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A CpG-methylation-based assay to predict survival
in clear cell renal cell carcinoma
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Clear cell renal cell carcinomas (ccRCCs) display divergent clinical behaviours. Molecular

markers might improve risk stratification of ccRCC. Here we use, based on genome-wide CpG

methylation profiling, a LASSO model to develop a five-CpG-based assay for ccRCC prognosis

that can be used with formalin-fixed paraffin-embedded specimens. The five-CpG-based

classifier was validated in three independent sets from China, United States and the Cancer

Genome Atlas data set. The classifier predicts the overall survival of ccRCC patients (hazard

ratio¼ 2.96�4.82; P¼ 3.9� 10�6� 2.2� 10�9), independent of standard clinical prog-

nostic factors. The five-CpG-based classifier successfully categorizes patients into high-risk

and low-risk groups, with significant differences of clinical outcome in respective clinical

stages and individual ‘stage, size, grade and necrosis’ scores. Moreover, methylation at the

five CpGs correlates with expression of five genes: PITX1, FOXE3, TWF2, EHBP1L1 and RIN1.

Our five-CpG-based classifier is a practical and reliable prognostic tool for ccRCC that can

add prognostic value to the staging system.
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R
enal cell carcinoma (RCC) is the most common malignant
neoplasm arising from the kidney and it represents B2–3%
of all human malignancies. The major histological subtype

is clear cell RCC (ccRCC), accounting for 80–90% of all RCC
cases1. TNM stage and Fuhrman grade remain the most
commonly used predictors of clinical outcome for patients with
ccRCC. Clinically integrated systems, such as the Mayo Clinic
stage, size, grade and necrosis (SSIGN) score and the University
of California Integrated Staging System, can improve prognostic
accuracy2,3. However, patients with similar clinical features or
integrated systems score may have diverse outcomes. Thus, there
is a need to add prognostic value to the current staging system,
which could be achieved with the use of validated biomarkers.
Nevertheless, despite numerous studies, no reliable prognostic
biomarkers for ccRCC have been identified or used routinely in
clinical practice to date.

As DNA methylation is a crucial factor for cancer formation,
it rapidly gained clinical attention as a biomarker for diagnosis
and prognosis4–6. DNA methylation almost exclusively occurs at
the C-5 position of cytosines in the sequence context of 50-CpG-30

in mammalian cells. As genome-wide technologies continue
to develop, such as the development of the Infinium
HumanMethylation27 array and HumanMethylation450 array,
the understanding of CpG methylation associated with human
cancers including RCC continues to rapidly improve7–12.

Here we develop and validate a practical and reliable classifier
based on genome-wide CpG methylation profiling that improves
risk stratification for patients with ccRCC. Moreover, we use the
Cancer Genome Atlas (TCGA) data set to validate our prognostic
classifier, investigate the relationship between CpG methylation
and gene expression, and analyse the gene interaction network.

Results
Identifying candidate CpGs based on genome-wide profiling.
We analysed 46 paired ccRCC and adjacent normal tissues by CpG
methylation microarray (Infinium HumanMethylation450 array)
in the discovery set (Supplementary Table 1) and looked for dif-
ferential methylation in ccRCC tumours and normal tissue at CpG
sites across the genome (Fig. 1). The volcano plot (Fig. 2a) showed
that the log2 fold change of 102 CpG sites was more than 2.5 for 46
pairs of tumour and adjacent normal tissue, based on the genome-

wide analysis of CpG methylation (t-test, all Po10� 9; false dis-
covery rate o10� 8; Supplementary Data 1). The 102 CpGs
identified in univariate analysis were entered into a multivariate
logistic regression model (the least absolute shrinkage and selection
operator (LASSO)) and 18 had non-zero coefficients (Fig. 2b,c).

Constructing and validating the CpG-based classifier. We then
carried out pyrosequencing to quantify the methylation value of
these 18 CpG sites by using formalin-fixed, paraffin-embedded
(FFPE) specimens from the Sun Yat-sen University (SYSU)
set of 168 ccRCC patients. Supplementary Table 3 shows
univariate Cox regression analysis of overall survival based on
each of the 18 CpGs in the SYSU set (P¼ 0.49–0.001). We used
a multivariate LASSO Cox regression model to build a
CpG-based prognostic classifier, which included 5 of the 18
CpGs: cg00396667, cg18815943, cg03890877, cg07611000 and
cg14391855 (Fig. 2d and Supplementary Fig. 1). These five CpG
sites were in the regions of genes PITX1, FOXE3, TWF2,
EHBP1L1 and RIN1, respectively. Using the LASSO Cox regres-
sion models, we also calculated a risk score for each patient based
on individualized values of methylation for the five genes: risk
score¼ (0.0066� PITX1)þ (0.0034� FOXE3)� (0.027�TWF2)
� (0.018� EHBP1L1)� (0.03�RIN1). When we assessed the
distribution of risk scores for the five-CpG-based classifier and
survival status, patients with lower risk scores generally had better
survival than those with higher risk scores (Fig. 3a, left panel).
Patients in the SYSU set were divided into high-risk or low-risk
groups, using the median risk score (� 0.1) as the cutoff.
Compared with patients in low-risk group, patients in the high-
risk group had shorter overall survival (hazard ratio¼ 4.27, 95%
confidence interval¼ 2.18–8.37, log-rank test P¼ 3.9� 10� 6;
Fig. 3a, right panel).

