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Abstract

The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play
a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to
date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined
the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The
expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145,
-143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR
analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By
investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found
down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free
PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and
invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a
bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression
of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are
associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be
involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different
stages of human PCa and predicting bone metastasis.
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Introduction

Prostate cancer (PCa) is the most frequently diagnosed
malignant tumor and the second leading cause of cancer deaths
in western countries [1]. The principal problem arising from PCa
is its propensity to metastasize to bone. Skeletal metastases occur
in as many as 90% of patients with advanced PCa. Importantly,
once tumors metastasize to bone, they are virtually incurable and
result in significant morbidity prior to a patient’s death [2,3]. It is
very important to understand the mechanism of metastasis
formation for preventing metastasis and developing anti-metastatic
therapies that may provide additional reduction on the morbidity
and mortality of PCa patients.
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Skeletal metastasis of tumor is a complicated multi-step process
that includes cellular disengagement and motility from the local
microenvironment, degradation of the surrounding extracellular
matrix, cellular movement, arrested at distal capillaries, extrava-
sate and finally proliferate to form distant secondary bone tumors.
All of these processes are regulated by multiple factors and
molecular pathways [4]. Although basic knowledge related to this
structured process has increased recently, many of the key
elements are still poorly understood.

MicroRNAs (miRNAs) are a class of small noncoding regulatory
RNAs (19-25 nucleotides) expressed by plants and animals
mvolved in regulation of gene expression. They exert their
function by binding to the 3’-untranslated region of a subset of
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mRNAs resulting in their degradation or repression of translation
[5]. Bioinformatic analyses have predicted that single miRINA has
multiple targets, and thus miRNAs could mediate the regulation of
a great number of protein-coding genes. Recent estimates suggest
that one-third of human mRNAs may be regulated by miRNAs
[6,7]. miRNAs have been shown to interfere cellular functions
such as cell proliferation, cell differentiation, and apoptosis [8].

Many reports have elucidated the role of certain miRNAs as
promoters or suppressors of tumors [9,10,11]. An increasing
number of observations also gives a collective evidences that
miRNAs coordinate some of the intricate gene-expression
programs and play a crucial role in tumor metastasis [12].
miRNAs may influence multiple steps of metastatic cascade, such
as tumor cell migration, invasion and intravasation. For example,
breast cancer is one of the most important contributors of bone
metastases [13]. A series of microRNAs have been identified as
metastasis promoters, including let-7, miR-9, miR-10b, miR-21,
miR-373, miR-520c, and miR-103/107 [12,14,15,16,17,18,19,
20]. Conversely, miR-335, miR-206, miR-31, miR-145, miR-661
and miR-126 have been identified as metastasis suppressor
miRNAs in human breast cancer [21,22,23,24,25,26,27].

In PCa, several miRNAs have been identified as mediators of
metastasis. It was demonstrated that the deregulation of miR-221
and miR-222 was associated with PCa progression, poor
prognosis, and the development of metastasis [28]. miR-21 was
also over-expressed in PCa and acts as a key oncogenic regulator
that contributes to tumor growth, invasiveness and metastasis
[29,30,31]. A study has revealed that miR-146a targets ROCKI,
and elevated ROCKI levels promote cell proliferation, invasion
and metastasis in the PCa cells [32]. In addition, the genomic loss
of miR-101 in human PCa, involved in cancer progression, leads
to over-expression of EZH2 [33,34]. However, the importance of
miRNAs in bone metastasis of PCa has not been elucidated to
date.

Epithelial-mesenchymal transition (EMT) is a certain signal
pathway of describing one key step of the progression of tumor cell
metastasis which includes consecutive processes of cell-detaching,
migrating, invading, dispersing and final residing [35]. It has been
identified as a hallmark of metastasis in multiple tumors,
connecting to plenty of transcriptional factors [36,37,38,39].
miRNAs are also components of the cellular signaling circuitry
that regulates the EMT program [40]. Recent work has
demonstrated several miRNAs, including miR-200 family and
miR-205, played critical roles in EMT [41,42]. Untl now, the
precise role of miRNAs in regulating EMT is still unclear.

To investigate the role of miRNAs in bone metastasis of PCa
and their relationship with EMT, it is firstly need to know miRNA
expression profiling in primary and bone metastatic PCa. In the
present study, we compared miRNA expression profiles in primary
and bone metastatic PCa of humans and identified miRs-143 and -
145 related to bone metastasis. Furthermore, we demonstrated
that the upregulations of miRs-143 and -145 repressed migration
and invasion & vitro, tumor development and bone invasion i vivo,
and EMT of PC-3 cells, a human PCa cell line originated from a
bone metastatic PCa specimen.

