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Rhesus macaques (Macacamulatta) are the most widely distributed species of OldWorld

monkey and are frequently used as animal models to study human health and disease.

Their gastrointestinal microbial community likely plays a major role in their physiology,

ecology and evolution. Herein, we compared the fecal microbiome and antibiotic

resistance genes in 15 free-ranging and 81 zoo-captive rhesus macaques sampled

from two zoos in China, using both 16S amplicon sequencing and whole genome

shotgun DNA sequencing approaches. Our data revealed similar levels of microbial

diversity/richness among the three groups, although the composition of each group

differed significantly and were particularly marked between the two zoo-captive and one

wild groups. Zoo-captive animals also demonstrated a greater abundance and diversity

of antibiotic genes. Through whole genome shotgun sequencing we also identified a

mammalian (simian) associated adenovirus. Overall, this study provides a comprehensive

analysis of resistomes and microbiomes in zoo-captive and free-ranging monkeys,

revealing that semi-captive wildlife might harbor a higher diversity of antimicrobial

resistant genes.

Keywords: monkey, microbiome, antimicrobial resistance gene, adenoviruses, captive primates, metagenomic

INTRODUCTION

Rhesus macaques (Macaca mulatta) are a species of Old World Monkey with a wide geographic
distribution. Because of their close phylogenetic relationship with humans, they are extensively
used as biomedical models for understanding human disease. A handful of publications have
demonstrated that the non-human primate (NHP) gut microbiome is shaped by diet, evolutionary
features, age, sex, geographical habits (1–4), and notably captivity, indicating that human-mediated
life styles and living locations could alter the gut-associated microbial communities of primates
(5). Many previous studies have investigated the impact of captivity, diet and anthropogenic
activity on microbiome composition. For example, Clayton et al. examined the gut microbiome
in different species of NHPs such as douc and howler monkeys, showing that diversity of native
gut microbial taxa was reduced among the captive groups (5). In black howler monkeys, the
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environmental and dietary changes associated with captivity had
a major impact on intestinal microbial methanogenesis (6). In
contrast, similar bacterial compositions were observed in wild vs.
captive chimpanzees (7).

Driven by advances in next-generation sequencing
technologies, microbiome and resistome focused studies
of are increasing importance, expanding our knowledge of
microbial communities and their interactions with humans,
animals and the environment. Amplicon sequencing is sufficient
for family-level and genus-level bacterial classification, although
the variation captured by 16S sequencing is insufficient for
strain-specific identification (8). Additionally, metagenomic
approaches provide a means to characterize non-bacterial
microbes, including viruses and eukaryotic pathogens (9).
Recent studies have also revealed that host-associated intestinal
microbiota may impact viral susceptibility and the ensuing
host immune responses (10, 11). The widespread use of
antibiotic agents in veterinary and human medicine has
revolutionized the therapeutic options of bacterial infection,
although at the same time it has increased the selection pressure
for the rapid emergence and evolution of antimicrobial
resistance (12).

Herein, we used both 16S rRNA and whole genome shotgun
DNA sequencing approaches to identify the differences of fecal
microbial composition and resistome between zoo-captive and
wild rhesus monkeys in China. Our results provide important
insights on the impact of captivity on microbial diversity and
antimicrobial resistance properties.

MATERIALS AND METHODS

Animal Ethics Statements
This study was approved by the Beijing Municipal Committee of
Animal Management before sample collection. All experiments
were performed in accordance with the approved guidelines and
regulations under approval number #SYSU-IACUC-MED-2021-
B0123.

Study Sites and Sampling Information
This study was conducted from July to August in 2014 at
Shennongjia Forestry District natural reserves (SR), a zoo located
in Beijing (BR) and a wildlife zoo located in inner Monglia (ER).
All fecal specimens of rhesus monkeys (Macaca mulatta) were
collected following defection at three sampling locations: one
wild (SR), one semi-captive (ER), and a zoo-captive population
(BR). Details of the sample collection sites, sample groups and
food usage are presented in Table 1. DNA extraction of the fecal
samples was performed using the TruSeqTM DNA Sample Prep
Kit (Illumina) following the manufacturer’s instructions.

Comparisons of Bacterial Composition and
Diversity Using 16S RRNA Sequencing
Fecal samples from each monkey were subject
to 16S rRNA amplicon sequencing. The V3–V4
hypervariable regions of the bacterial 16S ribosomal
RNA (rRNA) gene were amplified using barcoded
primers, 341F- 5′-CCTACACGACGCTCTTCCGATCTN

TABLE 1 | Sample location and size of zoo-captive and wild rhesus monkeys.

