specific T-cell

proliferation and serum Abs were measured in the recipient mice.

The results confirmed that both T- and B-cell responses were

significantly inhibited in the BM-MDSC-injected group of mice.

In vivo tracking of transferred BM-MDSCs revealed that these

MDSCs preferentially accumulated in the BM and SF, sites where

their survival was best supported by locally produced myelopoietic

growth factors and cytokines. The presence of MDSCs in the

blood 19 days after their transfer also indicated active trafficking of

these cells between the BM and SF. It is likely, therefore, that BM-

MDSCs suppressed arthritis progression by inhibiting the expan-

sion of pathogenic T cells in the BM, the peripheral joints, and, to

a lesser degree, in the secondary lymphoid organs of recipient

mice.

It was reported earlier that transplantation of syngeneic BM

restored immune homeostasis and reduced arthritis severity in

mice with PGIA [48]. In this particular case, BM transfer was

associated with accumulation of Treg cells in the recipient mice.

Figure 4. Expression and activity of iNOS in BM-MDSCs. (A) Comparison of murine iNOS (Nos2) transcript levels in BM-MDSCs and spleen cells
revealed that iNOS mRNA was upregulated in BM-MDSCs. The housekeeping gene (Actb, encoding b-actin) was expressed at equal levels. Results of
one of 2 replicate experiments (with similar results) are shown. (B) Western blot using an antibody against murine iNOS demonstrated the presence
of iNOS protein in BM-MDSCs, but not in spleen cells. The b-actin control blot shows equal sample loading. One of 3 independent Western blots is
shown. (C) iNOS activity was assayed on the basis of NO release into the supernatants of cultures containing BM-MDSCs (orange bar) or spleen cells
(green bar), and expressed as total nitrate concentration (mM). BM-MDSC-containing cultures produced significantly higher amounts of NO than
spleen cells did (*p,0.05, n = 5 cultures/cell type; Mann-Whitney U test). Molecular markers: bp, base pairs; kDa, kilodalton.
doi:10.1371/journal.pone.0111815.g004
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Although it was not clear if the Treg cells were of donor or

recipient origin, the suggested mechanism of disease suppression

was a BM-mediated induction of Treg differentiation [48]. While

the BM may act as a reservoir of Treg cells [49], it also contains

significant amounts of MDSCs and their precursors [41,49]. It is

likely, therefore, that BM-derived MDSCs contributed to the

reduction of autoimmune responses and disease severity upon BM

transplantation into mice with PGIA.

A recent study reported increased frequency of MDSC-like cells

in the peripheral blood of RA patients as compared with the blood

of healthy control individuals, but the suppressive properties of

these cells were not tested [50]. Most recently, we identified

granulocytic MDSCs in the SF of RA patients; these RA SF-

MDSCs moderately suppressed the anti-CD3/CD28-induced

proliferation of autologous T cells, but potently suppressed

alloAg-induced T-cell proliferation in vitro [51]. It is likely that

SF-MDSCs inhibit the expansion of joint-homing (pathogenic) T

cells in both RA and animal models of the disease. Notably, SF of

the arthritic joints of both RA patients and mice has been shown to

contain very low proportions of T cells [2,27,44,52,53]. In

Figure 5. Effects of BM-MDSCs on arthritis severity and Ag (PG)-specific immune responses in SCID mice with PGIA. (A) Effect of BM-
MDSC transfer on arthritis severity. Arthritis was induced in SCID mice via 2 transfers of spleen cells (black arrows) from wild type mice with PGIA as
described in the Methods. At the early phase of arthritis, one group of the SCID recipients was co-injected with BM-MDSCs (red arrow). Disease
severity scores were monitored until day 34. Arthritis progressed rapidly in the control group (black line), but not in the BM-MDSC-treated group (red
line) (*p,0.05, n = 10 mice/group; two-way repeated measures analysis of variance). (B) Joint histopathology of control (left panel) and BM-MDSC-
treated (right panel) mice on day 34. The ankle joint of the control mouse demonstrated massive leukocyte infiltration (star) in the joint cavity (JC)
and synovial tissue (ST) as well as synovial hyperplasia. The articulating surfaces appeared rough due to cartilage damage. In the ankle joint of the
BM-MDSC-treated mouse only mild synovial hyperplasia was seen, suggesting the resolution of initial (previous) inflammation. Representative
hematoxylin-eosin-stained tissue sections from both groups are shown. (C) Antigen (PG)-specific T-cell responses of control and BM-MDSC-treated
mice. T-cell responses were compared between the two groups on day 34 by measuring spleen cell proliferation in the presence or absence of PG
in vitro. Results are expressed as stimulation index (SI), a ratio of [3H]thymidine incorporation by PG-stimulated and non-stimulated cultures. The SI of
the BM-MDSC-injected group (red bar) was significantly lower than the SI of the control group (black bar) (*p,0.0001, n = 10 mice/group; Student’s t
test). (D) Serum levels of anti-PG antibodies in the control and BM-MDSC-treated groups as determined by ELISA. The levels of IgG1 anti-PG
antibodies (top) were significantly lower in the sera of BM-MDSC-injected mice than in control mice (*p,0.01, n = 5 samples/group; Mann-Whitney U
test), while the levels of IgG2a anti-PG antibodies (bottom) were similar.
doi:10.1371/journal.pone.0111815.g005
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addition, T cells isolated from the SF of RA patients exhibit hypo-

responsiveness to mitogenic stimuli as compared to blood T cells of

the same patients [2,54]. It is possible, therefore, that SF-MDSCs

limit the expansion of T cells locally, thus contributing to the

resolution of joint inflammation. Indeed, it was reported that

in vivo depletion of MDSCs (using the anti-Gr-1 mAb RB6-8C5)

delayed the resolution of arthritis in mice with CIA [20]. However,

upon entering the joints at the early phase of arthritis, MDSCs

may also cause collateral tissue damage through the release of NO

and other noxious products, thereby acting as a ‘‘double-edged

sword’’ [9]. Elucidation of the properties and function of MDSCs

present in RA patients at distinct anatomical sites (e.g., peripheral

blood, BM, SF, and secondary lymphoid organs) would greatly

advance our understanding of the role of these cells in the

regulation of autoimmunity and joint pathology in RA.

