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Abstract: We report an enantio- and diastereoselective,
complete hydrogenation of multiply substituted benzofurans
in a one-pot cascade catalysis. The developed protocol
facilitates the controlled installation of up to six new defined
stereocenters and produces architecturally complex octahy-
drobenzofurans, prevalent in many bioactive molecules. A
unique match of a chiral homogeneous ruthenium-N-hetero-
cyclic carbene complex and an in situ activated rhodium
catalyst from a complex precursor act in sequence to enable the
presented process.

Saturated, (hetero)cyclic structures still represent an area of
underexplored chemical space, especially in the pharmaceu-
tical industry.[1] One explanation for this shortcoming is a lack
of suitable methods permitting synthetic access to the desired
motifs. Arene hydrogenation can be a powerful tool for this
purpose,[2] since the user can exploit the broad availability of
(hetero)aromatic structures as easy-to-modify starting mate-
rials. However, in practice the utility of this synthetic tool is
often limited by the choice of catalyst for one of two reasons:
Either the employed catalyst is only capable of performing
a partial hydrogenation, leaving an aromatic core in bicyclic
structures; or it fails to deliver the product in an asymmetric
fashion (Figure 1A). The latter especially impedes the
exploration of chiral cyclohexane motifs.[2d,3] Therefore,
a transformation capable of fully reducing abundant arenes
to the corresponding saturated (hetero)cycles under full
stereocontrol is highly desired. In an effort to develop this
space further, we herein report a highly stereoselective one-
pot, cascade hydrogenation of benzofurans (Figure 1C).

Benzofurans 1 and their respective 2,3-saturated deriva-
tives are ubiquitous structural units in natural products and
pharmaceutical compounds.[4] Despite this prevalence, there
are few reports on the asymmetric partial hydrogenation of
benzofurans published today,[5] and to the best of our

knowledge, fully saturated octahydro derivatives 2 have
never been accessed by enantioselective catalysis.[6] We
value this shortcoming detrimental, since the more complex
octahydrobenzofuran scaffold can hold promising properties
for drugs and other applications to explore.[7] Reasons for this
underexploration can be the problem of facile C�O bond
cleavage during the hydrogenation of the furanyl ring,[4e] but
foremost the lack of an asymmetric catalyst capable of full
reduction of both aromatic cores.[8]

Figure 1. A) Catalytic arene hydrogenation is currently limited by the
inability to produce enantioenriched, fully saturated, carbocyclic com-
pounds. B) Hydrogenation is a powerful tool to convert sp2- to sp3-
centers and introduce complexity into molecules at multiple carbon
centers in a single operation. C) The aim of this work is to develop
a cascade hydrogenation protocol with two distinct catalysts to obtain
enantioenriched octahydrobenzofurans.
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We approached this problem by using two different
catalytic systems fulfilling distinct tasks in the sought-after
transformation to the desired fused bicycle. The first catalyst
would partially reduce the heterocyclic core yielding a 2,3-
dihydrobenzofuran, rendering this compound as a chiral
intermediate, while the second catalyst would perform a full
hydrogenation of the remaining six-membered all-carbon
ring. We envisioned that the second catalyst would be able to
utilize the installed stereocenter to guide a downstream
diastereoselective reduction,[9] for example, on a solid surface
under a Horiuti–Polanyi mechanism.[10]

To catalyze the first step we chose the established
Ru((R,R)-SINpEt)2 catalyst 3,[11] which features two N,N’-
bis(naphthylethyl)imidazolidinium-2-ylidene (NHC) ligands
and was previously shown to catalyze the partial hydro-
genation of benzofurans with high enantiomeric excess under
mild conditions (TOF 1092 h�1).[5c,11a] To prevent a racemic
background reaction in a one-pot approach, the second
(heterogeneous) catalyst in our envisioned process would
need to be formed or activated in situ after the transformation
of the starting material to the intermediate 2,3-dihydroben-
zofuran is complete. In case of in situ formation, a suitable
precursor needs to be chosen, and reaction conditions need to
be adjusted such that they match the induction periods of the
two catalysts. We found the Rh-CAAC (cyclic alkyl amino
carbene) precursor 4, which was studied in depth by Zeng,
Bullock, us, and others to be a perfect match.[12]

