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Abstract

The importance of Atomic Form Factors (f) is well-known to the scientific community. Tabulated values for f are mostly used
in calculating cross-sections and Monte Carlo sampling for the coherent scattering of photons. The uses of these values are
subjected to different approximations and interpolation techniques because the available data points for f in the literature
for specified momentum-transfer-grids are very limited. In order to make it easier to accurately use the tabulated data, a
mathematical expression for f functions would be a great achievement. Therefore, the current study was designed to
suggest an empirical expression for the f functions. In the results, an empirical equation for Hubbell’s tabulated data for f is
created in the momentum transfer range, q = 0–50 Å21 for the elements in the range 1# Z #30. The number of applied
parameters was seven. The fitting to f showed that the maximum deviation was within 3%, 4% and 5% for the element
having, Z = 1–11, Z = 12–22 and Z = 23–30, respectively, while the average deviations were within 0.3–2.25% for all elements
(i.e., Z = 1–30). The values generated by the analytical equation were used in the Monte Carlo code instead of Hubbell’s
tabulated values. The statistical noise in the Probability Distribution Functions of coherently scattered photons was
efficiently removed. Furthermore, it also reduced the dependence on different interpolation techniques and
approximations, and on the use of large tabulated data for f with the specified elements.
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Introduction

The Rayleigh (elastic) scattering of photons by a bound atomic

electron is one of the major modes of interaction of photons with

matter particularly for low energy x-rays and soft c-rays. It has

been used as a valuable investigative tool for quite a long time in

various fields (i.e., structural chemistry/biology,?shielding and

medical diagnostics, etc.) [1–4].

Atomic form factors (f) are important factors in the Theory of

Rayleigh scattering for photons [1]. Precise values of f for any

element have long been required because of their importance and

applications in fundamental science as well as in the various

applied fields such as material study, health physics, biology,

medicine, etc. Owing to its importance, successful efforts have

been made to calculate their extensive and complete tabulations.

In the last quarter of the 20th century, these tabulations have been

published for the neutral atoms in the Periodic Table having Z = 1

, 100 in the various energy ranges [5–7]. Present, the state-of-the-

art method (i.e., S-matrix; SM) has been developed to estimate the

most precise f. However, these techniques require a large

computer and extensive CPU time [8]. The f are traditionally

tabulated as a function of momentum transfer,

q(A{1)~l{1 sin (h=2) (i.e., l (Å) is the incident photon wave-

length). These tables are extremely useful and widely used.

In the literature, one can find extensive tabulations for f and

theoretical calculations for the Rayleigh scattering of photons. Some

of these are publicly available and some are distributed for specific

users in the form of data libraries (i.e. EPDL97, RTAB database

etc.). One such database is known as EPDL, the Evaluated Photon

Data Library 1997 version (EPDL97) [9]. EPDL97 is part of the

ENDF/B-VII.1 [10]. It contains evaluated nuclear data file, total

cross-sections, f and Anomalous Scattering Factors (ASFs). By using

the numerical integration method, the total Rayleigh cross-sections

are derived from the Thomson scattering, f and ASFs. It uses

different estimations for such calculations but the details of these

estimations cannot be found in the literature. EPDL97 is extensively

used in MC simulation packages. A set of photon Rayleigh

scattering cross-section tabulations, based on f and ASFs is also

included in RTAB [11]. The differential cross-sections tabulated in

RTAB are based on Non-relativistic Form Factors (NFFs) by

Hubbell et al., Relativistic Form Factors (RFFs), Modified Form

Factors (MFFs), Numerical S-matrix calculations by Kissel and

Pratt, and the MFF+ASF scheme.

Monte Carlo (MC) simulation is the most adequate tool to trace

the interaction between photons and atoms. Numerous MC based

computer codes are currently available for photon transport having

coherent scattering as its integral part (i.e., GEANT4, EGSnrc,

MCNP, PENELOPE, etc.) [12–15]. To the best of the authors’
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knowledge, the most widely used tabulated data for f in many of

these MC packages to simulate coherent scattering of photons are

from Hubbel and Øverbø {i.e., FH (q,Z)g [5]. The FH (q,Z) (i.e. for

momentum transfer q = 0–109 Å21 for all elements Z = 1–100) have

been constructed from available theoretical partial-range tabula-

tions and in some cases, from computations using formulas given in

the literature [5]. In addition, different theoretical equations and

atomic models have been used in the formation of these tabulated

data. There are 100 data points available in the above q-grid.

Use of tabulated values for f in practical calculations or in

applications for MC simulation packages may lead to some

difficulties because a great amount of data has to be used [16].