Group

name

Type Location Sample

size

Latitude Food source

BR Zoo-captive Beijing 24 39.94◦N Potatoes,

fruits,

vegetables,

steamed corn

bread

ER Semi-zoo-

captive

Inner

Mongolia

57 39.8◦N Fruits,

vegetables,

steamed corn

bread

SR Free-

ranging

Shennongjia

Forestry

District

natural

reserves

15 31.46◦N Wild plants

(barcode) CCTACGGGNGGCWGCAG-3′ and 805R-5′-
GACTGGAGTTCCTTGGCACCCGAGAATTCCA (barcode)
GACTACHVGGGTATCTAATCC-3′, according to the Illumina
16S Metagenomic Sequencing Library Guide. The amplicons
generated were sequenced on an Illumina HiSeq platform in a 2
× 250 paired-end mode. All sequencing and library preparation
procedures were performed by Sangon Biotech (Beijing, China).

The raw amplicons generated were screened, trimmed,
filtered, denoised, and chimera-depleted using QIIME2
version 2018.2 (http://qiime.sourceforge.net). Short, ambiguous
sequences and chimeras deriving from the PCR process were
removed using DADA2 plugins. Sequences were clustered into
Operational Taxonomic Units (OTUs) and then assigned to
bacterial sequences with at least 99% similarity to representative
sequences from the SILVA 132 database (http://www.arb-
silva.de/). For statistical analysis, all the sequences were
rarefied to 1,112 reads for the downstream analysis. For each
sample, the relative abundance of each bacterium identified
was expressed as the percentage of total reads. QIIME2 was
applied to profile the taxonomy of microbial composition in
each group and to calculate alpha diversity matrices (including
ACE, Shannon diversity index and Simpson index) (13, 14).
To evaluate the variation between different groups, beta-
diversity distance matrices (including Bray-Curtis distances,
weighted and unweighted UniFrac values) were performed
using rarefied data sets, and subsequently principal coordinate
analysis (PCoA) was conducted to visualize the dissimilarities
in the fecal bacterial communities among different groups of
rhesus monkeys.

Fecal Microbiome Characterization
All reads from the high-throughput DNA sequencing data
were mapped to reference genomes of Macaca mulatta (NCBI
txid:9544) using Bowtie2 (15) to remove genetic material of host
origin after quality-trimming by Trimmomatic (16). To profile
the bacterial results from microbial composition, CCMetagen
(17) was used for taxonomic annotation against nt database.
To screen for viruses, host-filtered reads from the metagenomic
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FIGURE 1 | Estimated OTUs richness and diversity index in different groups of monkeys. The index of OTUs richness in different groups was estimated using ACE (A)

metrics. To estimate OTU diversity, Simpson’s index (B) and Shannon’s index (C) were performed. No significant statistical differences in ACE (p = 0.23) between the

three groups was obtained using Kruskal-Wallis tests. Statistically significant differences were found between ER and other groups (p < 0.05) using the Simpson and

Shannon metrics.

sequencing data sets were assembled using MEGAHIT (18)
then compared against the entire nr database in GenBank using
Diamond BlastX e value < 105) (19). Any viral reads and contigs
identified by Blast were then extracted and reassembled using the
assembler implemented in Geneious v.11. This process identified
abundant adenovirus sequences that were then reassembled into
an entire adenovirus genome. This genome was then translated
into amino acid sequences for gene annotation and functional
prediction using Conserved domain databases (CDD).

The assembled sequences were then aligned using the MAFFT
version 7 with implemented E-INS-I algorithm (20). Conserved
domains within the E1A and 100k protein of adenoviruses
were used for subsequent phylogenetic analyses. After removing
all ambiguously aligned regions using TrimAl (21), the final
lengths of E1A and 100K protein alignments were 832 and
1,379 amino acid residues, respectively. Phylogenetic trees
of these data were inferred using the maximum likelihood
method (ML) implemented in PhyML version 3.0, employing a
Subtree Pruning and Regrafting topology searching algorithm.
Statistical support for specific groupings in the tree was
assessed using the approximate likelihood-ratio test (aLRT)
with a Shimodaira-Hasegawa like procedure with 1,000
replicate bootstrap. The phylogenetic trees were visualized
using the FigTree program (http://tree.bio.ed.ac.uk/software/
figtree).

Detection of Antimicrobial Resistance
Genes
To determine the presence of putative antimicrobial resistance

(AMR) genes in the data, we analyzed the shotgun sequencing

TABLE 2 | Kruskal-Wallis tests of Alpha diversity in three groups of monkeys.

