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c Université Laval, Department of Psychiatry and Neuroscience, G1K 7P4, Québec, Canada 
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A B S T R A C T   

Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses 
comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) trans
plantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, 
highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC condi
tioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in 
canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via 
immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium 
iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, 
but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly 
decreased the prevalence of βIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were signifi
cantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their 
secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a 
careful comparison of the different experimental conditions used to assess the potential of cell therapies for the 
treatment of spinal cord injury.   

1. Introduction 

Organotypic SCSC preserve much of spinal cord structure and 
neuronal circuitry, whilst simultaneously allowing the manipulation in 
vitro experimentation affords [1–3]. SCSC have been used to model 
inflammation [4–6], microenvironmental changes [3,7,8], and potential 
cell therapies [9,10]. 

MSC injected in vivo into the site of spinal cord injury (SCI) release 
large numbers of growth factors, cytokines and immunomodulatory 
factors, influencing neuronal growth and angiogenesis [11–16]. 
Administration of bone marrow derived MSC in vivo showed functional 
improvement [13,14,17], axonal/neurite growth within the injury [13, 
18] and increased levels of cytokines such as BDNF, VEGF [19] IL4, IL13 
[12] and NGF [20]. Similar effects and improvements have been shown 

following administration of MSC derived from adipose tissue [15,21,22] 
and umbilical cord [23,24]. In 2018, a study showed that rodent MSC 
CM was shown to have protective effects when injected into a rodent 
model of SCI [25]. There has been, however, minimal research into the 
effect of CM on SCSC. Early studies have shown that rat muscle cell and 
fibroblast CM increased neuronal growth within spinal cord explants 
[26,27], although more recent studies have examined how cell secre
tomes might influence spinal cell survival and growth after grafting 
experiments [28,29]. 

Although SCSC are useful tools in neuroscience research [30], to date 
no studies have specifically assessed the effects of MSC CM on murine 
SCSC. The aim of this study was to explore levels of cell survival, 
astrocyte reactivity, chondroitin sulphate proteoglycans (CSPG) and 
neuronal cell processes in murine SCSC following canine MSC CM 
treatment, providing the basis for development of a suitable ex vivo assay 
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for testing the efficacy of canine MSC CM for future veterinary clinical 
work. As the preparation of SCSC from dog pups is impracticable for 
technical and ethical issues, we decided to use murine SCSC that are 
widely characterized in our laboratories for the study of spinal cord 
circuitry ex vivo. Therefore, our approach of investigating canine MSC 
and canine MSC CM explores a new avenue in the field of veterinary 
medicine and has translational potential for human clinics, due to dogs 
having repeatedly demonstrated to be valuable translational models for 
human diseases [31–34]. 

2. Materials and methods 

2.1. MSC isolation and expansion 

Institutional ethical approval was obtained for this study (University 
of Chester: 060/16/CW/BS, May 18, 2016). MSC were isolated at the 
Veterinary Tissue Bank (Chirk, UK) from surgically extracted sections of 
dog inguinal fat pads (n = 3 donors). 

Following collagenase digestion and preferential plastic adhesion 
(described previously [35]), cells were cultured in Dulbecco’s modified 
Eagle medium/F-12 + GlutaMAX™ (DMEM/F-12), supplemented with 
1% penicillin/streptomycin (P/S) and 10% foetal bovine serum (FBS) 
(all Gibco®, Life Technologies™, Paisley, UK) in a humidified atmo
sphere of 5% CO2 at 37 ◦C. Cultures reaching 80% confluence were 
passaged using 0.25% trypsin-EDTA (Gibco®, Life Technologies™). 
Characterisation of culture-expanded cells was completed as reported 
previously [35] and cells were shown to exhibit an MSC phenotype, i.e., 
plastic adherence, an appropriate cluster of differentiation profile and 
tri-lineage differentiation potential [36]. 