Solutions to these difficulties have been attempted using different

interpolation techniques. Furthermore, in MC simulation packages,

use of complete tables for f which cover the entire energy range is

almost impossible or can be cumbersome some times, especially if

these are included in a large production code where the speed of

execution is of primary importance [17]. A popular method in the

literature so far is the Linear Interpolation Technique (LIT) which

evaluates and uses tabulated data in MC simulation packages

[13,15]. However, statistical noise is produced when LIT is used in

MC sampling techniques for coherently scattered photons [17].

Theoretically, the most consistent treatment of Rayleigh scatter-

ing is to use RFFs with ASFs to define the coherent scattering cross-

section [9,18]. It is worthwhile to produce some empirical

expressions to approximate these tabulated values of FH (q,Z) to

overcome these difficulties and shortcomings for applications in

different fields. Many studies, well-summarized by Imre Szaloki

[16], can be found in the literature that deal with these empirical

expressions and are summarized as follows [16,19–28]:

F1(q,Z)~

f11(q,Z)~a exp ({b1q)z(Z{a) exp ({cq), 0ƒqƒq1

f12(q,Z)~f11(q1,Z) exp½{b2(q1{q)�, q1ƒqƒq2

f13(q,Z)~f12(q2,Z) exp½{b3(q2{q)�, q2ƒqƒq3

f14(q,Z)~f13(q3,Z)
q

q3

� �b4

, q3ƒqƒq4

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

ð1Þ

Table 1. Parameters of the function FH(q, Z) corresponding to Equation (6).

Z r a1 b1 a2 b2 a3 b3 smax(Z) smean(Z) sst(Z)