Materials and Methods

Tissue samples

Tissue samples from two groups of PCa patients were studied.
Primary PCa tissues were from prostatectomy or transurethral
resection in the treatment of local prostate carcinoma. Skeletal
metastatic tissues of PCa were from the operation in the treatment
of bone metastasis. All samples were formalin-fixed and paraffin-
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embedded (FFPE) with standard procedures. Regions of tissue
specimens >70% cancerous tissue were used for the extraction of
total RNA. The histological diagnosis was made by a pathologist
and has been re-confirmed by a second pathologist (D.H.). Bone
metastasis was diagnosed according to clinical symptom and sign,
bone scan, radiography, computed tomography, and MRI. None
of the patients had received neoadjuvant hormone, radiation, or
chemotherapy before getting the tumor tissues. The clinical
information was reviewed about age, bone metastasis, total PSA
level, free PSA level and the Gleason score in primary PCa
patients. The study was approved by the Institutional Ethical
Board (IRB) in the First Affiliated Hospital of Sun Yat-sen
University and consented by patients involved.

RNA extraction

All samples were sent to CapitalBio Corp. and total RNA from
FFPE tissue samples was isolated as previously described [43]. In
brief, tissue samples were cut into slices from paraffin blocks and
placed in 1.5 mL nuclease-free microcentrifuge tubes (Eppendorf),
then deparaffinized three times in 1 mL Limonene, followed by
wash with 1 mL 100% ethanol twice and air drying at room
temperature. Samples were then incubated with digestion buffer
(20 mM Tris-HCI, 10 mM EDTA, 1% SDS) and proteinase K
(Merck) at 55°C overnight in order to obtain complete digestion of
the samples. Subsequently, TRIzol reagent (Invitrogen) was
added, and the remainder of the protocol was carried out
according to the manufacturer’s instructions. RNA samples were
resuspended in RNase-free water after the final precipitation step.
RNA quality and quantity were assessed using a biophotometer

(Eppendorf).

Microarray analysis

Total RNA samples were analyzed by CapitalBio (CapitalBio
Corp.) for miRNA microarray experiments. Each miRNA
microarray chip contained 924 probes in triplicate, corresponding
to 677 human (including 122 predicted miRNAs), 461 mouse, and
292 rat miRNAs found in the miRNA Registry (http://microrna.
sanger.ac.uk; miRBase Release 10.0, 2007). Procedures were
performed as described in detail on the website of CapitalBio
(http://www.capitalbio.com). Briefly, the low-molecular-weight
RNA (LMW-RNA) was isolated using PEG solution precipitation
method according to a previous protocol [44]. LMW-RNA was
dephosphorylated by Alkaline Phosphatase (NEB) at the first
following the protocol given by Wang H, et al. [45]. Then the
dephosphorylated LMW-RNA was labeled with 500 ng 5'-
phosphate-cytidyl-uridyl-cy3-3" (Dharmacon) with 2 units T4
RNA ligase (NEB) [44]. Labeled RNA was precipitated with
0.3 M sodium acetate, 2.5 volumes ethanol and resuspended in
20 pl of hybridization buffer containing 3xSSC, 0.2% SDS and
15% formamide. The array was hybridized at 42°C overnight and
washed with two consecutive washing solutions (0.2% SDS,
2xSSC at 42°C for 4 min, and 0.2% SSC for 4 min at room
temperature). Arrays were scanned with a double-channel laser
scanner (LuxScan 10K/A, CapitalBio). The scanning setting was
adjusted to obtain a visualized equal intensity of U6 spots across
arrays. Data was extracted from the TIFF images using
LuxScanTM 3.0 software (CapitalBio Corp). Raw data were
normalized and analyzed using the Significance Analysis of
Microarrays (SAM, version 2.1, Stanford University, CA, USA)
software. Clustering analysis was performed by Cluster 3.0 [46].
All data is MIAME compliant and that the raw data has been
deposited in a MIAME compliant database (GEO, accession ID:
GSE26964).
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Quantitative reverse transcription-PCR

The cDNA obtained using TagMan miRNA Q-PCR Detection
Kit (GeneCopoeia). Briefly, miRNA was reverse transcribed using
sequence specific stem-loop primers (invitrogen) to the following
miRNAs: hsa-miR-125b, hsa-miR-145, hsa-miR-153, hsa-miR-
210, hsa-miR-143, hsa-miR-100, hsa-miR-363, hsa-miR-451, hsa-
miR-572 and hsa-miR-508-5p, based on microarray analysis and
their predicted target genes. The reaction was performed with the
following parameter values: 15 min at 37°C,, 10 minutes at 65°C,
5 min at 85°C, and —20°C until use. Real-time PCR analysis was
performed on an iQ5 Real Time PCR Detection System (Bio-Rad)
with 20 pL volume reaction containing 2 pL reverse transcription
product, 10 uL 2xAll-in-One™ Q-PCR Mix, 2 ul. PCR
Forward Primer (2 pM), 2 pul. Universal Adaptor PCR Primer
(2 uM), 4 uL. ddH20O. The reactions were incubated in 96-well
plates at 95°C for 10 min, following by 40 cycles, and then
ramped from 66°C to 95°C to obtain the melting curve. Each
sample was analyzed in triplicate. No template and no reverse
transcription were included as negative controls. U6 snRNA was
used as normalization control. Relative expression values from
three independent experiments were calculated following the
97 AAC method of Schmittgen and Livak [47].