2.2. Generation of MSC CM 

As mouse SCSC are routinely cultured in a Neurobasal containing 
medium which is different from the standard MSC culture medium, MSC 
were conditioned using Neurobasal to generate an appropriate CM for 
the spinal slice assays. Briefly, MSC (passages 4–5) were seeded into a 
T75 culture flask at a density of 20,000 cells/cm2 in 15 ml DMEM/F-12 
and incubated overnight at 37 ◦C/5% CO2 allowing cell adherence. Cells 
were washed once with warm sterile phosphate buffered saline (PBS); 
then 15 ml Neurobasal conditioning medium, consisting of Neurobasal 
Medium-A supplemented with 2% B27 50x, 2% 100 mM L-glutamine 
and 1% antibiotic/antimycotic (all Gibco®, Fisher Scientific) was added 
to the flask. One T75 flask produces approximately 15 ml of CM, which 
was harvested after 3 days incubation, filtered (0.2 μm) and stored at 
− 80 ◦C in 1.5 ml aliquots. Control medium samples minus cells were 
prepared in tandem, following the same protocol. 

2.3. SCSC preparation 

Institutional ethical approval was obtained for this study (Italian 
Ministry of Health: authorisation number 485/2017-PR). SCSC were 
prepared from a total of 9 mixed gender CD1 mouse pups (postnatal day 
7–11) from different litters. In each set of experiments a total of 3 pups 
were used to obtain between 6 and 10 slices to be put in culture. The 
preparation of SCSC followed a well-established protocol in the lab, as 
described previously [4,37] (Fig. 1). In brief, mice were euthanised and 
a dorsal laminectomy was performed on ice-cold cutting solution (con
taining in mM: 130 N-Methyl-D-glucamine, 10 Glucose, 24 NaHCO3, 5 
MgCl2, 3.5 KCl, 0.5 CaCl2, 1.25 NaH2PO4, and pH adjusted to 7.35). 
Meninges were removed, and the spinal cord glued to a small agar block, 
dorsal side up. Transverse slices (350 μm thick) were obtained using a 
vibratome (Leica VT 1200, amplitude 1.7, 10 mm s− 1), washed and 
placed individually into well inserts (Millicell®, 12mm/0.4 μm, Mas
sachusetts, USA). Inserts were placed into wells containing 250 μl high 
serum medium, consisting of 50% Eagle Basal Medium, 25% horse 
serum, 25% Hanks balanced salt solution, 0.5% glucose, 0.5% 200 mM 
L-glutamine, and 1% antibiotic/antimycotic (all Gibco®, Fisher Scien
tific) and incubated at 34 ◦C/5% CO2. After 4 days of equilibration, fresh 
Neurobasal medium (supplemented with B27 2%, L-glutamine 2%, and 
antibiotics/antimycotics 1%; all Gibco®) was added to wells and slices 
incubated a further 3 days. 

2.4. MSC CM treatment of SCSC 

After seven days equilibration, medium was replaced with 250 μl 
MSC CM or control Neurobasal medium (n = 3 independent experi
ments). Culture plates were then incubated undisturbed at 34 ◦C/5% 
CO2 for 72hr. 

2.5. Cell viability in SCSC 

As we have previously demonstrated that an initial phase of cell 
death follows the preparation of SCSC [29] and we wanted to rule out 
any possible detrimental effect of CM onto cell survival ex vivo, we 
devised a series of experiments to ascertain the degree of cell death at 
the end of the culture period. To do so, following culture in MSC CM or 
control medium (n = 3), 10 μl of 1.5 mM propidium iodide (PI) solution 
was added to slices and incubated at 34 ◦C/5% CO2 for 10 min. SCSC 
were then washed twice each in PBS (pH 7.4–7.6) and dH2O, before 
fixation in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 
7.4 for 1 h at room temperature. Washes were repeated prior to montage 
in anti-fade fluorescence-free mounting solution. Slides were visualised 
and imaged under 20x magnification via widefield fluorescence micro
scopy (Leica DM6000, Leica Microsystems, Wetzlar, Germany). Using 
ImageJ software, the “Count Particles” function counted PI-stained 
nuclei of area sizes between 7 and 40 mm2. Values were expressed as 
number of PI-stained nuclei per mm2. 