To estimate the reproducibility and validity of the five-CpG-
based classifier, we performed international validation using data
sets comprising ccRCC patients from a site in the United States
(University of Texas Southwestern Medical Center at Dallas,
UTSW set, 243 cases) and multiple clinical centres in China
(MCHC set, 284 cases). Furthermore, we used the external data
set, TCGA data set (298 cases), to validate our five-CpG-based
classifier (Fig. 1 and Table 1). Methylation value of the five CpG
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Figure 1 | Flow chart indicating study design. We identified candidate CpGs sites from 46 paired ccRCC and adjacent normal tissues by CpG methylation

microarray in the discovery set. We then used a multivariate LASSO Cox regression model to build a CpG-based prognostic classifier in SYSU set.

Furthermore, the five-CpG-based classifier was validated in MCHC, UTSW and TCGA data sets. Relationship between CpG methylation, gene expression

and patient prognosis were also analysed in the TCGA set.
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sites is shown for each set in Supplementary Fig. 2. The risk score
for each patient in the sets was calculated with the same formula
used in the SYSU set, patients with lower risk scores generally had
better survival than those with higher risk scores (Fig. 3b–d, left
panel). Patients in these three sets were classified into high-risk

and low-risk groups with the same cutoff used in the SYSU set
(� 0.1). Patients in the high-risk groups had shorter overall
survival than those in the low-risk groups in all three sets (hazard
ratio¼ 2.96–4.82, log-rank test P¼ 1.4� 10� 6–2.2� 10� 9;
Fig. 3b–d (right panel) and Supplementary Table 4). After
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Figure 2 | Construction of the five-CpG-based classifier. (a) One hundred and two CpG sites selected by univariate analysis. Volcano plot showing a

comparison of CpG methylation for ccRCC tumour tissues versus adjacent normal tissues (n¼46, HumanMethylation450 platform). This plot depicts the

biological significance (log2 fold change (FC)) on the X axis and the statistical significance (� log10 P) on the Y axis. Log2 FC42 � 5 for 102 CpGs; the

methylation level of 17 CpGs is higher in tumour in comparison with normal tissue (magenta) and lower in 85 CpGs (turquoise). (b) Eighteen CpG sites

selected by LASSO logistic regression analysis. Histogram of the univariate t-test P-values is shown, in the upper left panel, as � log10 P for all 102 CpGs.

A matrix representing the pairwise correlation (r2, Spearman’s correlation) between the CpGs is displayed in the upper right panel. The lower left panel

shows a histogram of the absolute values of the coefficients for all 102 CpGs, of which 18 had non-zero coefficients by LASSO logistic regression analysis.

The correlation structure between the 18 CpGs with non-zero coefficients is shown in the lower right panel, demonstrating reduced multicollinearity.

(c) Heatmap showing methylation of the 18 CpGs in ccRCC tumour tissue (46 samples) and adjacent normal tissue (46 samples). (d) Five CpG sites

selected by LASSO Cox regression analysis. Left panel: the two dotted vertical lines are drawn at the optimal values by minimum criteria (right) and 1� s.e.

criteria (left). Details are provided in Methods. Right panel: LASSO coefficient profiles of the 18 CpGs. A vertical line is drawn at the optimal value by 1� s.e.

criteria and results in five non-zero coefficients. Five CpGs—cg00396667 (PITX1), cg18815943 (FOXE3), cg03890877 (TWF2), cg07611000 (EHBP1L1) and

cg14391855 (RIN1)—with coefficients 0.0066, 0.0034, �0.027, �0.018 and �0.03, respectively, were selected in the LASSO Cox regression model.
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Figure 3 | Risk score calculated by the five-CpG-based classifier and Kaplan–Meier survival in the four different sets. (a) SYSU set, (b) MCHC set,

(c) UTSW set and (d) TCGA set. Upper left panel: risk-score distribution of the five-CpG-based classifier and patient survival status. Lower left panel:

heatmap showing methylation of the five CpGs in the patients. Right panel: Kaplan–Meier survival analysis for the patients. The patients were divided

into low-risk and high-risk groups using the median cutoff value of the classifier risk score (�0.1). P-values were calculated using the log-rank test.

HR, hazard ratio.
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adjusting for standard clinical prognostic factors (age, TNM stage,
Fuhrman grade and necrosis status), the five-CpG-based classifier
remained an independent prognostic factor in the SYSU set and
the three other patient sets (Table 2, all Po0.05).