Locked nucleic acid (LNA) in situ hybridization

The procedure was carried out as previously described [48].
Briefly, paraffin-embedded tissue sections were deparaffinized,
dehydrated, then treated with proteinase K (20 pg/mL; Roche)
at 37°C for 30 min. After washed by 0.2% glycine/PBS for 1 min
and fixed with 4% paraformaldehyde, the sections were
incubated in hybridization buffer (50% formamide, 5xSSC,
0.1% Tween, 9.2 mM citric acid for adjustment to pH 6.0,
50 pg/mL heparin, 500 pg/mL yeast RNA) at 37°C for 2 h.
Digoxigenin-labeled, LNA-modified probes of miR-143
(20 nmol/L; 5'-GAGCTACAGTGCTTCATCTCA-3', Exiqon)
and miR-145 (20 nmol/L; 5'-AGGGATTCCTGGGAAAAC-
TGGAC-3’, Exiqon) were added respectively and incubated at
55°C for 18 h. Sections were washed with 2xSSC twice, then
with 2xSSC and 50% formamide at 50°C thrice (30 min each).
The anti-DIG-AP (1:1000, Roche) was added after PBS-T (0.1%
Tween 20) wash and incubated at 4°C overnight. Sections were
washed four times with PBS-T, and nitroblue tetrazolium
chloride/5-bromo-4-chloro-3-indonyl phosphate was used for
stain.

Cell Culture

Metastatic PCa cell lines included PC-3 and LNCaP in the
present study. PC-3 was purchased from American Type Culture
Collection (ATCC) and maintained in F-12 culture medium
(Hyclone) supplemented with 10% fetal bovine serum (Hyclone).
LNCaP was purchased from Shanghai Cell Bank, Chinese
Academy of Sciences, and maintained in RPMI-1640 culture
medium (Gibico, Invitrogen) supplemented with 10% fetal bovine
serum (Hyclone). Stably-transfected cells were maintained in
media with the presence of puromycin (Sigma-Aldrich). Cells were
grown at a humidified atmosphere of 5% CO, at 37°C.

Generation of Stably Transfected Cell Lines

The sequence of pri-miR-143 and pri-miR-145 were cloned
into pMSCV-puromycin plasmid with restriction enzyme Bgl II
and EcoR I (New England Biolabs). 293FT cells were then
transfected with aforementioned constructed plasmids combined
with PIK vector or blank pMSCV-vector as control, using the
calcium phosphate method as described previously [49]. After
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incubation at 37°C for 6 h after transfection, the media were
changed and the cells were incubated overnight. To produce new
virus, the media were collected thrice a day until 293FT cells reach
to total confluence. Viruses are used to infect PC-3 and LNCaP
cells. 24 h after addition of viruses, infected cells were selected by
adding puromycin to growth medium. Stable cell lines were
verified by qRT-PCR. Both pMSCV and PIK plasmids were
granted by generous Prof. Song LB, Sun Yat-Sen University
Cancer Center, Guangzhou, China.

Wound healing assay

One day before scratch, stable cell lines of PC-3 and LNCaP
cells were trypsinized and seeded equally into 6-well tissue culture
plates, and grew to reach almost total confluence in 24 h. When
non-serum starvation kept for 24 h after cell monolayer formed,
an artificial homogenous wound was created onto the monolayer
with a sterile 100 pL tip. After scratching, the cells were washed
with serum-free medium. Images of cells migrating into the wound
were captured at time points of 0 h, 6 h, 12 h and 24 h by
mverted microscope (40 x).

In vitro invasion assay

The invasion assay was done by using Transwell chamber
consisting of 8 pm membrane filter inserts (Corning) coated with
Matrigel (BD Biosciences) as previously described [50]. Briefly,
cells were trypsinized and suspended in serum-free medium. Then
1.5%10° cells were added to the upper chamber, whereas lower
chamber was filled with medium with 10% FBS. After incubated
for 48 h, cells were invaded through the coated membrane to the
lower surface, in which cells were fixed with 4% paraformaldehyde
and stained with hematoxylin. The cell count was done under the
microscope (100 x).

