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ABSTRACT Escherichia coli is a Gram-negative bacterium often found in animal in-
testinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s si-
phophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which
33 functions were predicted. The capsid morphogenesis gene in Snoke contains a
large intein.

Escherichia coli, a heavily studied Gram-negative bacterium, is most commonly found
in the intestinal tract of humans and other animals (1). Selective pressures gener-

ated from bacteriophage-bacterium interactions in the gut shape the development of
both organisms (2). Studying bacteriophages that grow on E. coli 4s (3), a horse fecal
isolate, may illuminate the mechanisms of phage-bacterium coevolution within unique
natural microbiomes (4). Here, we present the complete genome sequence of the E. coli
4s siphophage Snoke.

Bacteriophage Snoke was isolated from filtered (0.2-�m-pore-size) activated sludge
sourced from a wastewater treatment facility in Austin, TX. The phage was propagated
on E. coli 4s aerobically at 37°C in Luria broth (BD) using the soft-agar overlay methods
described in reference 5. Genomic DNA was purified from the phage as previously
described with the Promega Wizard DNA clean-up system (6), prepared as Illumina
TruSeq Nano low-throughput libraries, and sequenced in paired-end 250-bp reads
using v2 500-cycle chemistry on an Illumina MiSeq platform. The 565,076 sequence
reads from the index containing the phage genome were quality controlled with
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and the phage
genome was assembled into a single raw contig via SPAdes v.3.5.0 with 1,291.6-fold
coverage after trimming using the FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/
fastx_toolkit/) (7). PCR amplification across the raw contig ends (forward primer 5=-GC
AACACGGCACAGAAAC-3= and reverse primer 5=-CTGCGACGGAGAAATCAACT-3=) and
verification by Sanger sequencing of the DNA product ensured that the contig se-
quence was complete. Accompanied with manual corrections, protein-coding gene
predictions were performed using GLIMMER v3.0 and MetaGeneAnnotator v1.0;
predicted gene functions were assigned using InterProScan v5.33-72, the HHSuite
v3.0 HHpred tool (multiple sequence alignment [MSA] generation with the HHblits
ummiclus30_2018_08 database and modeling with PDB_mmCIF70), BLAST v2.2.31 with
a 0.001 maximum expectation value, and TMHMM v2.0 at the default settings (8–13). All
BLAST queries were run against the NCBI nonredundant and UniProtKB Swiss-Prot and
TrEMBL databases (14). ARAGORN v2.36 was run to detect tRNA coding sequences (15).
Rho-independent termination sites were annotated using TransTermHP v2.09 (16). DNA
sequence similarity was determined using the progressiveMauve v2.4.0 alignment
algorithm (17). The genome annotation tools (with the exception of HHpred) were
accessed via the Center for Phage Technology Galaxy and Web Apollo interfaces
(https://cpt.tamu.edu/galaxy-pub) and run with default parameters, unless stated
above (18, 19). The morphology of bacteriophage Snoke was determined using samples
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negatively stained with 2% (wt/vol) uranyl acetate and viewed by transmission electron
microscopy at the Texas A&M Microscopy and Imaging Center (20).

The 44,454-bp genome of Snoke has a G�C content of 50.2% and 95.0% coding
density. Genome analysis indicates 81 protein-coding genes, of which 33 received
a functional annotation, but no tRNA genes. The Snoke genome is predicted by
PhageTerm to be packaged via a pac-type (headful) DNA packaging mechanism (21).
Snoke shares 69.0% nucleotide sequence identity and 58 proteins with Escherichia
phage VB_EcoS-Golestan (GenBank accession no. MG099933), a member of the Guern-
seyvirinae subfamily (22).

A large self-splicing intein resides within the capsid morphogenesis protein (NCBI
accession no. QEG06950) (23). The capsid morphogenesis protein in Salmonella phage
LSPA1 (GenBank accession no. KM272358) contains a nearly identical intein, and K1ind2
(GenBank accession no. GU196280) lacks the intein.

Data availability. The genome sequence and associated data for phage Snoke
were deposited under GenBank accession no. MK931441, BioProject accession
no. PRJNA222858, SRA accession no. SRR8892143, and BioSample accession no.
SAMN11408679.
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