Stratification analysis of the five-CpG-based classifier. Survival
analysis was further performed with regard to the five-CpG-based
classifier in subsets of patients with different clinical variables.
When stratified by clinical variables (sex, age, race, Fuhrman
grade, tumour size and necrosis status), the five-CpG-based
classifier was still a clinically and statistically significant
prognostic model (Fig. 4a, Supplementary Fig. 3 and
Supplementary Table 5). As shown in Fig. 4b, the ccRCC patients
in the same clinical stage could be successfully separated into
the subgroups of better prognosis and poorer prognosis by the
five-CpG-based classifier (log-rank test, all Po0.05).

The SSIGN score (ranging from 0 to 15) is one of the clinically
integrated systems that was introduced to improve prognostic
accuracy in ccRCC (Supplementary Table 6). The Kaplan–Meier

curves regarding overall survival for respective SSIGN-score
categories are shown in Fig. 5a. The five-CpG-based classifier
successfully categorized patients into high-risk and low-risk
groups with significant differences of clinical outcome in each of
the SSIGN-score categories (log-rank test, all Po0.05; Fig. 5b-f).
Thus, the five-CpG-based classifier can add prognostic value to
both the clinical stage and the SSIGN score.

Impact of intratumour heterogeneity. To determine whether
intratumour heterogeneity (ITH) affected risk score and risk
stratification based on the five-CpG-based classifier, we assayed
methylation value of the five CpG sites in three different regions
within 23 ccRCC tumours. As shown in Supplementary Fig. 5,
inter-individual differences in the methylation of the five CpG
sites, assessed by averaging all measurements from the same
tumour, were significantly higher than measurement differences
within individual tumours. ITH had an obviously smaller effect
on classifier-based risk scores (coefficient of variation (CV),
10.5%) than on the five individual CpGs (CV, 15.2–22.3%).

Table 1 | Baseline characteristics of patients by the five-CpG-based classifier assessment set.

Characteristic SYSU set (n¼ 168) MCHC set (n¼ 284) UTSW set (n¼ 243) TCGA set (n¼ 298)

No.of
patients

Low risk
(%)

High risk
(%)

No.of
patients

Low risk
(%)

High risk
(%)

No.of
patients

Low risk
(%)

High risk
(%)

No.of
patients

Low risk
(%)

High risk
(%)

Age (years)
o60 107 51 (48%) 56 (52%) 178 104 (58%) 74 (42%) 128 82 (64%) 46 (36%) 129 71 (55%) 58 (45%)
Z60 61 33 (54%) 28 (46%) 106 53 (50%) 53 (50%) 115 60 (52%) 55 (48%) 169 67 (40%) 102 (60%)

Sex
Male 113 55 (49%) 58 (51%) 190 109 (57%) 81 (43%) 151 87 (58%) 64 (42%) 193 71 (37%) 122 (63%)
Female 55 29 (53%) 26 (47%) 94 48 (51%) 46 (49%) 92 55 (60%) 37 (40%) 105 67 (64%) 38 (36%)

Race
Asian 168 84 (50%) 84 (50%) 284 157 (55%) 127 (45%) 4 1 (25%) 3 (75%) 1 0 (0%) 1 (100%)
White 0 0 183 104 (57%) 79 (43%) 264 120 (45%) 144 (55%)
Black 0 0 36 23 (64%) 13 (36%) 30 18 (60%) 12 (40%)
Not
available

0 0 20 14 (70%) 6 (30%) 3 0 (0%) 3 (100%)

Grade
G1 8 6 (75%) 2 (25%) 21 15 (71%) 6 (29%) 10 8 (80%) 2 (20%) 6 6 (100%) 0 (0%)
G2 87 42 (48%) 45 (52%) 134 80 (60%) 54 (40%) 128 84 (66%) 44 (34%) 123 75 (61%) 48 (39%)
G3 51 25 (49%) 26 (51%) 88 45 (51%) 43 (49%) 77 38 (49%) 39 (51%) 120 50 (42%) 70 (58%)
G4 22 11 (50%) 11 (50%) 41 17 (41%) 24 (59%) 28 12 (43%) 16 (57%) 49 7 (14%) 42 (86%)

Tumour size
o5 cm 60 33 (55%) 27 (45%) 140 76 (54%) 64 (46%) 136 93 (68%) 43 (32%) 119 76 (64%) 43 (36%)
Z5 cm 108 51 (47%) 57 (53%) 144 81 (56%) 63 (44%) 107 49 (46%) 58 (54%) 178 62 (35%) 116 (65%)
Not
available

0 0 0 1 0 (0%) 1 (100%)

Tumour necrosis
Absent 104 56 (54%) 48 (46%) 189 102 (54%) 87 (46%) 164 103 (63%) 61 (37%) 138 71 (51%) 67 (49%)
Present 64 28 (44%) 36 (56%) 95 55 (58%) 40 (42%) 70 32 (46%) 38 (54%) 160 67 (42%) 93 (58%)
Not
available