We started our investigation on 2-methyl-5-fluorobenzo-
furan 1x as the test substrate to be able to study the
preservation of the fluoro substituent in addition to yield and
stereochemical outcome of the reaction. Early screening
attempts confirmed our hypothesis, as the proposed and
subsequently optimized system successfully transformed 1x
to the fully saturated analog (see Table 1). Several controls
show how unique the achieved match of catalysts is, since all
other tested common catalysts for arene hydrogenation failed
to yield the desired product in an asymmetric fashion
(Table 1, entries 2–6). Although the high chemoselectivity of
catalyst 4 could be leveraged to preserve the sensitive fluoro
moiety, defluorination levels were still comparatively high.
The beneficial effect of silica gel as supporting material in
these terms, which we observed in earlier studies,[13] could not
be exploited in the dual catalytic system, since it deactivated
catalyst 3 and yielded a racemic product mixture (similarly for
acidic alumina, Table 1, entries 7 and 8). In the course of our
optimization we observed that an elevated reaction temper-
ature of 60 8C was necessary to activate the rhodium catalyst
in the presence of 3, lower temperatures were not sufficient to
achieve full conversion (Table 1, entry 10). An increased
amount of 4 was necessary to overcome a disadvantageous,
deactivating interaction of both catalytic systems and deliver
complete conversion of the 2,3-dihydro intermediate
(Table 1, entry 11). However, this remarkable activity was
imperative in the development of a one-pot protocol for the
complete enantioselective hydrogenation of benzofurans. In
essence, this procedure resembles a type of sequential
catalysis in which precursors for both catalysts are present
in the reaction mixture from the beginning and their
activation is solely controlled by changing temperature and

hydrogen pressure as external stimuli. Hence, it can be
described as an assisted cascade catalysis.[14,15]

With the optimized conditions in hand, we continued our
investigation into the scope of the reaction (Figure 2). The
method tolerates various substitutions on the six-membered
ring. Next to 2-methylbenzofuran 1 a, the influence of
primary, secondary, and tertiary alkyl substituents was inves-
tigated systematically for the 5-position, all giving high yield
and very good d.r.- and e.r.-values (2a–e). Furthermore, the
synthetically accessible 7-position (2 f,g) as well as multiple
substituents (2h) were tolerated well with excellent selectiv-
ity.

This method mainly yields only two of all possible
diastereomers and the observed e.r. was identical for major
and minor species. Next, we investigated functional group
tolerance. A phenyl group was reduced under the reaction
conditions, giving the fully saturated product (2 i). Concom-
itantly, a methyl ester group was preserved without reduction
(2m). Tertiary amino functions were tolerated well (2n, o). A
crystal of the hydrochloride salt of 2n could be used to
determine the absolute configuration of the hydrogenated
products to be 2R,3aS,5R,7aS (see Figure S2, remaining scope
entries were assigned in analogy). When using acetamide-
protected primary amine 1p as the starting material, excellent
yield and diastereoselectivity were observed. Yet, the product
was obtained as racemic mixture (2p).[16] However, this
limitation could be overcome by using the free primary amine
as starting material for hydrogenation yielding the enantioen-
riched product 2q after subsequent protection with trifluoro-
acetic anhydride to ease isolation efforts. We were very
pleased when discovering that a boryl ester was tolerated
giving the corresponding product 2r with 96:4 e.r. Both
primary amines as well as protected boryl esters constitute

Table 1: Selected deviations from optimized conditions.

Entry Deviation Yield A [%] Yield B [%] d.r. e.r.