2.6. Immunohistochemistry and confocal microscopy 

Following culture in MSC CM or control medium (n = 3), slices were 
fixed for 1 h at room temperature in 4% PFA, followed by repeated 
washes with PBS, then incubated with 250 μl blocking buffer (0.3% 
Triton-X, 2.5% normal horse serum in PBS) for 1 h at room temperature, 
continuously shaking. Slices were then incubated overnight at +4 ◦C 
with 250 μl blocking buffer containing the primary antibodies diluted at 
optimal titre (below) or in blocking buffer alone. Rabbit polyclonal 
primary antibodies (obtained from Abcam) were anti-βIII tubulin (1/ 
1000) (ab18207), anti-GFAP (Glial fibrillary acidic protein) (1/1000) 
(ab7260), and anti-NG2 (Neuron-glial antigen 2) (1/1000) (ab129051). 
Slices were subsequently washed repeatedly with PBS and incubated 
with horse anti-rabbit Dylite 488 (1/250) (DI-1088, VectorLabs) in PBS 
for 3 h at room temperature. After further washes, slices were mounted 
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using an anti-fade fluorescence-free mounting solution containing DAPI 
(VectorLabs). Confocal microscopy was used to visualise and image 
immunoreactivity (Leica TCS SP5) and the ImageJ neurite tracer soft
ware [38,39] was used for image analysis of fluorescence intensity and 
cell process lengths. 

2.7. Calcium imaging 

Single cell calcium imaging, a method correlating the functional data 
based on calcium shifts operated by different intracellular and extra
cellular mechanisms integrated with their cell phenotypes, is a widely 
recognized mean to assess the response of neuronal and glial cells to 
local stimuli and has been used extensively in vitro (isolated cells), ex 
vivo (brain or spinal cord slices) and in vivo (two-photon microscopy) 
[40]. The method involves the use of a cell-permeable calcium indicator 
or genetically encoded calcium indicator that, once entered the cytosol 
or synthesized by the cell, responds to variations of the intracellular 

calcium concentration by changing the intensity of fluorescent emission 
or the ratio of fluorescent emission at two different wavelengths [41]. 
Here we used the cell permeant indicator Oregon Green™ that was 
loaded into SCSC as previously described [42]. Briefly, following 
treatment with MSC CM or control medium, SCSC were incubated with 
250 μl loading solution for 1 h at 34 ◦C/5% CO2. The loading solution 
consisted of 1 μl Oregon Green™/DMSO mix (50 μg Oregon Green™ 488 
BAPTA ((1,2-bis(o-aminophenoxy)ethane-N,N,N′,N’-tetraacetic 
acid)-1AM in 4 μl DMSO) and 2 μl 20% pluronic F-127 acid (in DMSO)) 
in 1 ml Neurobasal medium. Slices were washed and mounted onto a 
confocal microscope (Leica TCS SP5) stage equipped with a buffer 
transfer system continually perfusing the preparation with oxygenated 
artificial cerebral spinal fluid (125 mM NaCl, 2.5 mM KCl, 25 mM 
NaHCO3, 1 mM NaHPO4, 25 mM glucose, 1 mM MgCl2, 2 mM CaCl2 in 
dH2O). Digitised time-lapse images were collected under 40x water 
immersion objective, (excitation wavelength 488 nm, emission wave
length 495–530 nm) at 204 ms frame intervals totalling 1000 frames. 

Fig. 1. Schematic representation of experi
mental design: treating SCSC with MSC CM 
versus control medium. A) Mice were dissected 
to remove the spinal cord and the lumbar region 
sliced at 350 μm intervals. Slices were washed and 
placed individually in well inserts. B) SCSC were 
equilibrated in high serum and Neurobasal media 
prior to treating with either MSC CM or control 
medium. C) After 3 days of treatment with MSC 
CM or control medium, SCSC were fixed and 
immunohistochemistry performed before 
mounting on slides or D) incubated with Oregon 
Green 488 BAPTA-1AM prior to calcium imaging 
analysis. (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the Web version of this article.)   
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Gain, offset and pinhole were constant throughout imaging. SCSC ac
tivity was unchanged when challenged with 60 mM KCl, making it 
difficult to unequivocally identify calcium oscillating cells as neurons 
[43]; therefore, the term ‘active cells’ has been used thereafter. 

