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Breath acetone as a marker of energy
balance: an exploratory study in healthy
humans
Fabian Bovey1, Jérémy Cros1, Béla Tuzson2, Kevin Seyssel1, Philippe Schneiter1, Lukas Emmenegger 2 and
Luc Tappy 1,3

Abstract
An exploratory study was performed on eight healthy volunteers to assess how short-term changes in energy balance
and dietary carbohydrate content impact breath acetone concentrations. Participants were studied on three occasions:
on each occasion, they remained fasted and in resting conditions during the first 2 h to assess basal breath acetone
and blood beta-hydroxybutyrate (BOHB). During the next 6 h, they remained fasted on one occasion (F), or were fed
hourly high carbohydrate (HC) or low-carbohydrate (LC) meals to induce a positive energy balance on the other two
occasions. They remained in resting conditions during 4 h, then performed a 2-hour low intensity exercise (25 W)
inducing a negative energy balance. In resting conditions, breath acetone and blood BOHB concentrations increased
progressively compared to basal values in F, but decreased and remained low throughout the test in HC. With LC,
breath acetone increased progressively, while blood BOHB decreased. This exploratory study indicates that breath
acetone reliably detects a stimulation of ketogenesis during a short-term fast. It also suggests that LC and HC
differentially impact BOHB and acetone production and utilization, and reveals possible limitations to the use of breath
acetone as a marker of energy balance.

Introduction
The treatment of obesity consists in inducing a negative

energy balance over several months or years. The rate of
success with lifestyle interventions is disappointingly low,
however, possibly because many patients fail to achieve a
negative energy balance by overestimating their physical
activity and underestimating their energy intake1. In this
regard we2 and others3,4 have proposed that monitoring
breath acetone as a marker of energy balance may be a
useful tool to improve lifestyle intervention efficiency.
Ketogenesis is indeed stimulated by fasting5, caloric
restriction6, and exercise7. However, it can also be

stimulated during consumption of a very low-
carbohydrate diet independently of negative energy bal-
ance8,9. Whether increased ketogenesis can be detected
from breath acetone measurements when energy balance
is moderately negative, and whether this is influenced by
dietary carbohydrate content, remains however unknown.
We therefore monitored breath acetone, using a recently
developed laser based breath analyzer10, in healthy
volunteers after an overnight fast followed by a 4-hour
period during which volunteers remained fasted or were
fed hourly meals with either 70% or 10% carbohydrate.
Thereafter, a 2-h low intensity exercise was performed.

Methods and procedures
Eight healthy volunteers (4 men and 4 women, mean

age ± SEM: 26 ± 2 years; weight: 67.3 ± 4.0 kg; body mass
index: 22.5 ± 0.6 kg·m−2) were recruited. All subjects were
weight-stable, non-smokers, and had no personal or
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family history of diabetes. The protocol was approved by
the Human Research Committee of Canton de Vaud and
was registered at clinicals.gov (NCT03390881) and par-
ticipants provided an informed, written consent.
Participants were studied on three different occasions in

a randomized, open-label, cross-over design. The two
days before each test, participants consumed their usual
diet and performed minimal physical activity. At 08:00
PM the day before, they received a standardized meal
covering 30% of their calculated energy requirements
(55% carbohydrate, 30% lipid and 15% protein).
On the test day, subjects came to the laboratory at 07:00

AM in fasting state. Subjects remained fasting while lying
in a bed for an initial two-hour period and three breath
acetone and blood BHOB measurement were obtained to
determine basal values. Thereafter, and for the next 6 h
(T120 to T480), they either remained fasted (F), or
received every hour a liquid meal providing 150% of their
resting 1-h energy requirement (1.5 times their RMR
times 60 min) with either 70% carbohydrate (30% sucrose
(Hänseler Swiss Pharma) and 40 % maltodextrin (Sponser,
Switzerland)), 15% lipid and 15% protein (high carbohy-
drate; HC), or 70% lipid, 15% protein and 15% sucrose
(low carbohydrate; LC). They remained in resting condi-
tions from T120 to T360, then biked at 25W from T360
to T480. Breath and blood samples were obtained every
hour, while respiratory gas exchange was monitored by
indirect calorimetry (Cosmed Quark RMR, Cosmed,
Roma, Italy).
Breath samples were collected in air bags (Cali-5-