K-W test (all groups) ACE Shannon index Simpson index

H value 2.97 14.87 14.31

P value 0.23 0.00059 0.00059

data using the KMA program (22) combined with the ResFinder

reference database (23). To reduce false-positive results, genes
were only considered in downstream analyses when p-values

for the conclave score were lower than 0.05, only two genes

were excluded due to their p > 0.05 (22). We also excluded
the blaTEM116 gene which has been previously identified as
a common laboratory contaminant (24). AMR diversity and
abundance was visualized in R with the package ggplot2.

RESULTS

Overall Characterization of 16S and
Shotgun DNA Sequencing Results
The 16S rRNA amplicon sequencing generated a total of
2,572,794 reads and 2,680 OTUs. The total number of raw
reads across all groups from the high-throughput shotgun
DNA sequencing data was 1,425,675,194. Rarefaction curves
showed a similar trend in all three populations. Observed
numbers of OTUs (Observed_OTUs), an indicator of alpha
diversity, is a qualitative measure of community richness.
By this metric, the population of SR (wild monkeys)
harbored the highest numbers of OTUs among all three
groups under the same sequencing depth (orange: SR;
blue: BR; cyan: ER) (Supplementary Figure 1A). The
Shannon-Wiener curves showed that the samples from
all groups had plateaued (Supplementary Figure 1B). The
rarefaction curves indicate that sequencing depth was
sufficient to capture the bacterial diversity in all samples
(Supplementary Figure 1).

Association Between Bacterial Richness
and Diversity and Animal Captivity
Based on the OTU data, we examined the bacterial richness and
diversity of captive (BR), semi-captive (ER), and wild (SR) groups
using ACE, the Shannon index and the Simpson index (Figure 1).
The number of OTUs identified in the samples depicted species
richness, as estimated by ACE. A non-parametric Kruskal-
Wallis test was performed in all groups. The richness indices
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FIGURE 2 | Microbiome clustering of different groups of monkeys. Principal coordinate analysis (PCoA) 3D-plots display bacterial community structure based on

unweighted UniFrac distance (A) and Bray-Curtis distance (B). The numbers of Axis 1, Axis 2 and Axis 3 showed the percent variation explained by the PCoA plots,

indicating three distinctive clusters of microbiome groups.

(ACE) revealed no significant difference (p > 0.05) between the
wild and zoo-captive groups of macaques (Table 2). However,
bacterial diversity was significantly different (p < 0.05) among
all groups, as evaluated with the Shannon and Simpson indexes.
Furthermore, Shannon indexes revealed significant differences
between the captive (BR) and semi-captive (ER) groups, whereas
no differences between wild (SR) and semi-captive groups (ER)
were found by any of the methods.

Monkeys From Different Groups Have
Distinct Microbiomes
Principal coordinate analysis (PCoA) was performed based on
unweighted UniFrac (Figure 2A) and Bray-Curtis distances
(Figure 2B) to visualize the dissimilarities in the bacterial
communities among different groups of monkeys. The
unweighted UniFrac analysis provided a much stronger
clustering by population than either the weighted UniFrac
or Bray Curtis distances, indicating that the clustering is likely
driven by presence or absence of key taxa in different populations,
rather than by shifts in the ratios of dominant members of the
microbiota. In addition, PCoA plots based on Bray–Curtis
distance matrices revealed that the samples from different
locations formed distinct clusters, indicating that bacterial
community composition conforms with the groups they were in,
and hence that there were clear differences among wild, captive,
and semi-captive monkeys. Analyses of distances based on
relative abundance showed semi-captive groups overlappedmore
with captive group than with the wild group. We additionally
performed Permutational Multivariate Analysis of Variance
Using Distance Matrices (PERMANOVA) based on unweighted-
uniFrac dissimilarity matrices (Supplementary Figure 2).
Accordingly, the PERMANOVA results, indicated that (p
= 0.001, number of permutations is 999) higher pseudo-
F value in comparison of SR and ER groups with others
(Supplementary Table 1).

Comparisons of Microbial Composition
Results Between 16S and WGS
Approaches
Based on 16S rRNA sequencing, the clustered operational
taxonomic units identified in fecal samples were assigned to
32 bacterial phyla. Both 16S and WGS approaches identified
Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria as
the most abundant phyla in all samples, although the proportion
of Bacteroides and Proteobacteria differed substantially
(Figures 3A,C). At the class level, the two approaches revealed
different bacterial compositions (Figures 3B,D). The main
differences lie in the Epsilonproteobacteria that only appeared
at high abundance in the wild (SR) group from metagenomic
sequencing, but not in the corresponding group from 16S
sequencing. Furthermore, the proportion of the class Bacilli
also varied greatly between the two approaches. In general, the
16S sequencing resulted in relatively consistent results across
three groups, whereas WGS sequencing revealed relatively
high levels of variation. Further comparisons were performed
at the family level using 16S sequencing results for microbial
composition between the three groups (i.e., wild, semi-captive
and zoo-captive) (Figure 4).