0 0 9 7 (78%) 2 (22%) 0

pT
T1 97 49 (51%) 48 (49%) 180 101 (56%) 79 (44%) 156 107 (69%) 49 (31%) 145 95 (66%) 50 (34%)
T2 30 15 (50%) 15 (50%) 54 27 (50%) 27 (50%) 30 10 (33%) 20 (67%) 38 18 (47%) 20 (53%)
T3 37 17 (46%) 20 (54%) 46 27 (59%) 19 (41%) 52 24 (46%) 28 (54%) 107 23 (21%) 84 (79%)
T4 4 3 (75%) 1 (25%) 4 2 (50%) 2 (50%) 5 1 (20%) 4 (80%) 8 2 (25%) 6 (75%)

pN
N0 152 78 (51%) 74 (49%) 267 151 (57%) 116 (43%) 226 134 (59%) 92 (41%) 129 62 (48%) 67 (52%)
N1 16 6 (37%) 10 (63%) 17 6 (35%) 11 (65%) 17 8 (47%) 9 (53%) 8 1 (12%) 7 (88%)
NX 0 0 0 161 75 (47%) 86 (53%)

M
M0 163 83 (51%) 80 (49%) 274 150 (55%) 124 (45%) 221 136 (62%) 85 (38%) 244 125 (51%) 119 (49%)
M1 5 1 (20%) 4 (80%) 10 7 (70%) 3 (30%) 22 6 (27%) 16 (73%) 54 13 (24%) 41 (76%)

Stage (clinical)
Stage I 91 45 (49%) 46 (51%) 171 96 (56%) 75 (44%) 155 107 (69%) 48 (31%) 141 95 (67%) 46 (33%)
Stage II 27 15 (56%) 12 (44%) 48 24 (50%) 24 (50%) 25 9 (36%) 16 (64%) 28 15 (54%) 13 (46%)
Stage III 36 17 (47%) 19 (53%) 43 28 (65%) 15 (35%) 39 20 (51%) 19 (49%) 73 15 (20%) 58 (80%)
Stage IV 14 7 (50%) 7 (50%) 22 9 (41%) 13 (59%) 24 6 (25%) 18 (75%) 56 13 (23%) 43 (77%)

MCHC, multiple clinical centres in China; SYSU, Sun Yat-sen University; TCGA, The Cancer Genome Atlas; UTSW, University of Texas Southwestern Medical Center at Dallas.
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ITH affected risk stratification in 2 (8.7%) of the 23 tumours,
suggesting the 5-CpG-based classifier is a precise tool
(Supplementary Table 7).

CpG methylation and gene expression and patient prognosis.
Using the TCGA data set, we analysed whether methylation of the
five CpGs was correlated with gene expression, as per Spearman’s
correlation. We observed that the correlation between methyla-
tion value and gene expression by Spearman’s correlation test was
significantly inverse for TWF2 (P¼ 5.8� 10� 11), EHBP1L1
(P¼ 1.9� 10� 6) and RIN1 (P¼ 1.2� 10� 30), significantly
positive for PITX1 (P¼ 4.1� 10� 8) and marginally positive for
FOXE3 (P¼ 0.09).

Nine hundred and ninety-three patients in the entire cohort
were separated into CpG-defined high-risk and low-risk groups
using X-tile plots, to generate the optimum cutoff score for
methylation of the five CpGs. Kaplan–Meier survival analysis,
depicted in Fig. 6a–e (left panel), showed the overall survival of
patients in the CpG-defined low-risk group was significantly
better than in the high-risk group. In addition, expression of the
genes corresponding to the 5 CpGs effectively predicted the
clinical outcome of the 507 patients for whom there were
messenger RNA expression data in the TCGA data set (Fig. 6a–e,
right panel).

Integrating our results with genes linked to RCC. To further
evaluate the role of genes corresponding to the five CpGs in
relation to well-validated ccRCC susceptibility genes, we used the
cBioPortal for Cancer Genomics network to evaluate gene con-
nectivity. As shown in Fig. 6f, PITX1 interacts with EGR1, which
is then connected to an immune response network. RIN1 inter-
acts with RAB5A, which is connected to genes that are involved in
cancer cell epithelial-to-mesenchymal transition. TWF2 mainly
participates in cancer cell proliferation signalling pathways
through interaction with chromogranin B (CHGB). FOXE3 and
EHBP1L1 showed exceptionally low connectivity in the database.