Adhesion assay

The adhesion assay was performed as described previously [51].
Briefly, 96-well plates were coated with 50 ul fibronectin (50 ug/
ml) in original media at cell incubator for 1 h. After washed with
warm media, the plates were blocked with 1% BSA at 37°C for
1 h and washed twice. After trypsinization, suspended cells were
seeded to each well with serum-free media at a density of 1.5x10*
cells per well. When incubated the plates for 30 min, non-
adherent cells were removed and plates were gently washed twice
with PBS. Adherent cells were fixed in 4% paraformaldehyde for
20 min at room temperature, then stained with hematoxylin and
counted under inverted microscope (100 x).

Western blotting

For the expression analysis of EMT-related proteins, immuno-
blotting assay was carried out. All the stable cell lines, including
PC-3/vector, PC-3/miR-143, PC-3/miR-145, LNCaP/vector,
LNCaP/miR-143 and LNCaP/miR-145, were seeded in
100 mm tissue culture dishes. After 24 h, cells were washed with
prechilled PBS when the confluence reached to 60-70%, followed
by being harvested in sample buffer [62.5 mmol/L Tris-HCI
(pH 6.8), 2% SDS, 10% glycerol, and 5% 2-B-mercaptoethanol].
Equal amounts of protein from the supernatant were loaded per
lane and resolved by SDS-polyacrylamide electrophoresis. In
sequence, protein was transferred onto PVDF membrane (Milli-
pore), blocked by 5% nonfat milk for 1 h at room temperature,
and probed with primary antibodies (1:1000) for 3 h, including
mouse anti-E-Cadherin (BD Biosciences), mouse anti-Fibronectin
(BD Biosciences) and mouse anti-Vimentin (BD Biosciences).
Membranes were washed thrice (10 min each) in TBS-T buffer
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and incubated for 40 min at room temperature with horseradish
peroxidase-conjugated anti-mouse secondary antibodies. Blots
were washed thrice (10 min each) in TBS-T and developed using
the ECL system. Protein loading was normalized by reprobing the
blots with mouse anti-o-Tubulin antibody (Abcam).

In vivo models of prostate cancer bone metastasis

Intra-tibial injection model was used. ten male severe combined
immunodeficient (SCID) mice of 3~4 weeks old were purchased
from HFK Bio-Technology.CO., LTD (Beijjing, China). Before
inoculation, PC-3 cells were resuspended in 40 pL serun-free F-12
medium at the density of 2 x10° cells per 40 pL, and injected with
a 26-gauge needle into the tibia using a drilling motion. Animals
were randomized into two groups equally, where each 5 animals
were treated with PC-3/miR-143 or PC-3/miR-145 on right
tibias respectively. All the 10 mice were injected with PC-3/vector
on left tibias as self-control. Mice were monitored weekly for
tumor growth. On week 5, hindlimbs was radiographed using a
Faxitron x-ray machine (Faxitron X-ray Corp, USA) to detect the
bone lesions. Then mice were sacrificed, and tibias were collected,
decalcified and fixed in formalin for further histologic analysis.
Bone lesions were evaluated and calculated as described as
previously described [52], where 0 grade for no lesion, 1 for minor
lesions, 2 for small lesions, 3 for significant lesions with minor
break of margins, and 4 for significant lesions with major break in
peripheral lesions.

Statistical analysis

To determine different expression of miRNAs in Microarray,
Significance Analysis of Microarrays (SAM, version 2.1) was
performed using two class unpaired comparison in the SAM
procedure. Significantly differentially expressed miRNAs was
selected as following standards: |Score(d)|=2 [Numerator(r)/
Denominator(s+s0)], Fold Change=2 or =0.5, and g-value(%)=5
(false discovery rate, FDR) in bone metastasis of PCa compared to
primary PCa.

Data were expressed as mean * standard deviation (SD).
Statistics were assessed using SPSS 17.0 (SPSS, Inc., Chicago, IL,
USA). In real-time PCR and animal experiments, data were
compared by Student t-test. The relationship between down-
regulated miRNA expression and clinicopathological features in
primary and bone metastatic PCa was analyzed using the Spearman
rank correlation test. In metastasis assay-based experiments, the
data were analyzed with one-way ANOVA. For understanding the
relationship between miRNAs, the significant correlations were
determined using the kendall rank correlation test. p-values of
<0.05 were considered significant.

Results

miRNA expression profiling between primary PCa and
bone metastasis by microarray analysis

To investigate whether miRNAs are differentially expressed in
primary PCa and bone metastatic tissues, we collected six
matched-pairs of primary and metastatic tissues (from same
patient) and compared their expression profiles using a miRNA
microarray. Because the total RNA in five pairs of samples was not
enough for a microarray experiment, only a matched-pair of
samples was successfully performed with a microarray experiment.
We observed an obviously increased expression of 18 miRNAs in
bone metastasis compared with primary PCa, including miRs-451,
-210, -141, -19b, -29b, -16, -20a, -30b, -193a-3p, -15a, -181a,
-26b, -200a, -106b, -20b, -486-5p, -15b, -363. The expression of
three miRNAs (miRs-145, -143, -612) was obviously decreased in
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bone metastasis, especially the expression of miR-145 and miR-
143 with the reduction of 5.4-fold and 2.7-fold, respectively.