Detection of a Novel Simian Adenovirus in
Zoo-Captive Monkeys
To assess the adenoviral reads and contigs identified from
group ER, a near complete genome was derived from
reassembled reads sequences that were mapped to a reference
adenovirus genome (a double-strand DNA virus). The total
length was 34,291 nucleotides with a GC content of 56.9%.
To further characterize the adenovirus, phylogenetic trees
were estimated based on a sequence alignment of the
conserved region of the E1A and the 100K protein, and
utilizing reference adenovirus sequences downloaded from
NCBI/GenBank. The novel virus shared 70.5% (E1A) and
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A B

C D

FIGURE 3 | Bacterial read profiling of 16S rRNA sequencing and metagenomic approaches at phylum level (A,C) and class level (B,D). Stacked columns for the

mean of each group of samples enrolled in this study, indicating the relative abundance as a percentage of the total bacterial sequences per group. All data with an

abundance of at least 0.1% in at least one subject were included.

88.7% (100K) sequence identity with the closest relative—
Simian adenovirus 3—within the Simian adenovirus clade
(Figure 5). Based on its level of sequence divergence, the newly

discovered virus likely represents a new virus species that we
tentatively termed “simian adenovirus ER” (GenBank accession
number: MZ062897).
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FIGURE 4 | Comparisons of microbial community at the family level in different groups of monkeys. A heatmap was used to visualize the microbial composition in

three groups of monkeys by 16S rRNA sequencing.

WGS-Based Characterization of the
Diversity and Abundance of AMR Genes
A total of 67 acquired AMR genes were detected in the

DNA-seq data sets, representing resistance against nine

classes of antibiotics (Figure 6). Genes providing resistance

to aminoglycosides, beta-lactams, MLS (including macrolides,

lincosamides, streptogramin) and tetracyclin were found across

all locations tested (Supplementary Table 2). The semi-captive

group (ER) showed highest variety and abundance of antibiotic

genes, followed by captive group (BR). Diversity measures

indicate the number of AMR genes detected against the

ResFinder database in each class. Abundance was calculated as

the sum of Reads Per Kilobase of each class of AMR maker per

Metagenome (RPKM) in each library. Accordingly, the wild
group(SR) had the lowest variety and abundance, while genes
conferring resistance to sulphonamide, rifampicin, trimethoprim

and phenicol were only detected in ER group (Figure 6). In

both zoo-captive groups, genes conferring resistance against
Tetracycline had the highest relative abundance [i.e., AMR
genes abundance (RPKM)/Total AMR genes abundance
(RPKM)] at 68% in ER and 88% in BR, while genes conferring
resistance against Vancomycin were the most abundant in the SR
group (97.5%).

DISCUSSION

We present a detailed fecal microbiome analysis of the zoo-

captive and wild rhesus monkeys in China. Since non-human
primates are the most relevant animal models for human

research, a wide range of microbial composition studies have
provided important information on the features that shape host-

microbiome interactions (25). To date, however, only a few
studies have investigated the fecal microbiome and resistome of
wild and captive primates.
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A B

FIGURE 5 | Characterization of the newly identified simian adenovirus ER in zoo-captive monkeys. Phylogenetic analysis was performed based on the amino acid

sequence of E1A (A) and 100K protein (B). The gray shading indicates the primate adenoviruses. Branch lengths are scaled according to the number of amino acid

substitutions per site. The trees were mid-point rooted for clarity only.

Several previous studies have demonstrated that human
activities such as captivity, confinement, diet and anthropogenic
activity, may change the diversity and complexity of the primate
gutmicrobiome (5). Although these studies provide evidence that
captivity was associated with a reduction in diversity/richness
in the gut microbiome compared to wild primates, our study
revealed no such reduction, consistent with some other work
(26). With respect to microbial composition, we found similarity
at the phylum and class level among the three groups, but striking
differences at the OTU level. The cause of such differences is

still unclear. While captivity may be an important contributing
factor, we are unable to exclude other factors such as geographic
locations, diet and human interactions.