Discussion
Integrating multiple biomarkers into a single model would
substantially improve prognostic value compared with a single
biomarker13. As genome-wide technologies have become more
sophisticated, so too have molecular prognostic models, which
can now integrate mRNA, microRNA, CpG and single-nucleotide
polymorphism (SNP) data7,14–19. However, early studies with
integrated models had several notable limitations. (1) There was a

lack of information (such as risk score formulas or biomarker
coefficients) on how to integrate multiple biomarkers into one
model, which restricted wide use of these models in the clinic.
(2) Some models incorporated too many biomarkers, making
it nearly impossible to apply them in clinical practice.
(3) Inappropriate statistical methods were used to mine
microarray data. More specifically, in microarray analysis, the
number of covariates is usually close to or larger than the number
of observations. The Cox proportional hazards regression
analysis, which is the most popular approach for modelling
covariate information for survival times, is unsuitable for high-
dimensional microarray data when the sample-size-to-variables
ratio is too low (such as o10:1)20,21. The LASSO model used in
our study is one of the statistical methods that can eliminate this
limitation22–24. (4) Models were developed based on analysis of
fresh-frozen specimens, limiting immediate clinical application in
a broad community setting. (5) Models were not validated in
multiple independent cohorts. Thus, none of the integrated
prognostic models developed using genome-wide, microarray-
based analysis are being used in clinical practice. In this study, we
developed a practical CpG-methylation-based assay that can be
used with FFPE material to identify prognostic CpG information
and demonstrated how this information can be integrated into a
prognostic model that is feasible to use in the clinic.

ITH can impair the precise molecular analysis of tumours,
because biomarker expression can vary across different tumour
regions25. Some prognostic biomarkers could not be validated in
previous reports and one possible cause was large intra-sample
variability in gene expression26. However, two recent studies
showed ITH, although present at the level of individual gene
expression, did not preclude precise microarray-based predictions
of clinical outcome in ccRCC or breast cancer26,27. Compared
with a single prognostic biomarker, our integrated prognostic
models based on microarray profiling not only have higher
prognostic accuracy but also are less influenced by ITH.

Several studies have analysed gene expression profiles in RCC
and examined their potential clinical relevance28–31. These
signatures contained large numbers of genes that were detected
by microarray or reverse transcriptase–PCR and, consequently,
these signatures had limited use in clinical practice. In this study,
we identified methylation level of five highly prognostic CpG sites
by pyrosequencing from the FFPE material. Given the fewer
number of markers, our classifier is both more feasible and
cheaper compared with the prognostic signatures proposed in
previous studies. The five-CpG-based classifier can accurately
distinguish between patients with ccRCC, with substantially

Table 2 | Multivariate Cox regression analysis of the five-CpG-based classifier with overall survival in the four sets.

Parameters SYSU set MCHC set UTSW set TCGA set

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age (younger than 60 years
versus 60 years or older)

1.18 (0.66–2.11) 0.58 2.13 (1.36–3.33) 0.001 1.76 (0.98–3.14) 0.06 1.28 (0.81–2.02) 0.29

pT (T1/2 versus T3/4) 2.82 (1.42–5.56) 0.003 1.99 (1.20–3.31) 0.008 2.39 (1.27–4.50) 0.007 1.63 (1.01–2.63) 0.05
pN (N0 versus N1) 3.16 (1.37–7.28) 0.007 4.59 (2.39–8.83) o0.001 2.01 (0.95–4.26) 0.07 —* —*
M (M0 versus M1) 7.41 (1.97–27.89) 0.003 1.61 (0.60–4.27) 0.34 3.10 (1.46–6.57) 0.003 2.77 (1.78–4.31) o0.001
Grade (G1/2 versus G3/4) 1.88 (0.97–3.66) 0.06 1.60 (1.01–2.56) 0.05 1.34 (0.69–2.60) 0.39 1.84 (1.07–3.19) 0.03
Tumour necrosis
(absent versus present)

1.28 (0.96–1.71) 0.09 1.46 (1.17–1.83) 0.001 1.10 (0.81–1.50) 0.53 2.46 (1.48–4.09) 0.001

Five-CpG-based classifier
(low versus high risk)

4.10 (2.05–8.19) o0.001 3.73 (2.28–6.09) o0.001 3.36 (1.78–6.34) o0.001 1.80 (1.11–2.93) 0.02

CI, confidence interval; HR, hazard ratio; MCHC, multiple clinical centres in China; SYSU, Sun Yat-sen University; TCGA, The Cancer Genome Atlas; UTSW, University of Texas Southwestern Medical
Center at Dallas.
Tumour size was not included in the multivariate analysis due to colinearity with pathologic T stage.
*pN was not included in the multivariate analysis in TCGA set, because pN (N0 versus N1) was not a prognostic factor (P-value¼0.21) in univariate Cox regression analysis and the nodal involvement
status of 161 patients (54% of the total of 298 patients) was not available in this set.
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different clinical outcomes, even after adjustment for standard
clinical prognostic factors, such as age, TNM stage, Fuhrman
grade and necrosis status. We further performed international
validation using data sets comprising patients from a site in the
United States and MCHC, as well as patients in TCGA data set,
who were also from multiple centres in the United States. The
prognostic accuracy of the five-CpG-based classifier was similar
in the three validation sets. The classifier was reproducible
regardless of clinical centre, country or race and it can provide

prognostic value that complements the clinical stage and the
SSIGN score.