1 2.0 1 1 1E5 1 1E5 1 0.49407 0.30869 0.16277

2 1.994 1.07342 0.64272 0.12568 0.0845 0.14111 0.17253 2.95168 0.77506 0.97183

3 2.934 0.38714 0.09257 0.07786 0.554 0.01882 0.00128 2.80411 0.82839 0.47785

4 2.998 0.28152 0.01825 0.04686 0.1465 0.01342 5.8E-4 2.95438 1.19439 0.74471

5 2.9952 0.2303 0.00808 0.03316 0.06074 0.01083 3.69E-4 2.83182 1.15413 0.76625

6 2.87 0.18732 0.00503 0.02471 0.03378 0.01421 5.79E-4 2.91821 1.27202 0.93683

7 3.0808 0.13286 0.2496 0.02926 0.00127 0.00181 7.6E-4 2.57067 1.26022 0.67697

8 2.5968 0.0939 0.13992 0.02472 0.00135 0.00813 0.01953 2.52609 0.96599 0.93648

9 2.676 0.08332 0.09631 0.02226 0.00101 0.00534 0.00698 2.76167 1.30524 0.83583

10 2.6768 0.07474 0.0664 0.02016 8.15E-4 0.004 0.00361 2.97721 1.32855 0.94562

11 2.4892 0.0539 0.0382 0.01797 7.56E-4 0.00855 0.11457 2.9295 1.10247 0.95764

12 2.573 0.05214 0.02571 0.01662 5.95E-4 0.00493 0.03657 3.02582 1.03358 1.00879

13 2.5948 0.04874 0.01839 0.01539 4.96E-4 0.00361 0.02043 3.19991 0.96117 1.05342

14 2.7396 0.04866 0.01224 0.01441 3.82E-4 0.00192 0.00521 3.36012 0.94039 1.03047

15 2.8128 0.04704 0.00832 0.01354 3.14E-4 0.00121 0.00187 3.62753 0.88091 1.05631

16 2.9188 0.0459 0.00561 0.01276 2.54E-4 6.6E-4 5.16E-4 3.6664 0.84291 1.03753

17 3.0348 0.04484 0.00368 0.0121 2.06E-4 3.104E-4 1.059E-4 3.85843 0.84603 1.05476

18 3.1704 0.0439 0.00232 0.01151 1.66E-4 1.073E-4 1.188E-5 3.97441 0.86797 1.0771

19 3.1948 0.0416 0.00176 0.01105 1.48E-4 7.923E-5 6.49E-6 3.85914 1.55547 1.10554

20 3.1412 0.03902 0.00155 0.01046 1.38E-4 1.059E-4 1.21E-5 3.9819 1.79997 0.95174

21 2.5908 0.03036 0.00331 0.00964 1.83E-4 0.00112 0.0016 3.95707 1.98217 1.083

22 2.5368 0.02814 0.00307 0.00923 1.73E-4 0.00116 0.00172 3.98871 2.09126 1.16429

23 2.7128 0.02944 0.00212 0.00877 1.36E-4 6.294E-4 4.761E-4 4.44428 1.99762 1.22413

24 2.7208 0.02866 0.00167 0.00854 1.26E-4 5.428E-4 3.244E-4 4.23959 1.68691 1.0518

25 2.536 0.02488 0.00207 0.00813 1.32E-4 8.906E-4 9.251E-4 4.80743 2.1238 1.15358

26 2.58 0.02458 0.00171 0.00785 1.18E-4 7.26E-4 5.92E-4 4.83153 2.05015 1.15511

27 2.632 0.02438 0.00137 0.00763 1.05E-4 5.73E-4 3.55E-4 4.81653 2.05999 1.19439

28 2.648 0.02378 0.00123 0.00727 9.46E-5 5.05E-4 2.69E-4 4.85159 1.98741 1.23426

29 2.648 0.02328 0.00102 0.00712 8.91E-5 4.61E-4 2.12E-4 4.23183 1.73644 1.1373

30 2.78 0.02398 7.35E-4 0.00677 7.09E-5 2.304E-4 5.28E-5 4.96515 2.22336 1.32416

doi:10.1371/journal.pone.0069608.t001

(1)

Empirical Equation for Atomic Form Factor Function
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For 1ƒZƒ7 and similarly, for 8ƒZƒ100 [16]:

F2(q,Z)~

f21(q,Z)~a exp ({b1q)z(Z{a) exp ({cq), 0ƒqƒq1

f22(q,Z)~f21(q1,Z) exp½{b2(q1{q)�, q1ƒqƒq2

f23(q,Z)~f22(q2,Z) exp½{b3(q2{q)�, q2ƒqƒq3

8><
>:

9>=
>;ð2Þ

F (q,Z)~
X4

i~1
ai exp ({biq

2)zc (3) [19–22,24–28]

log½F (q)�~
X4

i~1
ai log (q)i{1 (4) [23]

A combination of analytical functions shown in equations (1)

and (2) has been fitted by Imre Szaloki [16] to the data for

FH (q,Z) calculated by Hubbel and Øverbø [5]. A total of 10 and 8

fitting parameters have been used in equations (1) and (2),

respectively. The maximum deviations are within 10% except for

Z = 3, 6, 7, 8 and 9. The momentum transfer range is q = 15 Å21

for Z = 1, 34–48, q = 10 Å21 for Z = 16–33, 80–100, q = 8 Å21 for

Z = 2–7, 60–79, and q = 7 for Z = 8–15, 49–59 while for equations

(3) and (4), q = 0–2 Å21. The feasibility of equation (1) and (2) is

uncertain because of both the covered momentum range and

fitting accuracy. The most accurate fit was achieved for Equation

(3) by applying 9 fitting parameters [20,28] but the range of q was

very small (i.e., q = 0–2 Å21). On the other hand, a rational

function with only 4 fitting parameters was applied in Ref. 16 for

q = 0–8 Å21. However, it had very high deviations (20–50%)

between the tabulated and calculated data in some cases [16].

The importance of f for all elements listed in the periodic table

and for a wide energy range is well-known to the scientific

community. Currently, tabulated values for f are mostly used in

calculating cross-sections and MC sampling for coherent scattering

of photons. In the literature, the available data points for f in the

above specified q-grid are very limited (i.e. 100 points). To cover a

continuous range of q, the usual various interpolation techniques

have been used, but these techniques have their own limitations

[17]. In order to make it easier to accurately use widely used

tabulated data for FH (q,Z) [5], a mathematical expression for f

functions would be great achievement. Previous efforts in this

regard have highlighted the importance of this matter. In addition,

mathematical models of coherent scattering have also been used to

construct a single equation for form factor and scattering functions

[16]. On the other hand, from the literature, previous approxi-

mations have some limitations in both the q-grid and fitting

Figure 1. Fitting of the FH (qi ,Z) function in the momentum
transfer range, q = 0–50 Å21 for (a) Hydrogen (H, Z = 1) (b)
Sodium (Na, Z = 11). Here, Hub. Val. Indicates FH (qi,Z) and EEC val.
indicates Empirical Equation Calculated values.
doi:10.1371/journal.pone.0069608.g001

Figure 2. Fitting of the FH (qi ,Z) function in the momentum
transfer range, q = 0–50 Å21 for (a) Silicon (Si, Z = 14) (b)
Manganese (Mn, Z = 25). Here, Hub. Val. Indicates FH (qi,Z) and
EEC val. indicates Empirical Equation Calculated values.
doi:10.1371/journal.pone.0069608.g002

Empirical Equation for Atomic Form Factor Function
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accuracy. These factors motivated the current study to suggest a

new mathematical expression for the FH (q,Z) function fitting.