2.8. Statistical analysis 

Statistical analysis was completed using IBM SPSS statistics software. 
Each independent experiment (n = 3) contained a minimum of 3 spinal 
cord slices per dish incubated with MSC CM or control medium. Data 

sets were tested for normal distribution using Shapiro Wilk while 
parameter relationships and group differences were tested for signifi
cance using Student t-tests (normally distributed data) or Mann-Whitney 
U tests (non-normally distributed data). Data have been shown as means 
and standard errors of the means (s.e.m.) or standard deviations (s.d.; for 
pooled data only) as indicated in figure legends. Significance was 
accepted at p ≤ 0.05 (5% level). 

Fig. 2. MSC CM preserved cell survival and promoted astrocytic hypertrophy within SCSC. (A) Representative fluorescent images of SCSC in control medium 
(left) and MSC CM (right) after staining with PI. (B) Analysis revealed increased dead cell numbers per mm2 in control medium compared to MSC CM. Data are 
means ± s.e.m. (t-Test; n = 3 donors) p = 0.329. Scale bar = 50 μm. (C) Representative fluorescent images of astrocytic hypertrophy visualised by GFAP antibody, of 
SCSC treated with control medium and MSC CM. Greater intensity of staining was observed from SCSC treated with MSC CM. (D) Data analysis revealed a significant 
increase in GFAP fluorescent intensity and (E) a moderate increase in the length of astrocyte processes in SCSC treated with MSC CM. Data are means ± s.d. (Mann- 
Whitney U, t-Test; n = 3 donors) *p ≤ 0.05, ***p ≤ 0.001. Scale bar = 100 μm. (F) Representative fluorescent images of CSPG levels visualised by NG2 antibody, of 
SCSC treated with control medium and MSC CM. Intensity of staining is marginal between conditions. (G) Data analysis revealed a slight, but non-significant increase 
in NG2 fluorescent intensity between SCSC treated with control medium and MSC CM. Data are means ± s.d. (Mann-Whitney U; n = 3 donors) p = 0.355. Scale bar =
100 μm. 
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3. Results 

3.1. Culturing SCSC within MSC CM enhanced GFAP astrocytic 
immunostaining but did not affect CSPG levels in glia 

There was increased cell viability in SCSC cultured in MSC CM 
compared to SCSC in control medium, although this difference was non- 
significant. The number of PI-stained nuclei was 17 ± 11 (per mm2) in 
SCSC within MSC CM, compared to 39 ± 17 (per mm2) in SCSC within 
control medium (Fig. 2A and B). 

MSC CM increased astrocytic reactivity as delineated by GFAP 
immunoreactivity in SCSC compared to control medium (Fig. 2C). Both 
observed levels of GFAP staining (Fig. 2D) and astrocytic process total 
length (Fig. 2E) were significantly increased in SCSC cultured in MSC 
CM compared with control medium (p ≤ 0.005 and p ≤ 0.05, respec
tively), although there were no marked increases in CSPG levels (NG2 
immunostaining). 

3.2. Culturing SCSC within MSC CM reduced the prevalence of neuronal 
cell processes but increased cellular signalling activity 

SCSC cultured within MSC CM showed a significant decrease in total 
neurite length (Fig. 3A) compared to control medium, determined by 
βIII-tubulin immunopositivity (p ≤ 0.005) (Fig. 3B). The length of βIII- 
tubulin immunopositive neurites in MSC CM and control medium were 
2458 μm ± 1026 μm and 5722 μm ± 1472 μm, respectively. Analysis of 
calcium imaging footage showed no difference in overall frequency of 
calcium-dependent signalling per microscopic field, between SCSC 
within MSC CM compared to controls, which were 4 ± 1.1 peaks per 
204s and 4 ± 0.6 peaks per 204s, respectively (p = 0.738) (Fig. 3C and 
D). There was a significant decrease in the number of active cells in SCSC 
within MSC CM compared to controls, i.e., 3 ± 2 active cells (per field of 
view) and 10 ± 2 (per microscopic field), respectively (p ≤ 0.01) 
(Fig. 3E). In those active cells, there was a significant increase in calcium 
oscillations in MSC CM compared to controls, which were 1.6 ± 1 peaks 
per 204s and 0.4 ± 0.1 peaks per 204s, respectively (p ≤ 0.01) (Fig. 3F). 