Five genes corresponded to the five CpGs identified in our
study: FOXE3, PITX1, RIN1, TWF2 and EHBP1L1. DNA
methylation of FOXE3 has been reported and validated
as a diagnostic biomarker for paediatric acute lymphoblastic
leukemia32. Hypermethylation of PITX1 and RIN1 has been
described in human salivary gland adenoid cystic carcinoma and
breast cancer, respectively33,34. TWF2 has been implicated in

Subgroup

Sex
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Race
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I/II
III/IV
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Absent
Present

Tumour size
<5 cm
≥5 cm

All patients

EndpointHR (95% CI)
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Figure 4 | Stratification analysis of the five-CpG-based classifier. (a) Hazard ratio (HR) of overall mortality for all 993 patients with ccRCC according

to the five-CpG-based classifier in different subgroups stratified by clinical parameters. (b) Kaplan–Meier survival analysis of the five-CpG-based

classifier in subsets of different clinical stage patients with ccRCC (log-rank test).
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neurite outgrowth35. However, the function of EHBP1L1 remains
unknown. Our pathway analysis results showed that these
genes may play diverse roles in regulating ccRCC progression,
including tumour immune response, cancer cell proliferation and
epithelial-to-mesenchymal transition. Notably, these genes are all
distributed at the periphery of the signalling network, in contrast
to central network markers such as PTEN and TP53. This finding
is similar to recent studies showing that epigenetic marker drift
occurs preferentially in genes that occupy peripheral network
positions of exceptionally low connectivity7,36,37.

In conclusion, the present study suggests the newly developed
five-CpG-based classifier is a practical and powerful prognostic
tool for ccRCC, which can provide prognostic value that
complements the current staging system of ccRCC and will
facilitate patient counselling, tailoring of follow-up protocols and
selection for appropriate adjuvant trial designs.

Methods
Patients. In this study, we used 695 FFPE tissue samples from 695 patients who
underwent resection of a ccRCC. The SYSU set included 168 patients from the First
Affiliated Hospital and Cancer Center of SYSU (Guangdong, Southeast China)
treated between 2001 and 2009. The MCHC set included 284 patients treated
between 2001 and 2009 at three hospitals across different regions of China: First
Affiliated Hospital of Xi’an Jiaotong University (Shaanxi, Northwest China),
Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College
(Shandong, Northeast China) and Affiliated Hospital of Kunming University of
Science and Technology (Yunnan, Southwest China) between 2001 and 2009.
Another 243 patients from the University of Texas Southwestern Medical Center at
Dallas (TX, USA) treated between 2004 and 2011 comprised the UTSW set. The
TNM 2009 staging system was used to classify ccRCC patients. The grading system
used in the study was based on the Fuhrman four grade. Clinical baseline data were
obtained through medical record review. Patients with sporadic, unilateral ccRCC
and with clinicopathological characteristics and follow-up information available

were included. In addition, to generate CpG methylation expression profiles we
obtained, as a discovery set, a panel of 46 fresh-frozen tumour samples with paired
adjacent normal tissue from patients with ccRCC treated between 2011 and 2013 at
the First Affiliated Hospital of SYSU. Consent was obtained for all subjects and the
protocols approved by the respective Institutional Review Board of each institution.

Infinium methylation assay microarrays. In the discovery set, we used the
HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA) for genome-
wide assessment of methylation at CpG sites38. Genomic DNA was extracted from
46 paired ccRCC tumour and adjacent normal tissues with the QIAamp DNA mini
kit (Qiagen, Valencia, CA, USA) following the manufacturer’s recommendations.
All DNA samples were assessed for integrity, quantity and purity by electrophoresis
in a 1.3% agarose gel, PicoGreen quantification and NanoDrop measurements,
respectively. The samples that passed quality control were processed with Infinium
HumanMethylation450 BeadChip Kits (Illumina) according to the manufacturer’s
recommendations, through automated processes in the Genomic and Microarray
Core, University of Texas Southwestern Medical Center. Arrays were imaged with
BeadArray Reader using standard Illumina scanner settings. The signal data were
extracted and processed using RnBeads39 version 0.99.12 in the R software 3.0.3.
We considered a methylation b-value to be unreliable if its corresponding detection
P-value was not below the threshold T¼ 0.05. Both sites and samples were filtered
using a greedy approach. BMIQ normalization methods and the background
subtraction ‘methylumi.noob’ methods implemented in the RnBeads package was
applied40,41. We removed probes containing an SNP in the assayed CpG
dinucleotide, as well as those for which two or more SNPs were located in the
probe sequence7. We removed probes not mapping uniquely to the human
reference genome (hg19) allowing for one mismatch under the criteria of
Price et al.42 Non-CpG targeting probes (Ch probes) and the probes included in the
sex chromosomes were also removed43. Using the annotations provided by
Illumina for the HumanMethylation450 platform, only probes located in the CpG
islands and shores were kept for analysis in this study. The R Linear Models for
Microarray Data (Limma) package44 was used to compare b-values and to identify
differentially methylated probes between cancer and adjacent normal tissues.
P-values were calculated from the moderated t-statistics and multiple testing
correction of the P-values was performed using Benjamini and Hochberg’s method
(false discovery rate), to identify differentially methylated probes. Microarray data
were uploaded to the National Center for Biotechnology Information’s Gene