1 – 64 26 94:6 95:5
2 Ru/C instead of 4 14 76 95:5 50:50
3 Rh/C 49 56 90:10 51:49
4 Pd/C 55 48 92:8 51:49
5 Pt/C – 2 – –
6 [Rh(COD)Cl]2 73 25 94:6 50:50
7 SiO2 instead of

molecular sieves
62 36 98:2 50:50

8 Alumina A 63 29 94:6 50:50
9 Alumina N 64 33 94:6 95:5
10 45 8C instead of 60 8C 12 4 – –
11 5 mol% 4 33 13 94:6 93:7

The reaction was started with 10 bar H2 pressure and 25 8C. After 3 h
reaction time the initial conditions were adjusted to the final indicated
values. Yield of product A and by-product B, d.r. , and e.r. values were
determined by GC-FID. COD = 1,5-cyclooctadiene, MS = molecular
sieves.
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synthetically valuable and widely applied functional handles
rendering these entries highlights of our work. Variation of
the 2-substituent on the five-membered ring was well
tolerated (2s–u). A methyl group in 3-position did not
reduce the yield or e.r., but a significant drop in the
diastereomeric ratio was observed (2v). Presumably, the
differentiation of both sides of the 2,3-dihydro intermediate at
the heterogeneous rhodium catalyst surface is hampered with
this substitution pattern. The evaluation of the reaction-

condition-based sensitivity of the developed protocol
revealed a mostly robust reaction (Figure 2, see SI for
details).[17]

Fluorinated, saturated carbocycles are emerging motifs in
drug discovery and the design of functional materials.[18] This
class of compounds attracts increasing attention, since
incorporating fluoro moieties into target molecules allows
for the modulation of their physicochemical properties with
little influence on steric demand.[19] Although hydrogenation

Figure 2. Optimized reaction conditions, scope, and reaction-condition based sensitivity assessment. The reactions were performed on 0.30 mmol
scale. After 3 h reaction time hydrogen pressure and temperature were increased as indicated. d.r. values were determined by GC–MS of the crude
product mixture. All minor diastereomers are combined in a single number. [a] Extended reaction time of 48 h. [b] Phenyl substrate was used.
[c] Crystal structure obtained, CCDC 2071064. [d] d.r. was determined by NMR. [e] Free amine substrate was used, protected before isolation, d.r.
determined after protection. [f ] Full conversion was not observed after 48 h, unreacted dihydro intermediate was fully recovered. [g] Fluoro
protocol was used as described in Figure 3. TFA = trifluoroacetyl.
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of fluoro arenes could give a straightforward synthetic access
to these motifs, this is known to be highly challenging, as
substrates and reaction intermediates are prone to hydro-
defunctionalization.[20] As expected, we observed increased
levels of defluorination when focusing on fluorinated starting
materials as the elevated temperature of 60 8C was necessary
to activate the rhodium species in our developed method-
ology. Thus, we decided to alter the protocol to a sequential
approach to allow access to this highly desirable class of
enantioenriched molecules. By performing a short silica-plug
filtration after the first three hours of reaction time, we were
able to perform the second hydrogenation at room temper-
ature with lower catalyst loading (Figure 3). This procedure
gave us access to mono-, di-, and trifluoro-octahydrobenzo-
furans (2w–ac). To the best of our knowledge, this is the first
time the multifluorinated cyclohexane motif is accessed by
asymmetric catalysis.[21] We observed no significant defluori-
nation for mono- and difluoro compounds. 2w could be
isolated in 99 % yield, while losses during isolation accounted
for the diminished yield of 2x–aa. Solely for trifluoro-

octahydrobenzofurans 2ab and 2ac significant defluorination
was observed. A crystal structure of 2ab verified the assigned
absolute configuration (see Figure S3).

In conclusion, we have discovered and developed a one-
pot cascade catalysis protocol enabling a simple access to yet
underexplored enantioenriched octahydrobenzofurans with
a scope of > 25 examples. The method tolerates various
functional groups, including synthetically valuable free
amines and boryl esters. Complex, three-dimensional prod-
ucts from flat precursors are obtained in high yields and very
good diastereo- and enantioselectivities. Exploiting the
enhanced chemoselectivity of rhodium cyclic alkyl amino
carbene 4, highly challenging fluoro substituents can be
tolerated and up to six asymmetric centers can be installed
under substantial stereocontrol. Thus, the procedure gives
selective access to one stereoisomer from 64 possible
structures. The general strategy of controlling catalyst activa-
tion at different reaction stages presented herein is envisioned
to be expanded to further substrate classes in upcoming
research.
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