In order to further determine whether the expression of miRINAs
had statistically difference in primary PCa and bone metastatic
tissues, we compared the miRNAs expression in 6 primary PCa
samples and 7 bone metastatic samples using a miRNA microarray.
We found that the expression of > miRINAs had statistically significant
decreased in bone metastasis compared with primary PCa, including
miRs-508-5p, -145, -143, -33a and -100 with the reduction of 4.1-
fold, 8.1-fold, 5.7-fold, 3.2-fold and 5.3-fold, respectively. No miRNA
expression was significantly increased (Table 1).

Taken all data together, we have reanalyzed the expression data
of 10 miRNAs, including miRs-508-5p, -143, -145, -100, -125b,
-153, -210, -363, -451 and -572, by cluster analysis (Figure 14).

Table 1. Differentially expressed miRNAs identified in bone
metastasis of prostate cancer compared to primary prostate
cancer by miRNA microarray.
Gene Fold
Name Score(d) Change q-value(%)
downregulated hsa-miR-508-5p* 2.504157705 4.115822147 0
hsa-miR-145* 2467415063 8.056162186 0
hsa-miR-143* 2218798715 5.716061535 0
hsa-miR-33a* 2.061754542  3.179004726 O
hsa-miR-100* 1.993760316 5328405946 0
hsa-miR-153 1.84630048 2.584699735 0
hsa-miR-125b 1.691829334 4.268859058 0
hsa-miR-30e 1.664148611 2.168640765 O
hsa-let-7d 1.663171563  2.445729453 0
hsa-miR-27b 1.643407131  2.604881765 O
hsa-miR-615-3p  1.642039074 2.997784318 0
hsa-miR-363 1.616996368 22.28263337 0
hsa-miR-801 1.612394022 2.792119805 O
hsa-let-7a 1.599417634 2445422202 O
hsa-let-7e 1.589532583  2.298183277 O
hsa-miR-19a 1.586018811 2.076116476 O
hsa-miR-99a 1.585498528 3.717494302 0
hsa-miR-125a-5p 1.530996885 2.281902276 0
hsa-miR-23a 1.51606809 2.053798303 0
hsa-miR-30c 1.510583537  2.340800949 0
hsa-let-7b 1.464466769 2.664654338 0
hsa-miR-20b 1.427480317 3.025278364 O
hsa-let-7¢ 1.345507222 2.486769965 0.931887
hsa-miR-325 1.260864694  2.249952437 1.538354
hsa-miR-106a 1.252346327 2.662764944 1.538354
hsa-miR-20a 1.189421593  2.939567104 1.78155
hsa-miR-886-3p  1.089026812  2.72138752  3.071291
hsa-miR-92a 0.944476573  2.278112416 4.038179
upregulated hsa-miR-371-5p  —1.911468863 0.160331751 1.538354
hsa-miR-572 —1.82166417 0.281081268 2.106876
hsa-miR-210 —1.735311196 0.121967351 4.136671
hsa-miR-516a-5p —1.70737646 0.156344976 4.136671
*Significantly differentially expressed miRNAs selected as following standards:
|Score(d)|=2, Fold Change=2 or 0.5, g-value(%)=5.
doi:10.1371/journal.pone.0020341.t001
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doi:10.1371/journal.pone.0020341.g001

Verification of miRNA microarray data by real-time PCR
analysis in primary PCa and bone metastasis

To confirm our microarray data, real-time PCR was performed
to analyze the expression of the most significantly regulated
miRNAs, including miRs-508-5p, -143, -145, -33a and -100. We
examined the expression of miRNAs above from independent
samples of 16 primary PCa and 13 bone metastases, which had not
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been used for microarray analysis. After individual miRNA level in
each sample was quantified and normalized to U6 expression,
real-time PCR data confirmed that the expression of miRs-145,
-143, -33a and -100 with the reduction of 17.3-fold, 12.9-fold, 1.7-
fold and 1.7-fold in the bone metastatic tissues, respectively. The
expression levels of miRs-143 and -145 were down-regulated
significantly in metastasis samples versus primary PCa (p=0.012