Modeling of the Empirical Function

In order to model an empirical FH (q,Z) function, some basic

considerations were taken. These include the following: (1) a single

analytical function should cover the maximum value of q; (2) the

function should have the smallest possible number of parameters

and (3) the fitting accuracy should be as high as possible (i.e. the

maximum % deviation limit; smaxƒ5:0). The existing analytical

function for the hydrogen atom was taken as a base line to

construct the general equation for elements having Z = 1 to 30.

The analytical equation for the hydrogen atom is as follow [5]:

F (q,1)~
1

1z 2pa0qð Þ2
n o2

ð5Þ

The F (q,Z) function was constructed from the available

analytical equation for Hydrogen as stated above, depending on

the value of the atomic number Z as follows:

F(q,Z)~
(a1Z)r

a1Zð Þrzb1 2pa0qð Þrf gr z
(a2Z)r

2a2Zð Þrzb2 2pa0qð Þ2
n o2

z

(a3Z)r

2a3Zð Þ2zb3 2pa0qð Þ2
n o2

ð6Þ

where; a0 = 0.52978 Å represents the Bohr radius while r, a1, a2,

a3, b1, b2, and b3 are the fitting parameters. The function is

accurately fitted in the q-grid from 0 to 50 Å21. Non-linear curve

fitting tools in Origin 8 were used to calculate these parameters.

The % deviation from FH (q,Z) was calculated using the

following relation [16]:

s(Z)~100|
DFH (qi,Z){Fc(qi,Z)D

Fc(qi,Z)

��
ð7Þ

Here, qi is the momentum transfer grid values given in Hubbel

and Øverbø [5], FH (q,Z) represent Hubbell’s data depending on

Z and Fc(q,Z) are the calculated values of the fitted analytical

Figure 3. Angle distribution of coherently scattered photons for a source of 1 million photons by using FH (qi ,Z) for ‘q’ from 0 to
16.0 Å21 and Empirical equation data for Hydrogen (H, Z = 1) as a scatter element. (a) energy = 0.0025 MeV, (b) energy = 0.005 MeV, (c)
energy = 0.0075 MeV, (d) energy = 0.01 MeV.
doi:10.1371/journal.pone.0069608.g003

Empirical Equation for Atomic Form Factor Function
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functions used in the present work. The maximum, smax(Z), mean

smean(Z) and standard deviation, sst(Z) of the % deviation

between the calculated and tabulated data for each element were

calculated accordingly.

Application in MC Code

For the practical application of the designed empirical function,

the code by Wazir Muhammad and Sang Hoon Lee [17,18] for

MC sampling of coherent scattering of photons with modification

for the analytical function was used. The sampling techniques

remained the same but instead of using the tabulated values for

FH (qi,Z), the integrated values of FH (qi,Z) squared

(i.e.,AH (Z,q2
i ) over q2

i ) and the corresponding values of the q-

grid (i.e. q = 0 , 16 Å21), using the modeled function given in

Equation (5), were added to the code. By executing the code for a

particular element, new values of Fc(qi,Z) with the help of the

modeled function were generated. Furthermore, the integrated

values of Fc(qi,Z) squared against q2 were calculated by another

function included in the calculation of Ac(Z,E,q2
i ). These steps are

done at each code’s run for the MC simulation of coherent

scattering of photons.

To study the impact of the newly modeled analytical function

on the MC sampling of coherently scattered photons, 1st PDF were

constructed through AH (Z,q2
i ) for q2

i ~q2
1,q2

2,:::::::::::q2
max and hen

through Ac(Z,E,q2
i ) for q2

i ~q2
1,q2

2,:::::::::::q2
max using the above

mentioned MC techniques. The MC study was performed for

Hydrogen (H, Z = 1), Sodium (Na, Z = 11), Silicon (Si, Z = 14) and

Manganese (Mn, Z = 25).

Results and Discussion

The calculated fitting parameters (i.e. r, a1, b1, a2, b2, a3 and

b3) along with smax(Z), smean(Z) and sst(Z) corresponding to

each element, are summarized in Table 1. Equation 6 is reduced

to equation 5 by taking r = 2, a1 = b1 = b2 = b3 = 1 and a2 = a3 = 0

for all values of q except q = 0 at which the 2nd and 3rd term

become undefined. To avoid this trap, a2 = a3 = 1E5 is taken. The

results shows that smax(Z) from FH (qi,Z) are within 3%, 4% and

5% for elements having Z = 1–11, Z = 12–22 and Z = 23–30,

respectively while the smean(Z) and sst(Z) are within 0.3–2.25%

and 0.15–1.35% respectively for the listed elements (i.e., Z = 1–

30). Figures 1 and 2 are examples of the fitting of the empirical

equation with FH (qi,Z) for Hydrogen (H, Z = 1), Sodium (Na,

Z = 11), Silicon (Si, Z = 14) and Manganese (Mn, Z = 25) by

utilizing the parameters listed in table 1 for these elements. The

figures show that the empirical equation is well fitted to FH (qi,Z)
functions. To the best of the authors’ knowledge, this is the 1st