140120100806040200

100

80

60

40

20

0

SSIGN score: 0–1

0–1

Months after surgery Months after surgery Months after surgery
140120100806040200

O
ve

ra
ll 

su
rv

iv
al

 (
%

)
O

ve
ra

ll 
su

rv
iv

al
 (

%
)

O
ve

ra
ll 

su
rv

iv
al

 (
%

)

O
ve

ra
ll 

su
rv

iv
al

 (
%

)

O
ve

ra
ll 

su
rv

iv
al

 (
%

)

O
ve

ra
ll 

su
rv

iv
al

 (
%

)

100

80

60

40

20

0

Months after surgery

140120100806040200

100

80

60

40

20

0

SSIGN score: 4–5

4–5

Months after surgery Months after surgery

120100806040200

100

80

60

40

20

0

SSIGN score: 6–8

6–8

120100806040200

100

80

60

40

20

0

SSIGN score: ≥9

≥9

140120100806040200

100

80

60

40

20

0

SSIGN Score: 2–3

2–3

No. at risk

Low risk 155 122 103 76 37 16 7 0
High risk 101 83 67 49 23 8 0 0

No. at risk
Low risk 93 74 56 36 19 8 3 1
High risk 89 64 47 28 9 4 1 0

No. at risk
Low risk 48 38 30 23 11 1 1
High risk 88 57 40 26 13 3 0

No. at risk
Low risk 36 21 11 5 3 1 0
High risk 85 39 14 6 2 0 0

No. at risk
Low risk 182 154 108 78 34 13 4 2
High risk 106 93 72 50 22 8 1 0

P=0.02 P< 0.001P<0.001

P<0.001 P< 0.001 P=0.005

HR=2.33 (1.15–4.71) HR=3.37 (1.92–5.91)

HR=5.04 (2.58–9.82) HR=3.15 (1.58–6.26) HR=2.02 (1.21–3.37)

HR=1.96 (1.79–2.15)

High risk

High risk

Low risk

Low risk

High risk High risk

High risk

Low risk
Low risk

Low risk

SSIGN scorea b c

d e f

Figure 5 | Analysis of the five-CpG-based classifier in subsets of different SSIGN-score categories. (a)The Kaplan–Meier curves regarding overall

survival for respective SSIGN-score categories. (b–f) Kaplan–Meier survival analysis of the five-CpG-based classifier in subsets of different SSIGN-score

categories (log-rank test). HR, hazard ratio.
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Figure 6 | X-tile plots of the genes that correspond to the five CpGs and network analyses. X-tile plots of the CpG methylation (993 patients in the entire

cohort) and mRNA expression of the five genes (507 patients in the TCGA data set): (a) PITX1, (b) FOXE3, (c) TWF2, (d) EHBP1L1 and (e) RIN1. X-tile plots

provide a single and intuitive method to assess the association between marker expression and survival, and automatically select the optimum cut point

according to the highest w2-value defined by Kaplan–Meier survival analysis and log-rank test. Colouration of the plot represents the strength of the association

at each division, ranging from low (dark, black) to high (bright, red or green). Red represents inverse association between marker expression and survival,

whereas green represents direct association between marker expression and survival. Each pixel represents an individual cutpoint where the number of patients

in the group increases as progressed down for the high-expression group (‘larger high population’) or to the right for the low-expression group (‘larger low

population’). The dark dots (indicated by arrow) in the X-tile plots are the sites according to the highest w2-value and are used as the cutoff points separating

patients into high-risk and low-risk groups. (f) Network analyses of the genes that correspond to the five CpGs by cBioPortal. PITX1, TWF2 and RIN1 were

predicted to have an impact on a diverse network of genes and pathways, as per the cBioPortal for Cancer Genomics network analysis tool. Black line means

interactions between the two entities; blue arrow represents that the first entity controls a reaction that changes the state of the second entity. HR, hazard ratio.
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Expression Omnibus (Series GSE61441, http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=ufaxumuubrqxpgr&acc=GSE61441).