In summary, herein we describe an in vitro method for

generating large quantities of MDSCs from murine BM in a

controlled and reproducible manner. We show that murine BM-

MDSCs, partially resembling MDSCs present in the SF of mice

with PGIA, potently inhibit T-cell responses in vitro and in vivo.

These results provide insights into an innate control mechanism

that is involved in the regulation of immune responses and arthritis

severity in an animal model of RA and most likely in human

patients as well. Although further studies are warranted, our results

also suggest that in vitro enrichment of the BM in MDSCs could

improve the therapeutic efficacy of autologous BM transplantation

[3] in patients with severe, treatment-resistant RA.

Supporting Information

Figure S1 Analysis of monocyte/macrophage marker
expression in BM-MDSC-like and SF-MDSC-like cells.
The CD11b+ myeloid populations of (A) BM-MDSC-like cells and

(B) SF cells were analyzed by flow cytometry for cells expressing

the monocyte/macrophage markers F4/80, CD115, and CD80.

(A) F4/80+ and CD80+ cells were more frequent among

CD11b+Ly6Clo/2 than CD11b+Ly6Chi/int BM-MDSCs, but very

few CD115+ cells were detected in either of these populations. (B)

SF contained much fewer F4/80+ and CD80+ cells within both the

CD11b+Ly6Chi/int and CD11b+Ly6Clo/2 fractions, but slightly

more CD115+ cells within the CD11b+Ly6Clo/2 population than

BM-MDSCs. Initial gating on CD11b+ cells is indicated by red

arrows. For subsequent gating, the horizontal line was set to

separate the Ly6Chi/int and Ly6Clo/2 populations, and the vertical

lines were set at the highest levels of background staining with

Figure 6. Tissue distribution of EGFP BM-MDSCs injected into SCID mice with adoptively transferred PGIA. BM-MDSCs, generated+

from EGFP-LysM-Tg mice (expressing EGFP in myeloid cells only) were co-injected with arthritic spleen cells into SCID mice at the early phase of
adoptively transferred PGIA, as described in the Methods. To assess the tissue distribution of fluorescent donor cells, 19 days after the co-transfer of
the cells (A) peripheral blood, (B) synovial fluid (SF), (C) BM, (D) spleen, and (E) joint-draining lymph nodes (LN) were harvested from the
SCID recipients, immunostained, and subjected to flow cytometry. The gating strategy, as demonstrated on the blood cells (top panels), involved
gating first on single cells, then on EGFP cells, followed by gating on the CD11b myeloid population (red arrows). Subset composition of+ +

EGFP CD11b cells was determined on the basis of Ly6C and Ly6G expression. Peripheral blood, SF, and BM contained very well detectable+ +

populations of Ly6C Ly6G (granulocytic) cells and much smaller populations of Ly6C Ly6G (monocytic) cells. Cells belonging to either subsetint hi hi 2

were less frequent in the spleen, and nearly undetectable in the LNs. Representative flow cytometry dot plots of cells from 1 of 3 mice (except for SF,
which was pooled from all of the 3 mice) are shown.
doi:10.1371/journal.pone.0111815.g006
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fluorochrome-tagged control IgGs matching the isotypes of F4/80,

CD115, and CD80 mAbs. The representative samples show flow

dot plots of cells from 1 of 5 independent BM-MDSC cultures, and

from 1 of 3 separate pools of SF cells.

(TIF)

Figure S2 Screening of BM-MDSCs and SF cells for the
presence of osteoclast precursor-like cells. Flow cytometry

analysis was performed on the same (A) BM-MDSC and (B) SF

samples described in Figure S1, but with gating on CD11blo/2

cells (red arrows) containing putative Ly6ChiCD115+ osteoclast

precursors. CD115+ osteoclast precursor-like cells were not

detected in either the Ly6Chi/int or Ly6Clo/2 fraction of (A)

CD11blo/2 BM-MDSCs (B) or CD11blo/2 SF cells. The

representative samples show flow dot plots of cells from 1 of 5

independent BM-MDSC cultures, and from 1 of 3 separate pools

of SF cells.

(TIF)

Figure S3 Effects of BM-MDSCs of the expression levels
of dendritic cell (DC) maturation markers MHC II and
CD86. DCs and BM-MDSCs were generated from BM as

described in the Methods. DCs were cultured for 3 days with or

without BM-MDSCs. The densities of major histocompatibility

complex class II (MHC II) and CD86 maturation markers on the

surface of DCs (CD11c+ cells) were determined by flow cytometry

and the results expressed as mean fluorescence intensity (MFI). (A)

Expression level of MHC II on the DCs (open bar) slightly

increased in the presence of BM-MDSCs (closed bar), but this

increase did not reach statistical significance (ns, not significant;

p = 0.059; Mann-Whitney U test). (B) There was no significant

difference in the expression level of CD86 on the DCs either when

these cells were cultured without (open bar) and with (closed bar)

BM-MDSCs (ns; p = 0.667; Mann-Whitney U test). Data shown

are from 5 independent experiments.

(TIF)

Table S1 Concentrations of GM-CSF, IL-6, and G-CSF
in synovial fluid (SF) and serum collected from arthritic
(PGIA) mice.
(DOCX)
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