Notably, we used two sequencing strategies, 16S amplicon
sequencing and WGS, to investigate the fecal microbiome.
Generally, a similar trend of microbial composition was
obtained from both approaches. However, some differences at
different taxonomic levels were evident. For example, certain
bacterial phyla (i.e., Tenericutes) were strongly underrepresented
in shotgun WGS in comparison to 16S rRNA sequencing.
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FIGURE 6 | Resistome profiling of wild and zoo-captive monkeys. The diversity measures indicate the number of AMR genes detected from the ResFinder database

in each class. Abundance was calculated based on the sum RPK of each class of AMR makers per metagenome.

Conversely, at the class level, WGS identified more diverse
bacterial classes (i.e., Epsilonproteobacteria and Bacilli) than 16S
sequencing, which may reflect a lack of consistent marker genes.

Due to climate change and increasing anthropogenic
activities, the habitat of many wildlife species has been
threatened. As such, enclosed environments like zoos provide
an opportunity for intermingling of human and monkey
populations (27). Previous studies have detected several zoonotic
pathogens were detected in free-ranging or zoo-captive monkeys
in China, such as Escherichia coli O98 (28), Mycobacterium
tuberculosis (29), Bartonella quintana infection in captive or
wild rhesus macaques (30). In addition, canine distemper virus
(31), novel noroviruses, enteroviruses and enteric parasites such
as Enterocytozoon bieneusi, Cryptosporidium spp. and Giardia
duodenalis (32, 33) have been identified from monkeys, raising
public concerns about the risk of disease transmission from zoo
animals to humans. In our study, a single vertebrate-associated
virus—an adenovirus—was identified in one of the zoo-captive
group, ER. This virus was relatively abundant and related to the
previously identified Simian adenovirus type 3. Adenoviruses
have a broad host spectrum including humans and cross-species
transmission have been reported in non-human primates
(27, 34, 35). Furthermore, Simian adenoviruses can result in
infectious respiratory and diarrheal diseases in humans, but are
asymptomatic in rhesus macaques (27), indicating that they are
of public health concern.

Our analysis revealed a great diversity and abundance of
AMR genes in zoo-captive groups. Although AMR genes exist
in nature and are transmitted among wildlife animals, habitats
that are more closely linked to anthropogenic activities tend
to show significantly higher levels of antimicrobial resistance
(36). Common sources of AMR genes for zoo-captive groups
are through contact with humans (i.e., keepers, caretakers
or tourists), diet, or through receiving veterinary medication.
Interestingly, the highest level of antimicrobial resistance was
observed in semi-captive monkeys (ER) rather than captive
animals (BR), despite the fact that the latter are more subject
to human interventions. However, since the study is limited in

sampling size and locations, this needs to be examined with more
data in the future studies.

We identified the AMR genes VanG, VanT-G, and VanXY-
G genes in all groups of monkeys. These confer Vancomycin
resistance in gram-positive cocci such as Enterococcus faecalis
(37). Since the first vancomycin-resistant enterococci (VRE)
cases were reported in the 1980s (38), VRE-associated infections
and persistent colonization in humans have raised serious public
health awareness and caused huge economic impacts (39). The
emergence of VREs in food-animal production systems has
been largely attributed to the heavily use of avoparcin as a
growth promoter (40). Even though the use of growth-promoting
antibiotics in farm animals has been banned since 1997, high
rates of VRE carriage have been reported globally in economic
animals, as well as in companion and laboratory animals (41) as
well as wildlife (42), and which might act as reservoir populations
(43–54). Accordingly, the continuous long-term monitoring of
a broader range of microbiome and resistomes between captive
and free-ranging wildlife for enterococcal species as well as other
vancomycin-resistant genes dispersal is clearly required.

In comparison to wild populations, the captive populations
studied here had much higher levels of tetracycline associated
resistant genes. These genes are frequently found in human
isolates of the two types of bacteria that were a substantial
part of the normal microbiota of primates (Firmicutes and
Bacteroidetes). It was previously observed that Enterococcus
species showed high resistance in captive black capuchin
monkeys in Brazil, characterized by a higher frequency of msrC
(95%) and tet(L) (57%) genes when compared to wild monkeys
(55). Although we did not find msrC in all groups, tet(M) and
tet(L) resistance genes were found at high abundance in the semi-
captive group (ER); nevertheless, these AMRs genes which have
also been found overlapping with existing known human gut
resistomes, suggesting potential transmission via human contact
with wildlife. However, because our sample size was limited
future studies are needed to clarify the essential reservoirs,
carriers, and vectors on the transmission chain, and to identify
the factors promoting andmodels assessing AMR gene exchange.
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