Fig. 3. MSC CM reduced neurite extension in cultured neurons and the number of active cells but increased the frequency of Ca2þ transients in active 
cells. (A) Representative fluorescent images of neurite outgrowth visualised by βIII-tubulin antibody, of SCSC cultured in control medium (left) or MSC CM (right). A 
greater number of longer neuronal cell processes were observed under control conditions. (B) Data analysis revealed a significant decrease in neuronal cell process 
length between slices in control medium and MSC CM. Data are means ± s.d. (t-Test; n = 3 donors) ***p ≤ 0.001. Scale bar = 100 μm. (C) Graphical representation of 
fluorescence changes denoting calcium oscillations over time (204 s). (D) Recording analysis revealed no difference in the overall frequency of calcium transients in 
active cells from each field of view between SCSC within MSC CM or control medium. (E) A significantly reduced number of active cells (per field of view) was 
observed in SCSC within MSC CM but (F) these active cells displayed a significantly higher frequency of calcium transients (per 204 s) when cultivated in MSC CM. 
Data are means ± s.d. (Mann-Whitney U, t-Test; n = 3 donors) **p ≤ 0.01. 
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4. Discussion 

The slice culturing technique used for this study is a well charac
terised interface static method [44] whereby slices receive oxygen from 
the top and nutrients across the porous membrane at the bottom, 
allowing for interaction of the slices with soluble molecules contained in 
culture medium. Likewise, standardised methods of analysis were used 
to assess the effects of the MSC CM compared with control medium. 

Previous studies [45] demonstrated that after an initial phase (four 
days) of cell death in SCSC, PI-stained dead cell numbers drop to remain 
relatively stable thereafter. In keeping with these observations, we 
allowed SCSC to recover for at least four days before treatment with MSC 
CM. The latter was associated with enhanced cell survival compared to 
control medium, indicating possible neuroprotective effects, although 
the difference was not statistically significant. Still, this observation 
(together with the results of calcium imaging experiments – see below) 
demonstrated that our SCSC were perfectly viable after several days in 
vitro. Increased GFAP immunopositivity and astrocytic process length 
was observed in these conditions, suggesting that MSC CM increased 
glial cell survival and reactivity. 

Astrocytic growth has been repeatedly reported in CNS organotypic 
cultures [45]. However, unchanged NG2 levels in the increased presence 
of astrocytic growth seen in MSC CM was an unexpected finding. A 
major component of SCI pathology is the occurrence of astrogliosis, glial 
proliferation, atrophy, increased GFAP expression, and CSPG secretion 
(an inhibitor of neuronal growth and wound repair) [46,47]. In this 
study, we observed no increase in NG2 levels, as a marker of CSPGs, 
which may be due to loss of CSPG into surrounding medium, cell 
mediated degradation of CSPG molecules [48,49] or because NG2 has 
been reported to increase at later time points after SCI [50]. 

Observation of a significant decrease in βIII-tubulin immunoreactive 
neurites in response to MSC CM treatment was initially surprising, due 
to previous studies proving the neurogenic properties of MSC CM [35, 
51,52]. In vivo axotomy of primary afferent fibres, which is necessary to 
prepare SCSC, was long ago reported to cause death of spinal cord 
neurons receiving monosynaptic input from these fibres [53]. Therefore, 
it seems reasonable to hypothesise that the spinal neurons reached a 
steady state of lower survival during equilibration in plain medium and 
before cultivation in MSC CM. If so, the presence of MSC CM would have 
been unable to protect them from death. 

Another possible explanation for βIII-tubulin immunoreactivity 
reduction is that the SCSC microenvironment may not be permissive for 
neuronal maturation, or that MSC CM could potentially secrete bioactive 
molecules in a paracrine fashion, potentially causing differentiation of 
resident neural precursors towards a glial lineage. Supporting evidence 
includes previous experiments where, after transplantation of neural 
stem cells into organotypic slices, survival but no increased neuronal 
maturation was observed [7]. Furthermore, increased GFAP immuno
positivity coupled with no change in βIII-tubulin immunopositivity were 
similarly found elsewhere, demonstrating transplanted neural stem cells 
had a greater affinity for endogenous glial cells in SCSC, and differen
tiated towards a glial lineage [54]. 