May 2011 | Volume 6 | Issue 5 | 20341



and p =0.014, respectively) (Figure 1B). However, the expression
of miRs-33a and -100 had no statistic significance (p =0.236 and
p=0.448, respectively). miR-508-5p did not express in all primary
PCa samples and bone metastatic samples. Although the
expression of miRs-125b, -153, -210, -363, -451 and -572 was
over 2-fold changes in bone metastasis compared with in primary
PCa samples in microarray analysis, there were no statistically
significant difference except for the expression of miR-125b with
the reduction of 3-fold in the bone metastatic tissues by real-time
PCR analysis. This was statistically significant down-regulation in
bone metastatic samples (p=0.012) (Figure 1B). Thus, the results
indicated that there was a significant down-regulation of miRs-
145, -143, and -125b when PCa tumors metastasized to bone.
To further identify the major expression sources in primary PCa
samples, the LNA-ISH technique was applied. The results showed
that miRs-143 and -145 mainly expressed in cancer cells, and their
expression in the stromal cells were lower or absent (Figure 2).

Relative expression of miRs-143 and -145 in the same
sample

To further investigate whether the expression tendency of miR-
145 and miR-143 was identical in the same sample, the relative
expression of miR-145 and miR-143 in the same sample was
plotted from the real-time PCR in all 22 samples of primary PCa
(including 6 microarray samples) (Figure 34) and 20 samples of
bone metastases (including 7 microarray samples) (Figure 3B),
respectively. The significant correlations of miR-145 and miR-143
were found in primary PCa (kendall correlation = 0.850, p<<0.001)
and bone metastases (kendall correlation = 0.765, p<<0.001).

Downregulation of miRs-143 and -145 is negatively
correlated to bone metastasis, serum PSA level and the
Gleason score in primary PCa

Since we found that miRs-143 and -145 was downregulated in
bone metastasis, we postulated that downregulation of miRs-143
and -145 might also be associated with clinicopathological features
of PCa patients. Firstly, we performed a retrospective investigation
of 22 patients with primary PCa. The results showed 12 patients

miR-143

Figure 2. Detection of miRs-143 and -145 in primary PCa
tissues by ISH. Sections at upper panel showed the identification of
tumor cells and stromal cells by H&E-stainning. Sections at lower panel
showed the location of miR-143 (left) and miR-145 (right) in PCa cells by
LNA-ISH. Signals of miRs-143 and -145 were in purple blue. Pictures
were taken under microscope 200 x.
doi:10.1371/journal.pone.0020341.9002
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without bone metastasis and 10 patients with bone metastasis. The
distribution of age in 22 patients with and without bone metastases
was no significant difference. The expression of miRs-143 and -
145 in 10 patients with bone metastases was significantly lower
than that in 12 patients without bone metastases (p=0.039 and
p=0.041, Figure 4, 4 and D). Secondly, we assessed whether the
expression of miRs-143 and -145 was related to total serum
prostate-specific antigen (PSA) level and free PSA level in primary
PCa. The results showed significant inverse correlations between
the expression of miRs-143 and -145 and free PSA level
(Spearman correlation = —0.501, p=0.018; Spearman correla-
tion=—0.536, p=0.010. Figure 4, B and E), and a significant
inverse correlation between the expression of miR-145 and total
PSA level (Spearman correlation = —0.456, p=0.033, Figure 4F);
whereas no correlation between the expression of miR-143 and
total PSA level (Spearman correlation=—0.403, p=0.063).
Finally, we investigated whether the expression of miRs-143 and
-145 was related to Gleason score in primary PCa. There is also a
statistically significant inverse correlation between the expression
of miRs-143 and -145 and Gleason score (Spearman cor-
relation = —0.574, p=0.005; Spearman correlation = —0.546,
p=0.009, Figure 4, ¢ and G). These results indicated that
downregulations of miRs-143 and -145 were associated with
tumor progression and bone metastasis. Downregulation of mir-
125b was not correlated to bone metastasis, PSA level and the
Gleason score in primary PCa (data not shown).

Upregulation of miRs-143 and -145 reduced the skeletal

aggressiveness of PC-3 cells in vitro and in vivo

To investigate the role of miRs-143 and -145 in the
development and progression of PCa metastasis, miRs-143 and -
145 over-expressing cell lines (PC-3/miR-143, PC-3/miR-145,
LNCaP/miR-143 and LNCaP/miR-145) were established by
retrovirus transfection. Blank plasmid transfected cells, PC-3/
vector and LNCaP/vector were used as control groups. As
showing in Figure 5, 4 and B, fold changes in the relative
expression of miRs-143 and -145 transfected PC-3 and LNCaP
cell lines were much higher than that these cells transfected with
vector ($<<0.01). Migration, invasion and adhesion assays were
performed @ vitro. Interestingly, cell migration was observed by
wound healing assay that it was much slower than PC-3 cells
transfected with vector when PC-3 cells transfected with miRs-143
and -145 in a time-dependent manner (Figure 64). The invasive
property of PC-3 cells was examined by Transwell-Matrigel
penetration assay, which depicted much fewer cells penetrated
through the gel-membrane section when PC-3 cells transfected
with miRs-143 and -145 than PC-3 cells transfected with vector
(Figure 6B, p<<0.01). The invasive property of PC-3 cells was
significantly inhibited by miR-143 and -145, even more obviously
inhibited by miR-145.