BondTM bags, Calibrated Instruments Inc., Garrett
Highway, USA) after a 5-s apnea and after having dis-
carded the respiratory dead space3. Breath acetone was
measured within 12–24 h using a custom-developed laser
spectrometer (VECSEL, Camlin Technologies, Zurich,
Switzerland), as described10. Since basal values showed
considerable inter-individual [between-subjects coeffi-
cient of variation (CV)= 36%] and intra-individual
(between test CV in the same subject= 32%) variations,
breath acetone concentration at T120 was used as a
reference for each subject. Plasma non-esterified fatty acid
(NEFA), BOHB and glucose were measured using enzy-
matic methods (Randox Laboratories, Crumlin, UK), and
plasma insulin by radio-immunoassay (Millipore Cor-
poration, Billerica, MA, USA).
All values were expressed as mean ± SEM. Sample size

was arbitrarily set at 8. The normality and homo-
scedasticity of the distributions were checked by Shapiro-
Wilk and Bartlett tests. When needed, variables were
normalized using the Box-Cox transformation. Changes
in variables were assessed with a one-factor analysis of
variance (ANOVA). Multiple comparisons were then
performed by Student’s paired t tests. Linear associations
between changes in breath acetone and plasma BOHB

were tested using Spearman’s correlation. Data were
analyzed using “R”, version 3.3.1 (www.cran.R-project.
org).

Results
Basal conditions
Mean breath acetone concentrations were 2.04 ± 0.21

ppm and blood BOHB concentrations were 0.13 ± 0.02
mmol L−1.

Fasting condition
Breath acetone concentrations increased progressively

compared to basal values, and reached their maximum at
the end of the exercise. In parallel, plasma BOHB con-
centrations increased continuously over time, without any
detectable acceleration during exercise. Changes in breath
acetone were positively correlated with changes in BOHB
(ρ36= 0.58, P < 0.001). Fat oxidation rate averaged 1.13 ±
0.06 mg kg−1 min−1 at rest and increased to 4.39 ± 0.25
mg kg−1 min−1 during exercise. Energy expenditure cor-
responded to 1.07 ± 0.06 kcal min1 at rest and 4.04 ± 0.28
kcal min−1 during exercise. Energy balance was negative
throughout the test (Fig. 1). Plasma glucose and insulin
concentrations showed no changes over time, but plasma
NEFA concentrations increased progressively (Fig. 2).

High-carbohydrate meals vs. fasting
When subjects consumed HC meals, breath acetone

and plasma BOHB concentrations decreased slightly,
reaching lower levels than in F. No correlation was found
between changes in breath acetone and BOHB (ρ23=
−0.15, P= 0.487). The fat oxidation rate was significantly
lower than in F both at rest (0.94 ± 0.04 mg kg−1 min−1,
P= 0.002) and during exercise (2.07 ± 0.30 mg kg−1

min−1; P < 0.001). Energy expenditure corresponded to
1.14 ± 0.07 kcal min−1 at rest and 3.93 ± 0.19 kcal min−1

during exercise. Energy balance was slightly positive at
rest and negative during exercise (Fig. 1). Plasma glucose
and insulin concentrations were significantly higher,
while plasma NEFA were significantly lower than in F
(Fig. 2).