To our knowledge, nobody has investigated effects of MSC CM on cell 
activity in SCSC. Calcium imaging showed that although overall cell 
activity was unchanged (measured as calcium transients), the signalling 
frequency of individual active cells increased in response to MSC CM. 
The type of calcium responses and temporal pattern [43] are strongly 
suggestive that spontaneous calcium oscillations in SCSC reflect 
increased neuronal network activity. However, neuronal cell process 
outgrowth was decreased in response to MSC CM and, although initially 
unexpected, a previous in vitro study on Xenopus embryonic spinal cord 
found similar results - neurons that exhibited slower rates of axonal 
outgrowth signalled more frequently [55]. 

A key question that is raised in this study is by which mechanism of 
action the MSC CM is causing the observed effects onto SCSC. Previous 
studies which have revealed potential mechanisms can help to provide 

some speculation as to possible factors at play in this study. Various 
experiments have shown that MSC transplantation causes an increase in 
neurotrophic factors such as NGF and BDNF [19,20], and causes shifts in 
the immune response through increases of the interleukins (IL) 4 and 13 
[12,15,21–24]. Of note is that throughout many of these studies MSC 
survival was low, indicating that the observed changes were due to their 
secretome, rather than the cells themselves. In vitro studies on MSC CM 
have used both ELISA and mass spectrometry, revealing that the MSC 
secretome contains a myriad of factors that promote both neurogenesis 
and immune modulation [56–58]. This knowledge, combined with the 
data from this study, suggests that the here observed changes are a 
response to neurotrophic factors (that have yet to be identified) present 
within the MSC CM. 

In conclusion, further studies are required to fully understand why 
the effects of MSC CM differ between in vitro cell cultures and SCSC, why 
they contrast with MSC transplants into SCI sites, and to ascertain the 
specific mechanism(s) of action(s). These differences highlight the 
importance of model systems to examine effects of cell transplants and 
secretion on the CNS. SCSC were cultured without corresponding cir
culatory models, which could alter how resident cells respond to the 
MSC, i.e., no immune cell influx nor a nutrient provision/waste removal 
system. Hence, the results from this study suggest that effects of MSC 
and derived factors may depend on more systemic factors than those 
seen within the CNS alone. 
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view & editing. Esri H. Juárez: Investigation, Formal analysis. 
Francesco Ferrini: Conceptualization, Investigation, Formal analysis, 
Resources. Peter Myint: Conceptualization, Resources, Funding acqui
sition. John Innes: Conceptualization, Resources, Funding acquisition. 
Laura Lossi: PI staining. Adalberto Merighi: Conceptualization, Su
pervision, Visualization, Funding acquisition, Writing – review & edit
ing. William E.B. Johnson: Conceptualization, Supervision, 
Visualization, Funding acquisition, Writing – review & editing, All au
thors have read and agreed to the published version of the manuscript. 

Declaration of competing interest 

The authors declare no conflict of interest. The funders had no role in 
the design of the study, the collection, analyses, or interpretation of 
data, writing of the manuscript, or decision to publish results. 

Acknowledgements 

MSC were supplied by The Veterinary Tissue Bank Ltd., Chirk, UK. 

References 

[1] A. V Krassioukov, A. Ackery, G. Schwartz, Y. Adamchik, Y. Liu, M.G. Fehlings, An 
in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice, 
Brain Res. Protoc. 10 (2002) 60–68, https://doi.org/10.1016/S1385-299X(02) 
00180-0. 

[2] A. Patar, P. Dockery, L. Howard, S.S. McMahon, Cell viability in three ex vivo rat 
models of spinal cord injury, J. Anat. 234 (2019) 244–251, https://doi.org/ 
10.1111/joa.12909. 