We also examined the effects of miRs-143 and -145 on the
adhesion ability of PC-3 cells in order to understand how miRs-
143 and -145 affected PCa cells residing to secondary site. The
results showed that miR-145 significantly enhanced adhesive
ability of PC-3 cells when compared with PC-3 transfected with
vector (Figure 6C, p<<0.05). PC-3 cells transfected with miR-143
also presented a higher adhesive ability, but it is not statistically
significant. However, LNCaP/miR-143 and LNCaP/miR-145
cells and LNCaP/vector cells did not show significant difference in
cell migration, invasion and adhesion (data not shown). Moreover,
these results of cell migration, invasion and adhesion indicated that
the ability of ectopic miR-145 repressing aggressiveness was more
significant than that of miR-143.
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To further investigate the role of miRs-143 and -145 in the
development and progression of PCa metastasis  vivo, an intra-tibial
mjection mouse model was used. Five weeks after intra-tibial
inoculation, skeletal lesions of all animals in the left tibias were
remarkably larger than those in the right tibias (Figure 7, upper
panel), which means PC-3/miR-143 and PC-3/miR-145 had less
skeletal invasive ability compared with PC-3/vector. Histological
confirmations were made by H&E-stainning (Figure 7, middle panel).
The extents and areas of skeletal lesions were assessed by X-ray scores
(Figure 7, lower panel), from which PC-3/miR-143 and PC-3/miR-
145 revealed to form significantly smaller tumors and bone invasion
compared with PC-3/vector (p=0.035 and p=0.014, respectively).
The results suggested that miRs-143 and -145 could also repress the
development and aggressiveness of PCa in bone.

Upregulation of miRs-143 and -145 repressed EMT of PC-
3 cells

To investigate whether miRs-143 and -145 regulated bone
metastasis by repressing EMT, western blotting analysis was
performed for detection of protein expression of E-cadherin,
fibronectin and vimentin as described special characteristics of PC-
3 and LNCaP cell lines during EMT. The result illustrated that E-
cadherin, which is one of epithelial markers and supposed to be
down-regulated during EMT, was increased in PC-3 cells

@ PLoS ONE | www.plosone.org 7

transfected with miR-143 or miR-145. Moreover, fibronectin,
which is a sort of mesenchymal markers and should be up-
regulated during EMT, was repressed in stably expressing miR-
143 or miR-145 transfected PC-3 cells, compared to PC-3 cells
transfected with vector. However, Vimentin, another mesenchy-
mal marker, was just down-regulated in PC-3 cells when
transfected with miR-143 (Figure 84). Nevertheless, all these
proteins did not exhibit significant difference in LNCaP cells
whatever the cells transfected with miR-143 or -145 (Figure 8B).

We tested the ability of miRs-143 and -145 to reverse the
mesenchymal phenotype of metastatic PCa cells. PC-3/vector cells
are highly invasive and displayed typical fibroblastic morphology,
which is in consistent with a very low level of E-cadherin
expression. Over-expression of miRs-143 and -145 produced a
dramatic shift in morphology, from a stick-like or long spindle-
shaped mesenchymal population to a short spindle-shaped or
round and flat epithelial population (Figure 8C). These suggested
that miRs-143 and -145 had negative effects on EMT in PCa and
could conduct mesenchymal cells to transdifferentiate toward
epithelial cells.

Discussion

In the present study, the expression levels of miR-143, -145 and
-125b were first identified to be down-regulated in bone metastatic
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tumors compared to primary PCa tumors. Furthermore, with the Gleason score and PSA level. The upregulations of
primary PCa patients with bone metastasis had significantly miRs-143 and -145 reduced aggressiveness of PC-3 cells in vitro
lower expression levels of miRs-143 and -145 than those in the and i vivo, and repressed EMT of PC-3 cells. These results
patients without bone metastasis. We also found that the suggest miRs-143 and -145 may play an important role in bone
expression levels of miRs-143 and -145 were inversely correlated metastasis of PCa.
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Downregulations of miR-143 or -145 were found in different
tumor types including breast, gastric, liver, lung, bladder, pituitary,
ovary and colon [53,54,55,56,57,58,59,60]. In PCa, miR-143
deregulated in primary cancer compared with normal prostate
tissue [61,62]. The miR-145 also showed lower expression by
microarray analysis in primary tumor than in normal prostate
tissue [63,64]. Plenty of studies identified several miR-143 targets
including DNMT3A and KRAS [65,66], as well as miR-145
targets including BNIP3, IRS, C-MYC, YES and STATI
[10,67,68,69]. These studies also demonstrated both of them as
tumor suppressors repressed tumor proliferation or promoted
apoptosis.