Low-carbohydrate meals vs. fasting
When subjects consumed LC meals, breath acetone

increased progressively over time, and showed no sig-
nificant difference compared to F. In contrast, plasma
BOHB was significantly decreased. Changes in breath
acetone were not correlated with changes in BOHB (ρ16
=−0.34, P= 0.164). Fat oxidation rate averaged 1.16 ±
0.06 mg kg−1 min−1 at rest (P= 0.727) and 3.79 ± 0.20 mg
kg−1 min−1 during exercise (P= 0.013). Energy expendi-
ture corresponded to 1.13 ± 0.07 kcal min−1 at rest and
4.06 ± 0.21 kcal min−1 during exercise. Energy balance
was similar to HC (Fig. 1). Plasma glucose concentrations
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were unchanged, while plasma insulin was significantly
higher, and plasma NEFA lower than in F (Fig. 2).

Discussion
Ketogenesis is quantitatively small after an overnight

fast, yet basal acetone concentration could be quantified
in all breath samples. Furthermore, breath acetone
showed significant changes over a 6-h period according to
the feeding status and energy balance. When subjects
remained fasted, the cumulated energy balance was
slightly negative and breath acetone and plasma BOHB
increased over time. In contrast, breath acetone and
plasma BOHB slightly decreased when subjects were fed
HC meals. This indicates that ketogenesis is activated
when energy balance is negative, but is suppressed by
positive energy balance associated with HC meals.
Our study also identifies limitations to the use of breath

acetone as a marker of energy balance, however. We
indeed observed that breath acetone concentrations

increased when volunteers achieved a positive energy
balance by ingestion of LC rather than HC meals. Lipid
oxidation and plasma NEFA concentrations were also
higher with LC than HC meals, consistent with a lesser
suppression of ketogenesis. We also observed that a two-
hour negative energy balance induced by exercise did not
accelerate the rise in breath acetone concentrations in
fasted subjects and did not increase it acutely when sub-
jects were fed small HC meals. This suggests that stimu-
lation of ketogenesis may be somewhat delayed relative to
the beginning of a low intensity exercise.
Our results also point to some unexpected aspects of

ketone bodies’ metabolism. Changes in breath acetone
were correlated with changes in blood BOHB in F, but not
in HC and LC. Furthermore, in LC, breath acetone
increased, but blood BOHB decreased. This may be
explained by the too often unrecognized complexity of

Fig. 1 Changes in breath acetone (a) and plasma beta-
hydroxybutyrate concentrations (b), and energy balance (c) when
participants remained fasted (f) or were fed hourly with high- or low-
carbohydrate meals. Data are expressed as mean ± SEM. For all
variables, n= 8 volunteers. BOHB beta-hydroxybutyrate, F fasting, HC
high carbohydrate, LC low carbohydrate
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Fig. 2 Changes in plasma glucose (a), insulin (b) and NEFA
concentrations (c) when participants remained fasted (f) or were fed
hourly with high- or low-carbohydrate meals. Data are expressed as
mean ± SEM. For all variables, n= 8 volunteers. F fasting, HC high
carbohydrate, LC low carbohydrate, NEFA non-esterified fatty acid
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ketone bodies’ metabolism. Ketogenesis initially yields
acetoacetate, which is subsequently either reduced to
BOHB or decarboxylated to acetone. BOHB and acetone
are then oxidized through distinct pathways in extra-
hepatic tissues11,12. Acetone and BOHB concentrations
will therefore vary according, not only to changes in
acetoacetate production rate, but also to the relative
changes of acetoacetate conversion into BOHB and
acetone, and of BOHB and acetone oxidation. It is
therefore possible that consumption of a very low-
carbohydrate diet favored acetone over BOHB forma-
tion, or increased BOHB oxidation relative to that of
acetone. This may be related to a the small postprandial
insulin secretion after LC meals, since insulin was shown
to increase BOHB clearance and oxidation13.
In conclusion, our study indicates that breath acetone is

present in detectable amounts in normal subjects, and
increases over time when subjects remain fasted, but not
when they are fed carbohydrate containing meals. How-
ever, it is not suppressed by very low-carbohydrate meals,
which may limit its use as a marker of energy balance in
subjects on special diets.
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