Figure 4. Angle distribution of coherently scattered photons for a source of 1 million photons by using FH (qi ,Z) for ‘q’ from 0 to
16.0 Å21 and Empirical equation data for Sodium (Na, Z = 11) as a scatter element. (a) energy = 0.0025 MeV, (b) energy = 0.005 MeV, (c)
energy = 0.0075 MeV, (d) energy = 0.01 MeV.
doi:10.1371/journal.pone.0069608.g004

Empirical Equation for Atomic Form Factor Function
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empirical equation which is valid for such a large q-grid with a

higher accuracy compared to previous research. According to the

designed % deviation limit (i.e. smax(Z)ƒ5:0) of this study, the

current empirical equation has some limitations in terms of Z (i.e.

1# Z #30). Beyond this limitation, the fitting is not worse;

however, smax(Z) crosses the design limit of the study. Further-

more, f are being used to calculate the cross-sections for coherent

scattering. Normally, different approximations with interpolation

techniques and large tabulated data are used to calculate the cross-

sections. The function will be very useful in calculating the cross-

section for the Rayleigh scattering of photons and reduce the

dependence on different approximations and interpolation tech-

niques while calculating these cross-sections. Apart from these

advantages, it will also reduce the dependence on large tabulated

data for f.

One of the major areas in the application of f is in MC codes for

coherently scattered photons. For practical applications, the

empirical equation was applied to an MC code designed to

sample the angular distribution of coherently scattered photons.

Figures 3a–d, 4a–d, 5a–d and 6a–d show the probability densities

for coherently scattered photons, with 2.5 keV, 5.0 keV, 7.5 keV

and 10.0 keV energies for Hydrogen (H, Z = 1), Sodium (Na,

Z = 11), Silicon (Si, Z = 14) and Manganese (Mn, Z = 25) as

scattering elements based on FH (qi,Z) for ‘q’ from 0 to 16.0 Å21

and on the currently developed empirical equation. The results

show that the density of statistical noise is significantly reduced

with the application of the empirical equation for the MC

sampling of coherently scattered photons. The results still had

some statistical noise in some cases because the empirical equation

is only used to generate the f data with the smallest possible

interval lengths during each code run. The generated data is

further used by the code for the simulation. It means that the code

is still using LIT. It is possible that statistical noise can be efficiently

removed if the empirical equation is used in the sampling

techniques rather than generating the f data. This is one of the

advantages of using the empirical equation that it is very helpful in

minimizing the statistical noise in the PDFs for the angular

distribution of the scattered photons. Furthermore, large tabulated

data are needed for each element in these MC packages. For

example, the current MC code needs a total of 85 data points for

the q-grid (from 0 to 16 Å21). To be more specific, a total of 190

entries are required for each element in the f data base. However,

the empirical equation reduced these 190 entries to just 7 entries

(i.e. fitting parameters for each element) and the results were also

improved significantly.

Figure 5. Angle distribution of coherently scattered photons for a source of 1 million photons by using FH (qi ,Z) for ‘q’ from 0 to
16.0 Å21 and Empirical equation data for Silicon (Si, Z = 14) as a scatter element. (a) energy = 0.0025 MeV, (b) energy = 0.005 MeV, (c)
energy = 0.0075 MeV, (d) energy = 0.01 MeV.
doi:10.1371/journal.pone.0069608.g005

Empirical Equation for Atomic Form Factor Function
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Conclusion
The newly formed empirical equation was fitted to Hubbell’s f

tabulated data in the momentum transfer range, q = 0–50 Å21 for

elements in the range 1# Z #30. The number of applied

parameters was seven. In conclusion, the empirical equation is well

fitted to FH (qi,Z) functions in comparison to its validity range of

the q-grid and Z and number of applied parameters. The

empirical equation is very helpful in minimizing the statistical

noise of the PDFs for the angular distribution when applying it in

the MC code for coherently scattered photons. Furthermore, it can

be very helpful in many other applications for example, calculation

the total cross-section for the coherent scattering of photons etc. In

addition, it will also reduce the dependence on different

interpolation techniques and approximations and on the use of

large tabulated data for f.
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