C.R. Wood et al.                                                                                                                                                                                                                                

https://nc3rs.org.uk/crackit/crack-it-news/new-solution-neuroinflammation-and-nociception-dish
https://nc3rs.org.uk/crackit/crack-it-news/new-solution-neuroinflammation-and-nociception-dish
https://doi.org/10.1016/S1385-299X(02)00180-0
https://doi.org/10.1016/S1385-299X(02)00180-0
https://doi.org/10.1111/joa.12909
https://doi.org/10.1111/joa.12909


Biochemistry and Biophysics Reports 26 (2021) 100976

7

[3] M. Ravikumar, S. Jain, R.H. Miller, J.R. Capadona, S.M. Selkirk, An organotypic 
spinal cord slice culture model to quantify neurodegeneration, J. Neurosci. 
Methods 211 (2012) 280–288, https://doi.org/10.1016/j.jneumeth.2012.09.004. 

[4] F. Ferrini, S. Chiara, L. Lossi, G. Gambino, A. Merighi, Modulation of inhibitory 
neurotransmission by the vanilloid receptor type 1 (TRPV1) in organotypically 
cultured mouse substantia gelatinosaneurons, Pain 150 (2010) 128–140, https:// 
doi.org/10.1016/j.pain.2010.04.016. 

[5] V. Giacco, G. Panattoni, M. Medelin, E. Bonechi, A. Aldinucci, C. Ballerini, 
L. Ballerini, Cytokine inflammatory threat, but not LPS one, shortens GABAergic 
synaptic currents in the mouse spinal cord organotypic cultures, 
J. Neuroinflammation 16 (2019) 1–14, https://doi.org/10.1186/s12974-019- 
1519-z. 

[6] P. De Berdt, P. Bottemanne, J. Bianco, M. Alhouayek, A. Diogenes, A. Llyod, 
J. Gerardo-Nava, G.A. Brook, V. Miron, G.G. Muccioli, A. des Rieux, Stem cells 
from human apical papilla decrease neuro-inflammation and stimulate 
oligodendrocyte progenitor differentiation via activin-A secretion, Cell. Mol. Life 
Sci. 75 (2018) 2843–2856, https://doi.org/10.1007/s00018-018-2764-5. 

[7] H.M. Kim, H.J. Lee, M.Y. Lee, S.U. Kim, B.G. Kim, Organotypic spinal cord slice 
culture to study neural stem/progenitor cell microenvironment in the injured 
spinal cord, Exp. Neurobiol. 19 (2010) 106–113, https://doi.org/10.5607/ 
en.2010.19.2.106. 

[8] S. Pandamooz, M.S. Salehi, M.I. Zibaii, A. Safari, M. Nabiuni, A. Ahmadiani, 
L. Dargahi, Modeling traumatic injury in organotypic spinal cord slice culture 
obtained from adult rat, Tissue Cell 56 (2019) 90–97, https://doi.org/10.1016/j. 
tice.2019.01.002. 

[9] J.S. Cho, H.W. Park, S.K. Park, S. Roh, S.K. Kang, K.S. Paik, M.S. Chang, 
Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell 
survival in an organotypic spinal cord slice culture, Neurosci. Lett. 454 (2009) 
43–48, https://doi.org/10.1016/j.neulet.2009.02.024. 

[10] D.K. Jeong, C.E. Taghavi, K.J. Song, K.B. Lee, H.W. Kang, Organotypic human 
spinal cord slice culture as an alternative to direct transplantation of human bone 
marrow precursor cells for treating spinal cord injury, World Neurosurg 75 (2011) 
533–539, https://doi.org/10.1016/j.wneu.2010.10.042. 

[11] P.H. Sung, C. Lo Chang, T.H. Tsai, L.T. Chang, S. Leu, Y.L. Chen, C.C. Yang, 
S. Chua, K.H. Yeh, H.T. Chai, H.W. Chang, H.H. Chen, H.K. Yip, Apoptotic adipose- 
derived mesenchymal stem cell therapy protects against lung and kidney injury in 
sepsis syndrome caused by cecal ligation puncture in rats, Stem Cell Res. Ther. 4 
(2013) 9–15, https://doi.org/10.1186/scrt385. 