Pyrosequencing. The methylation level of CpG sites was evaluated with pyr-
osequencing in the SYSU, MCHC and UTSW sets. DNA from paraffin-embedded
tissue blocks was extracted from four sequential unstained sections, each 15 mm
thick. For each sample of tumour tissue, subsequent sections were stained with
haematoxylin and eosin for histological confirmation of the presence (470%) of
tumour cells. Genomic DNA was extracted with the QIAamp DNA FFPE Tissue
Kit (Qiagen) following the manufacturer’s recommendations. Bisulfite conversion
was performed on 1 mg of DNA with the EpiTect Bisulfite Kit (Qiagen). Twenty
nanograms of converted DNA was used as a template in each subsequent PCR.
Specific sets of primers for PCR amplification and sequencing were designed using
the PyroMark Assay Design 2.0 software (Qiagen). All primer sequences are listed
in Supplementary Table 2. PCRs were performed with the PyroMark PCR Kit
(Qiagen) under the following conditions: 95 �C for 15 min, 45 cycles of 94 �C for
30 s, 56 �C for 30 s and 72 �C for 30 s, and an elongation step of 72 �C for 10 min.
The success of amplification was assessed by 2% agarose gel electrophoresis. PCR
products were pyrosequenced with the PyroMark Q24 pyrosequencer (Qiagen)
according to the manufacturer’s protocol (Pyro-Gold reagents). Output data were
analysed using PyroMark Q24 2.0.6 Software (Qiagen), which calculates the CpG
methylation value as the percentage (mC/[mCþC]) for each CpG site, allowing
quantitative comparisons. Controls to assess proper bisulfite conversion of the
DNA were included in each run and sequencing controls were used to ensure the
fidelity of the measurements.

TCGA data and network analysis. For the TCGA set, clinical data, CpG
methylation value (level 3 data, Infinium HumanMethylation450) and mRNA
expression (level 3 data, RNA-seq Version 2 Illumina) were downloaded from the
TCGA data portal (http://tcga-data.nci.nih.gov/tcga/) on 1 October 2014. The
clinical data included 512 retrospectively identified patients who underwent radical
or partial nephrectomy between 1998 and 2010 for sporadic ccRCC45. Of the 512
patients, CpG methylation data were available for 298 patients and mRNA
expression data were available for 507 patients. Of the 298 patients, VHL, PBRM1
and BAP1 gene mutation data were available for 242 (Supplementary Fig. 6). The
cBioPortal for Cancer Genomics (http://cbioportal.org) network was used to search
for pathways and interactions that might be linked to genes that correspond to the
identified CpG sites in ccRCC46.

Intratumour heterogeneity. ITH was investigated by extracting DNA samples
from morphologically distinct regions within the tumours of 23 patients with
ccRCC treated between 2011 and 2013 at the First Affiliated Hospital of SYSU
(FFPE specimens; three different regions coded as R1, R2 and R3; Supplementary
Fig.4). Methylation of the five CpG sites was detected with pyrosequencing. The
s.d. and CV were used to describe the inter-sample variability of CpG methylation
between the 23 ccRCCs and the intra-sample variability between different regions.

Statistical analysis. The goal of this study was to identify prognostic classifier that
predicts overall survival. This is defined as the time between surgery and death or
the last follow-up date. Volcano plot analysis was used to select CpG sites based on
absolute fold change in combination with t-test P-values. LASSO logistic regression
analysis was used to identify the candidate CpG sites with non-zero coefficients in
the discovery set. LASSO Cox regression analysis was used to select the prognostic
markers of the candidate CpG sites and to construct a multi-CpG-based classifier
for predicting the overall survival of patients with ccRCC in the SYSU set. We used
the Kaplan–Meier method to analyse the correlation between variables and overall
survival, and we used the log-rank test to compare survival curves. Multivariate
survival analysis was performed using the Cox regression model. X-tile plots were
used to generate the optimum cutoff point for continuous variables according to
the highest w2-value defined by Kaplan–Meier survival analysis and log-rank test47.
X-tile plots were created with X-tile software version 3.6.1 (Yale University School
of Medicine, New Haven, CT, USA) and all the other statistical tests were
performed with R software version 3.0.3 (R Foundation for Statistical Computing,
Vienna, Austria). Statistical significance was set at 0.05.

LASSO regression analysis. The high dimensionality of microarray-based
experiments in contrast to the small number of samples easily leads to overfitting.
Regularized linear models such as logistic regression with LASSO penalty are
popular solutions to fitting sparse models in which only a small subset of features
plays a role48. LASSO can be used with high-dimensional data for optimal selection
of genes with a strong diagnostic or prognostic value and low correlation among
each other to prevent overfitting49–52. LASSO is a form of regularized or ‘penalized’
regression where L1 regularization is introduced into the standard multiple linear
regression procedure using a compound cost function to optimize the regression
coefficients. LASSO regression shrinks the coefficient estimates towards zero, with
the degree of shrinkage depending on an additional parameter, l. In this way,
coefficient estimates can be forced to be exactly zero, thereby effectively eliminating
a number of variables. We adopted the LASSO regression model to achieve

shrinkage and variable selection simultaneously. Ten-time cross-validations were
used to determine the optimal values of l (refs 51–53). We choose l via 1� s.e.
criteria, that is, the optimal l is the largest value for which the partial likelihood
deviance is within 1 s.e. of the smallest value of partial likelihood deviance24. We
used R software version 3.0.3 (R Foundation for Statistical Computing) and the
‘glmnet’ package to perform LASSO regression analysis.
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