In a recent study, the processing of miRs-143 and -145 were
also involved in metastasis. In microvascuiature, miR-145
expressed in pericytes and repressed the migration of microvas-
cular cells by directly targeting Fli-1 [70]. In breast cancer, miR-
145 was identified to suppress cell invasion and metastasis by
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directly targeting MUC1 [27]. By direct deregulation of FSCNI,
miR-145 inhibited invasion of esophageal squamous cell [71].
Furthermore, Sachdeva M, et al. found that miR-145 could target
multiple metastasis-related genes including MMP-11 and ADAM-
17 [72]. The miR-143 was also demonstrated to abrogate PCa
progression in mice by interfering with ERKS5 signaling, which is
involved in EMT pathway [62,73]. In our study, the results i vitro
and i vivo both supported that the deregulations of miR-143 and -
145 might promote bone metastasis of PCa.

Our study demonstrated that upregulation of miR-143 in PC-3
cells repressed mesenchymal markers of fibronectin and vimentin,
and increased E-cadherin, one of epithelial markers. Moreover,
up-regulation of miR-145 in PC-3 cells exhibited the same effects
on these proteins except for vimentin. Re-expression of miR-143
in SW620 cells of colorectal cancer also increased E-cadherin
expression and the cells were in consistent with a transition to a
more epithelial-like cell phenotype [60]. These finding indicated
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that miRs-143 and -145 may be a suppressor of the transition to a
more mesenchymal-like phenotype. Given that EMT was
considered to be one of the critical steps in tumor invasion and
metastasis by allowing cancer cells acquire mesenchymal features
that permit escape from the primary tumor [74], E-cadherin
plays a critical role as a regulator of signaling complexes and loss
of E-cadherin function is a clinical indicator for poor prognosis
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and metastasis [75]. We can expect that miRs-143 and -145 may
inhibit migration and invasion of PC-3 cells by repressing EMT.

Although upregulations of miRs-143 and -145 were able to
repress the aggressiveness and EMT of PC-3 cells from bone
metastasis, it cannot reverse the metastatic characteristics and
regulate  EMT markers of LNCaP cells from lymph node
metastasis. Especially, deregulation of miRs-143 and -145 was
not found in lymph node metastasis comparing to primary PCa
tumor with microarray analysis [76]. These findings suggest that
miR-143 or -145 may have a cell type—specific function and only
inhibit bone metastasis instead of lymph node metastasis, or loss of
miRs-143 and -145 could promote the bone metastasis other than
lymph node metastasis, which might be regulated by other
miRNAs such as miR-221 [76].

Our results also showed a similar expression pattern of
downregulated miRs-143 and -145 in a same primary PCa tumor
or bone metastasis of PCa. Due to their DNA loci were very close
to each other within approximate 2.0 kb at chromosome 5q32
[77] and both precursors might originate from the same primary
miRNA [78], we speculate that miRs-143 and -145 could be
regulated by some events with a similar mechanism. Moreover, we
want to figure out whether one controls the expression of the other
one, but there’s no study about the interaction between miR-143
and miR-145. Further mechanism should be explored.

miRs-143 and -145 were downregulated to much lower levels in
primary PCa patients with bone metastasis, compared with the
attenuation in those without bone metastasis. Furthermore, the
expression levels of miRs-143 and -145 in primary PCa patients
were inversely correlated with Gleason Score, one of the strongest
conventional predictors of tumor recurrence [79], indicating
higher miRs-143 and -145 expressions might indicate a less
possibility of bone metastasis and a better clinical condition, vice
versa. There 1s the same relationship between miRs-143 and -145
expressions and free PSA level, one predictor of pathologic stage
through clinical stage and biopsy Gleason score [80] and a direct
predictor of biochemical progression for PCa-specific mortality
[81]. Given the facts above, we expect that the levels of miRs-143
and -145 could be considered as novel biomarkers in discriminat-
ing different clinical stages of human PCa and predicting bone
metastasis.

A recent study showed that chemically modified miR-143 can
be a candidate for an RNA medicine for the treatment of
colorectal tumors [82], which could function as anti-cancer drugs
in the future. This is a great contribution to a fresh new
perspective that can cast light on miRs-143 and -145 as
therapeutic targets in bone metastasis of PCa clinically.

In summary, our findings suggest that miRs-143 and -145 may
play important roles in the bone metastasis of PCa and be involved
in the regulation of EMT. Both of them may also be clinically used
as novel biomarkers in discriminating different stages of human
PCa and predicting the possibility of metastasis or even as
therapeutic targets in bone metastasis of PCa.
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