[12] H. Nakajima, K. Uchida, A.R. Guerrero, S. Watanabe, D. Sugita, N. Takeura, 
A. Yoshida, G. Long, K.T. Wright, W.E.B. Johnson, H. Baba, Transplantation of 
mesenchymal stem cells promotes an alternative pathway of macrophage 
activation and functional recovery after spinal cord injury, J. Neurotrauma 29 
(2012) 1614–1625, https://doi.org/10.1089/neu.2011.2109. 

[13] B. Neuhuber, B. Timothy Himes, J.S. Shumsky, G. Gallo, I. Fischer, Axon growth 
and recovery of function supported by human bone marrow stromal cells in the 
injured spinal cord exhibit donor variations, Brain Res. 1035 (2005) 73–85, 
https://doi.org/10.1016/j.brainres.2004.11.055. 

[14] C.P. Hofstetter, E.J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D.J. Prockop, 
L. Olson, Marrow stromal cells form guiding strands in the injured spinal cord and 
promote recovery, Proc. Natl. Acad. Sci. Unit. States Am. 99 (2002) 2199–2204, 
https://doi.org/10.1073/pnas.042678299. 

[15] L. Tang, X. Lu, R. Zhu, T. Qian, Y. Tao, K. Li, J. Zheng, P. Zhao, S. Li, X. Wang, L. Li, 
Adipose-derived stem cells expressing the neurogenin-2 promote functional 
recovery after spinal cord injury in rat, Cell. Mol. Neurobiol. 36 (2016) 657–667, 
https://doi.org/10.1007/s10571-015-0246-y. 

[16] T.B. Massoto, A.C.R. Santos, B.S. Ramalho, F.M. Almeida, A.M.B. Martinez, S. 
A. Marques, Mesenchymal stem cells and treadmill training enhance function and 
promote tissue preservation after spinal cord injury, Brain Res. 1726 (2019), 
https://doi.org/10.1016/j.brainres.2019.146494. 

[17] M. Chopp, C.A. Xue, H. Zhang, Y. Li, L. Wang, J. Chen, D. Lu, M. Lu, M. Rosenblum, 
Spinal cord injury in rat : treatment with bone marrow stromal cell transplantation, 
Neuroreport 11 (2000) 3001–3005. 

[18] C. Ide, Y. Nakai, N. Nakano, T.-B. Seo, Y. Yamada, K. Endo, T. Noda, F. Saito, 
Y. Suzuki, M. Fukushima, T. Nakatani, Bone marrow stromal cell transplantation 
for treatment of sub-acute spinal cord injury in the rat, Brain Res. 1332 (2010) 
32–47, https://doi.org/10.1016/j.brainres.2010.03.043. 

[19] L.J. Wang, R.P. Zhang, J.D. Li, Transplantation of neurotrophin-3-expressing bone 
mesenchymal stem cells improves recovery in a rat model of spinal cord injury, 
Acta Neurochir. 156 (2014) 1409–1418, https://doi.org/10.1007/s00701-014- 
2089-6. 

[20] Y. Tan, K. Uchida, H. Nakajima, A.R. Guerrero, S. Watanabe, T. Hirai, N. Takeura, 
S.-Y. Liu, W.E. Johnson, H. Baba, Blockade of interleukin 6 signaling improves the 
survival rate of transplanted bone marrow stromal cells and increases locomotor 
function in mice with spinal cord injury, J. Neuropathol. Exp. Neurol. 72 (2013) 
980–993, https://doi.org/10.1097/NEN.0b013e3182a79de9. 

[21] K. Menezes, M.A. Nascimento, J.P. Gonçalves, A.S. Cruz, D.V. Lopes, B. Curzio, 
M. Bonamino, J.R.L. De Menezes, R. Borojevic, M.I.D. Rossi, T. Coelho-Sampaio, 
Human mesenchymal cells from adipose tissue deposit laminin and promote 
regeneration of injured spinal cord in rats, PloS One 9 (2014), https://doi.org/ 
10.1371/journal.pone.0096020. 

[22] Y. Kim, S.H. Jo, W.H. Kim, O.K. Kweon, Antioxidant and anti-inflammatory effects 
of intravenously injected adipose derived mesenchymal stem cells in dogs with 
acute spinal cord injury, Stem Cell Res. Ther. 6 (2015) 229, https://doi.org/ 
10.1186/s13287-015-0236-5. 
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